Schema Frontespizio Teso Dottorato

Total Page:16

File Type:pdf, Size:1020Kb

Schema Frontespizio Teso Dottorato Università degli Studi di Cagliari DOTTORATO DI RICERCA BOTANICA AMBIENTALE E APPLICATA Ciclo XXVI Germination niche of Sardinian endemic species in mountain riparian deciduous forests BIO/03 Presentata da: Dr. Marco Porceddu Coordinatore Dottorato Prof. Gianluigi Bacchetta Tutor Prof. Gianluigi Bacchetta Prof. Hugh W. Pritchard PhD. Efisio Mattana Esame finale anno accademico 2012 – 2013 A sa famíglia e sa isposa mia cun tottu su coru 3 La presente tesi è stata prodotta durante la frequenza del corso di dottorato in BOTANICA AMBIENTALE E APPLICATA dell’Università degli Studi di Cagliari, a.a. 2012/2013 - XXVI ciclo, con il supporto di una borsa di studio finanziata con le risorse del P.O.R. SARDEGNA F.S.E. 2007-2013 - Obiettivo competitività regionale e occupazione, Asse IV Capitale umano, Linea di Attività l.3.1 “Finanziamento di corsi di dottorato finalizzati alla formazione di capitale umano altamente specializzato, in particolare per i settori dell’ICT, delle nanotecnologie e delle biotecnologie, dell'energia e dello sviluppo sostenibile, dell'agroalimentare e dei materiali tradizionali”. Marco Porceddu gratefully acknowledges Sardinia Regional Government for the financial support of her PhD scholarship (P.O.R. Sardegna F.S.E. Operational Programme of the Autonomous Region of Sardinia, European Social Fund 2007-2013 - Axis IV Human Resources, Objective l.3, Line of Activity l.3.1.)”. 4 Index Summary ......................................................................................................................................... 9 General Introduction and Literature Review .................................................................................. 11 Seed structure ............................................................................................................................ 11 Seed germination ....................................................................................................................... 13 Seed dormancy .......................................................................................................................... 15 Evolutionary trends of seeds structure and dormancy ................................................................. 18 Thermal time model ................................................................................................................... 20 Mediterranean climate ............................................................................................................... 22 Mediterranean basin................................................................................................................... 23 Climate change .......................................................................................................................... 25 Aims .......................................................................................................................................... 27 References ................................................................................................................................. 28 Chapter I - Thermal niche for in situ seed germination by Mediterranean mountain streams: model prediction and validation for Rhamnus persicifolia seeds1 .............................................................. 32 Abstract ..................................................................................................................................... 32 Introduction ............................................................................................................................... 33 Material and Methods ................................................................................................................ 36 Study species.......................................................................................................................... 36 Seed lot details ....................................................................................................................... 36 Germination tests under controlled conditions ....................................................................... 38 Field experiments .................................................................................................................. 38 Data analysis ......................................................................................................................... 39 Results ....................................................................................................................................... 41 Seed germination under controlled conditions ....................................................................... 41 Thermal requirement for germination .................................................................................... 42 Seed germination in the field ................................................................................................. 45 Soil heat sum and thermal niche for in situ seed germination ................................................. 47 Discussion ................................................................................................................................. 49 Type of dormancy .................................................................................................................. 49 Thermal requirements for germination .................................................................................. 50 Soil heat sum and thermal niche for in situ seed germination ................................................. 51 Conclusions ............................................................................................................................... 53 Chapter II - Multiphasic thermal parameters for embryo growth, seed dormancy loss and germination in Aquilegia barbaricina ................................................................................................................ 60 Abstract ..................................................................................................................................... 60 Introduction ............................................................................................................................... 61 Materials and Methods .............................................................................................................. 62 Study species ......................................................................................................................... 62 Seed lot details ...................................................................................................................... 63 Germination tests .................................................................................................................. 63 Embryo measurements ........................................................................................................... 64 Thermal time analyses ........................................................................................................... 65 Statistical analysis ................................................................................................................. 67 Results ...................................................................................................................................... 67 Embryo growth, endosperm rupture and seed germination .................................................... 67 Thermal time approach on embryo growth ............................................................................ 71 Thermal time approach on seed germination ......................................................................... 73 Discussion ................................................................................................................................. 76 Type of dormancy .................................................................................................................. 76 Multiphasic seed germination ................................................................................................ 77 6 Thermal thresholds for embryo growth and seed germination ................................................ 78 Conclusions ............................................................................................................................... 80 Chapter III - Sequential temperature control of multiphasic growth and germination of Paeonia corsica seeds.............................................................................................................................................. 86 Abstract ..................................................................................................................................... 86 Study species and seedlot details ............................................................................................ 89 Experimental trials ................................................................................................................ 89 Embryo measurements ........................................................................................................... 90 Endosperm rupture and radicle emergence ............................................................................ 91 Epicotyl dormancy release ..................................................................................................... 91 Statistical analysis ................................................................................................................. 91 Results ......................................................................................................................................
Recommended publications
  • AGS Seed List No 69 2020
    Seed list No 69 2020-21 Garden Collected Seed 1001 Abelia floribunda 1057 Agrostemma githago 1002 Abies koreana 1058 Albuca canadensis (L.
    [Show full text]
  • Print This Article
    International Journal of Phytomedicine 6 (2014) 177-181 http://www.arjournals.org/index.php/ijpm/index Original Research Article ISSN: 0975-0185 The effect of Cyclamen coum extract on pyocyanin production by Pseudomonas aeruginosa Zahra Ahmadbeigi1*, Azra Saboora1, Ahya Abdi-Ali1 *Corresponding author: Abs tract Researches have shown that some plants possess antimicrobial activity and the ability to overcome Zahra Ahmadbeigi drug-resistant pathogens. Their frequent used in treatment of microbial infections has been led to isolation of the active compounds and evaluation of their antimicrobial properties. Cyclamen coum Miller is one of these plants with a secondary metabolite called saponin which has antimicrobial 1Department of Biology, Faculty of activity. Pyocyanin is one of the virulence factors in Pseudomonas aeruginosa, an opportunistic Science, University of Alzahra, Tehran pathogen, causing lung diseases. The present study indicates the effect of cyclamen saponin 1993893973, Iran extracts on pyocyanin production by P. aeruginosa. We prepared three different types of plant extracts (ethanolic, aqueous and butanolic) from tuber of C. coum. The effect of 0, 10 and 20 mg of cyclamen saponin were tested by agar disk diffusion technique. Pyocyanin purification was done from microbial broth culture and the extracted pyocyanin was measured by spectrophotometric method. Results showed that the production of pyocyanin was remarkably reduced by ethanolic extract of saponin. In addition increased saponin concentration led to further decrease in pyocyanin content. Keywords: Pseudomonas aeruginosa; Cyclamen coum; Pyocyanin; Antimicrobial activity es Bacterial cells communicate with each other through producing Introduction signaling factors named inducers. When bacterial cell density increases, the inducers bind to the receptors and alter the Extensive In vitro studies on plants used in traditional medicine expression of certain genes.
    [Show full text]
  • Conserving Europe's Threatened Plants
    Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database.
    [Show full text]
  • Cyclamen Purpurascens Mill.) TUBERS
    Advanced technologies 7(1) (2018) 05-10 BIOACTIVE COMPOUNDS AND MINERAL COMPOSITON OF THE AQUEOUS EXTRACT FROM WILD CYCLAMEN (Cyclamen purpurascens Mill.) TUBERS * Ljiljana Stanojević , Dragan Cvetković, Saša Savić, Sanja Petrović, Milorad Cakić (ORIGINAL SCIENTIFIC PAPER) UDC 582.689.1:66.061.34:543.5 University of Niš, Faculty of Technology, Leskovac, Serbia doi:10.5937/savteh1801005S Wild cyclamen tubers (Cyclamen purpurascens Mill.) (Kukavica mountain, south- east Serbia) was used as an extraction material in this study. The aqueous extract has been obtained by reflux extraction at the boiling temperature with hydromodu- lus 1:20 m/v during 180 minutes. The identification of bioactive components in the Keywords: Wild cyclamen tubers, Aque- extract was performed by using UHPLC–DAD–HESI–MS analysis. The concentra- ous extract, UHPLC–DAD–HESI–MS tions of macro- and microelements in the extract were determined by Inductively analysis, Micro- and Macroelements. Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Isocyclamin and des- glucocyclamin I were identified in the obtained extract. Potassium was in the highest concentration - 10241.65 mg/kg of the plant material, while zinc was present in the highest concentration (11.57 mg/kg of plant material) among heavy metals. Pre- sented results have shown that the obtained extract from wild cyclamen tubers is a potential source of triterpenoide saponin components isocyclamin and desglucocy- clamin I, as well as macro- and microelements. Introduction Wild cyclamen (Cyclamen purpurascens Mill.; Syn. Cy- Besides the main bioactive components identification, clamen europaeum L.), or purple cyclamen, is a species macro- and microelements in the aqueous extract of wild in the Cyclamen genus of the Primulaceae family [1].
    [Show full text]
  • The Rock Garden 136 the Ro
    January 2016 January 2016 THE ROCK GARDEN 136 THE ROCK GARDEN 136 January 2016 THE ROCK GARDEN Volume XXXIV Part 3 - 136 January 2016 THE ROCK GARDEN Volume XXXIV Part 3 - 136 PostalPostal Subscriptions Subscriptions from from 1st October, 1st October, 2015 2015 Postal subscriptionsPostal subscriptions are payable are payable annually annually by October by October and provide and provide membership membership of the of the SRGC untilSRGC 30 thuntil September 30th September of the following of the following year. year. SubscriptionSubscription Rates Rates UK UK OverseasOverseas Single annualSingle annual £18 £18 £23 £23 Junior Junior £3 £3 £7 £7 (under 18(under on 1 18st Oct) on 1st Oct) Family Family £21 £21 £25 £25 (Two adults(Two andadults up and to two up childrento two children under 18 under on 1 18st Oct) on 1st Oct) Three yearThree subscriptions year subscriptions are available are available at three at times three the times above the aboveannual annualrates. Renewals rates. Renewals for threefor year three subscriptions year subscriptions may only may be only made be atmade the end at the of endthe three of the year three period. year period. All subscriptionAll subscription payments payments to the club to the must club be must made be inmade GB Pounds in GB Pounds Sterling. Sterling. ChequesCheques should shouldbe made be payablemade payable to ‘The Scottishto ‘The Scottish Rock Garden Rock Garden Club’ and Club’ must and be must be drawn ondrawn a UK on bank. a UK bank. SubscriptionSubscription payments payments may be may made be throughmade through the post the by post Visa byor MastercardVisa or Mastercard providingproviding the following the following information information is sent: is sent: The longThe number long number on the cardon the card The nameThe ofname the cardholder of the cardholder as shown as onshown the cardon the card The cardThe expiry card date expiry date The cv2The 3 digit cv2 number3 digit number (from back (from of back the card) of the card) The cardholder’sThe cardholder’s signature.
    [Show full text]
  • January 2019 ---International Rock Gardener
    International Rock Gardener ISSN 2053-7557 Number 109 The Scottish Rock Garden Club January 2019 ---International Rock Gardener--- January 2019 Our first article this month, about a Scottish garden, is republished with agreement from the journal „Folium Alpinum‟ of our sister society, the Dutch Rock Garden Club (NRV). Jānis Rukšāns takes us to Berkara Gorge in the Karatau Mountain Ridge of Kazakhstan to describe a tulipa species. Martin Hajman reviews a new book on the Tian Shan and we finish with a look at a gem of the Cyclamen genus, originally written by Václav Jošt for „Skalničky‟, the Czech rock garden journal. Cover photo: Candelabra primulas in Sue Simpson‟s garden. ---Alpine Allure--- Sue Simpson who lives in south-west Scotland, explains her fascination with extending her love of gardening to exhibiting plants at alpine plant shows in the UK. Sue and her husband George Watt have made an extraordinary garden in just a few years – and their dedication to having their potted plants be every bit as well-looked after as their garden is remarkable – and pays off well, as readers will learn! ALPINE ADDICTION: text Sue Simpson, photos Sue Simpson and George Watt My fascination with alpines goes back about 20 years when a friend, now my husband, took me to a Scottish Rock Garden Club Show. I was captivated by the beautifully grown plants on the benches and there were nursery folk on hand, willing to sell me some of these jewels! Fast on the heels of the show I was treated to a visit to Jim Sutherland‟s family run alpine nursery - Ardfearn, near Inverness - rows and rows of neat little alpines in their pots were laid out before me – absolute heaven, much better than clothes shopping, although I am sure not all women would agree with me! I spent a fortune and we came away with trays of pots! At that time I lived in Peebles in south east Scotland where the weather is cold and on the whole much drier than in the west where we live now.
    [Show full text]
  • Nutrients, Fatty Acid Composition and Antioxidant Activity of the Flowers and Seed Oils in Wild Populations of Paeonia Ludlowii
    Emirates Journal of Food and Agriculture. 2019. 31(3): 206-213 doi: 10.9755/ejfa.2019.v31.i3.1922 http://www.ejfa.me/ RESEARCH ARTICLE Nutrients, fatty acid composition and antioxidant activity of the flowers and seed oils in wild populations of Paeonia ludlowii Jie Li, Zai-Hua Wang* Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China ABSTRACT Wild Paeonia ludlowii is considered as a traditional ornamental plant, but its flowers and seed oils are edible with important economic values, and the variation of nutrients, fatty acid composition in wild populations is scarcely known. Flowers and seeds of P. ludlowii were collected from two wild populations for evaluating the nutrients in flowers, composition of fatty acids in seed oils and the antioxidant activity. The flowers contained high composition of proteins, carbohydrates, amino acids, total flavonoids, phenolic compounds and essential minerals. Seed oil yield reached up to 21.95% using supercritical CO2 fluid extraction, and it contained 14 fatty acids (up to 93.35 g/100 g seed oil), especially the unsaturated fatty acids (oleic acid, linoleic acid and α-linolenic acid) was up to 88.69% with low ω6/ω3 ratios of 0.58. The antioxidant capacity can be arranged in the order of trolox > flower extracts > seed oil according to the DPPH and ABTS free radical assay. Contents of nutrient in flowers and fatty acids in seed oils were significantly different between two wild populations due to the impact of different growing environments. These results indicate that flowers and seed oils ofP.
    [Show full text]
  • List of 735 Prioritised Plant Taxa of CARE-MEDIFLORA Project
    List of 735 prioritised plant taxa of CARE-MEDIFLORA project In situ and/or ex situ conservation actions were implemented during CARE-MEDIFLORA for 436 of the prioritised plant taxa. Island(s) of occurrence: Balearic Islands (Ba), Corsica (Co), Sardinia (Sa), Sicily (Si), Crete (Cr), Cyprus (Cy) Occurrence: P = present; A = alien (not native to a specific island); D = doubtful presence Distribution type: ENE = Extremely Narrow Endemic (only one population) NE = Narrow Endemic (≤ five populations) RE = Regional Endemic (only one Island) IE = Insular Endemic (more than one island) W = distributed in more islands or in a wider area. Distribution type defines the "regional responsibility" of an Island on a plant species. Criteria: Red Lists (RL): plant species selected is included in the red list (the plant should be EN, CR or VU in order to justify a conservation action); Regional Responsibility (RR): plant species selected plays a key role for the island; the "regional responsibility" criterion is the first order of priority at local level, because it establishes a high priority to plants whose distribution is endemic to the study area (an island in our specific case). Habitats Directive (HD): plant species selected is listed in the Annexes II and V of the Habitat Directive. Wetland plant (WP): plant species selected is a wetland species or grows in wetland habitat. Island(s) where Distribution Island(s) where Taxon (local checklists) Island(s) of occurrence conservation action(s) type taxon prioritised were implemented Ba Co Sa Si Cr Cy RL RR HD WP Ex situ In situ Acer granatense Boiss. P W 1 Ba Ba Acer obtusatum Willd.
    [Show full text]
  • Flora Mediterranea 26
    FLORA MEDITERRANEA 26 Published under the auspices of OPTIMA by the Herbarium Mediterraneum Panormitanum Palermo – 2016 FLORA MEDITERRANEA Edited on behalf of the International Foundation pro Herbario Mediterraneo by Francesco M. Raimondo, Werner Greuter & Gianniantonio Domina Editorial board G. Domina (Palermo), F. Garbari (Pisa), W. Greuter (Berlin), S. L. Jury (Reading), G. Kamari (Patras), P. Mazzola (Palermo), S. Pignatti (Roma), F. M. Raimondo (Palermo), C. Salmeri (Palermo), B. Valdés (Sevilla), G. Venturella (Palermo). Advisory Committee P. V. Arrigoni (Firenze) P. Küpfer (Neuchatel) H. M. Burdet (Genève) J. Mathez (Montpellier) A. Carapezza (Palermo) G. Moggi (Firenze) C. D. K. Cook (Zurich) E. Nardi (Firenze) R. Courtecuisse (Lille) P. L. Nimis (Trieste) V. Demoulin (Liège) D. Phitos (Patras) F. Ehrendorfer (Wien) L. Poldini (Trieste) M. Erben (Munchen) R. M. Ros Espín (Murcia) G. Giaccone (Catania) A. Strid (Copenhagen) V. H. Heywood (Reading) B. Zimmer (Berlin) Editorial Office Editorial assistance: A. M. Mannino Editorial secretariat: V. Spadaro & P. Campisi Layout & Tecnical editing: E. Di Gristina & F. La Sorte Design: V. Magro & L. C. Raimondo Redazione di "Flora Mediterranea" Herbarium Mediterraneum Panormitanum, Università di Palermo Via Lincoln, 2 I-90133 Palermo, Italy [email protected] Printed by Luxograph s.r.l., Piazza Bartolomeo da Messina, 2/E - Palermo Registration at Tribunale di Palermo, no. 27 of 12 July 1991 ISSN: 1120-4052 printed, 2240-4538 online DOI: 10.7320/FlMedit26.001 Copyright © by International Foundation pro Herbario Mediterraneo, Palermo Contents V. Hugonnot & L. Chavoutier: A modern record of one of the rarest European mosses, Ptychomitrium incurvum (Ptychomitriaceae), in Eastern Pyrenees, France . 5 P. Chène, M.
    [Show full text]
  • A Common Threat to IUCN Red-Listed Vascular Plants in Europe
    Tourism and recreation: a common threat to IUCN red-listed vascular plants in Europe Author Ballantyne, Mark, Pickering, Catherine Marina Published 2013 Journal Title Biodiversity and Conservation DOI https://doi.org/10.1007/s10531-013-0569-2 Copyright Statement © 2013 Springer. This is an electronic version of an article published in Biodiversity and Conservation, December 2013, Volume 22, Issue 13-14, pp 3027-3044. Biodiversity and Conservation is available online at: http://link.springer.com/ with the open URL of your article. Downloaded from http://hdl.handle.net/10072/55792 Griffith Research Online https://research-repository.griffith.edu.au Manuscript 1 Tourism and recreation: a common threat to IUCN red-listed vascular 1 2 3 4 2 plants in Europe 5 6 7 8 3 *Mark Ballantyne and Catherine Marina Pickering 9 10 11 12 4 Environmental Futures Centre, School of Environment, Griffith University, Gold Coast, 13 14 5 Queensland 4222, Australia 15 16 17 18 6 *Corresponding author email: [email protected], telephone: +61(0)405783604 19 20 21 7 22 23 8 24 25 9 26 27 28 10 29 30 11 31 32 12 33 34 13 35 36 37 14 38 39 15 40 41 16 42 43 17 44 45 46 18 47 48 19 49 50 20 51 52 21 53 54 55 22 56 57 23 58 59 24 60 61 62 63 64 65 25 Abstract 1 2 3 4 26 Tourism and recreation are large industries employing millions of people and contribute over 5 6 27 US$2.01 trillion to the global economy.
    [Show full text]
  • The Woodies-Part I
    The Woodies-Part I Woody Paeonia Species -Nate Bremer- ____________________________________________________ This article and others were a part of a series about woody peonies which recently appeared in the American Peony Society’s Bulletin. This article does not include images that were printed with the edited feature articles. For complete articles with images, please become a member of the American Peony Society for published version access. My aim was to present a series of articles focusing on the major groups of woodies in cultivation that may help others grow this uniquely beautiful group of plants. After growing this unusual group of plants intensely for more than 15 years, I’ve learned much that may be of interest to others wishing to incorporate these wonderful plants into their collections. For the most part, information will be practical, rather than highly scientific. We grow all of our plants outside, without protection, in our USDA Zone 4 gardens and propagation fields. Thus the observations and information that follows may or may not be entirely applicable to all growing situations, but should serve as a good baseline for those that grow or would like to grow ‘woodies’. The species, or plants that occur in the wild are rare in their natural habitats and seldom seen in American gardens for a number of reasons. All originate from east Asian mountainous regions (mostly China) and have somewhat more demanding requirements to grow successfully. Some are not able to withstand our cold winters and others struggle with the excess water in our region at various times throughout the year.
    [Show full text]
  • Climatic Refugia and Geographical Isolation Contribute to the Speciation and Genetic Divergence in Himalayan-Hengduan Tree Peoni
    ORIGINAL RESEARCH published: 27 January 2021 doi: 10.3389/fgene.2020.595334 Climatic Refugia and Geographical Isolation Contribute to the Speciation and Genetic Divergence in Himalayan-Hengduan Tree Peonies (Paeonia delavayi and Paeonia ludlowii) Yu-Juan Zhao 1,2, Gen-Shen Yin 3, Yue-Zhi Pan 2, Bo Tian 4 and Xun Gong 1,2* 1 Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China, 2 Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, China, 3 College of Agriculture and Life Sciences, Kunming University, Chinese Academy of Sciences (CAS), Kunming, China, 4 Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China Himalaya and Hengduan Mountains (HHM) is a biodiversity hotspot, and very rich in endemic species. Previous phylogeographical studies proposed different hypotheses Edited by: (vicariance and climate-driven speciation) in explaining diversification and the observed Genlou Sun, pattern of extant biodiversity, but it is likely that taxa are forming in this area in Saint Mary’s University, Canada species-specific ways. Here, we reexplored the phylogenetic relationship and tested Reviewed by: Guifang Zhao, the corresponding hypotheses within Paeonia subsect. Delavayanae composed of Northwest University, China one widespread species (Paeonia delavayi) and the other geographically confined Yong Li, species (Paeonia ludlowii). We gathered genetic variation data at three chloroplast Henan Agricultural University, China DNA fragments and one nuclear gene from 335 individuals of 34 populations *Correspondence: Xun Gong sampled from HHM.
    [Show full text]