Balanced Category Theory II
BALANCED CATEGORY THEORY II CLAUDIO PISANI ABSTRACT. In the first part, we further advance the study of category theory in a strong balanced factorization category C [Pisani, 2008], a finitely complete category en- dowed with two reciprocally stable factorization systems such that M/1 = M′/1. In particular some aspects related to “internal” (co)limits and to Cauchy completeness are considered. In the second part, we maintain that also some aspects of topology can be effectively synthesized in a (weak) balanced factorization category T , whose objects should be considered as possibly “infinitesimal” and suitably “regular” topological spaces. While in C the classes M and M′ play the role of discrete fibrations and opfibrations, in T they play the role of local homeomorphisms and perfect maps, so that M/1 and M′/1 are the subcategories of discrete and compact spaces respectively. One so gets a direct abstract link between the subjects, with mutual benefits. For example, the slice projection X/x → X and the coslice projection x\X → X, obtained as the second factors of x :1 → X according to (E, M) and (E′, M′) in C, correspond in T to the “infinitesimal” neighborhood of x ∈ X and to the closure of x. Furthermore, the open-closed complementation (generalized to reciprocal stability) becomes the key tool to internally treat, in a coherent way, some categorical concepts (such as (co)limits of presheaves) which are classically related by duality. Contents 1 Introduction 2 2 Bicartesian arrows of bimodules 4 3 Factorization systems 6 4 Balanced factorization categories 10 5 Cat asastrongbalancedfactorizationcategory 12 arXiv:0904.1790v3 [math.CT] 27 Apr 2009 6 Slices and colimits in a bfc 14 7 Internalaspectsofbalancedcategorytheory 16 8 The tensor functor and the internal hom 20 9 Retracts of slices 24 2000 Mathematics Subject Classification: 18A05, 18A22, 18A30, 18A32, 18B30, 18D99, 54B30, 54C10.
[Show full text]