INTRODUCTION to the TRANSMISSION CONTROL PROTOCOL How Does TCP and UDP Impact Control Networks? by George Thomas, Contemporary Controls

Total Page:16

File Type:pdf, Size:1020Kb

INTRODUCTION to the TRANSMISSION CONTROL PROTOCOL How Does TCP and UDP Impact Control Networks? by George Thomas, Contemporary Controls Volume 1 • Issue 5 March–April 2000 Introduction to Industrial Ethernet, Part 3. Part 2 was featured in Issue 4, the Winter 1999. If you would like a copy, please send your request to EXTENSION [email protected] A Technical Supplement to control NETWORK INTRODUCTION TO THE TRANSMISSION CONTROL PROTOCOL How does TCP and UDP impact control networks? By George Thomas, Contemporary Controls INTRODUCTION USER DATAGRAM The UDP header is short and PROTOCOL simple. Only eight bytes are In the last EXTENSION issue required in the header. Source and (Volume 1 Issue 4) we discussed UDP provides a connectionless destination ports are each 16-bits the impact of the Internet Protocol and unreliable transport service long and, therefore, require four (IP) on control networks. IP since it does not issue bytes. The message length of 16- resides at the network layer of the acknowledgements to the sender bits indicates the length of the OSI communications model and upon receipt of data nor does it header and attached data. A 16-bit provides the basic unit of data inform the sender that data was checksum is used to check the transfer, which includes addressing, lost. Data integrity can suffer by validity of the header and data. routing, and fragmentation. The dropped packets, missequenced The UDP header and attached transport layer of this same model packets or by the receipt of data, which comes from the resides above the network layer duplicate packets. Any of these application layer, are encapsulated and provides station-to-station situations can occur without the into the IP data field. An IP communication and a common knowledge of the sender. It header, which provides station interface to the application layer. appears that UDP is no better than addressing, precedes the UDP This implies reliable the IP protocol but there is one datagram and the complete IP communication, which is either big difference. UDP introduces the datagram is encapsulated into the accomplished at the transport layer concept of port numbers, which frame of the data link layer or at the application layer. With are used by the application layer technology used, such as Ethernet, control networks this is usually that resides above UDP. Port and sent to the desired station accomplished at the application numbers have significance in where the complete process is layer since many control networks terms of actions requested by the reversed. Notice that the only were designed before the application itself that require a contribution UDP provided was popularity of TCP/IP took hold. particular response by the the assignment of port numbers Still there are some control receiving station. network protocols, such as MODBUS/TCP, which do rely upon Source port Destination port the guaranteed delivery mechanism Message Length Checksum of TCP and there may be more in the future. Actually, at the transport Data layer of the TCP/IP stack there are Data two transport protocols, each of which find service in control networks. The User Datagram Type IP SADA UDP Header and Data CRC Protocol (UDP) and the 0800 Header Transmission Control Protocol (TCP) will both be discussed in Figure 1. The UDP header is quite short and, along with its data, this article. it is encapsulated into an IP datagram. 1 for use by the application layer. If quickly making it attractive for insert a 69 (a well-known port UDP is to be used, the application control networks. assignment indicating TFTP layer must worry about services) into its destination port. acknowledging message receipt, A dynamic (random but non- correctly ordering received packets PORT NUMBERS conflicting) number will be put in into meaningful messages, UDP introduces the port number its source port and the request will discarding duplicate packets and concept. When a station receives a be sent to station B. Station B requesting retransmission of faulty UDP datagram, it serves up the would receive the request and packets since UDP does not port number to the application recognize it is a TFTP request from provide this service. However, if layer, which then allocates a buffer station A since port number 69 the application layer was originally area for the attached data. The was used. Station B would then designed to provide this reliability port number has significance begin executing the process. But it of service there is no reason to since it identifies a particular would insert a 69 in its source have the transport layer duplicate application. Since there are many port, and the dynamic number that effort so UDP makes sense. UDP port number possibilities, several was generated by station A in its has low overhead and executes different applications can be destination port, and send the simultaneously supported on response to station A. Station B the same station. knows how to handle this particular application since it Port Number Assignments recognizes both the source and Port numbers are 16-bits long and destination port numbers. The use are classified as being assigned, Both UDP and TCP use port numbers and, of port numbers along with the IP registered or dynamic. Assigned if possible, the same assignment is used address creates what is called a port numbers in the range of zero socket, which can be represented for both. The 16-bit numbers are to 1023 have been defined by the as <netid, hostid, portid>. As long classified as either assigned (well- Internet Assigned Numbers as there is structure to the known), registered or dynamic (private). Authority (IANA) for various assignment of ports, the socket Port number assignments are maintained applications that are considered assignment becomes a unique part of the TCP/IP protocol suite. by the Internet Assigned Numbers representation of a particular These applications include Authority (IANA) and the complete list application on the complete IP TELNET, FTP, and other popular network. can be found at ftp://ftp.isi.edu/in- Internet applications. These port notes/iana/ under port numbers. numbers are termed “well known” Numbers in the range of zero to 1023 and cannot be used by other TRANSMISSION CONTROL are classified as well-known and are applications. The remainder of the PROTOCOL port assignments is classified as used by common processes. However, The second transport layer being either registered or dynamic. individual organizations can register protocol is TCP which provides for Registered means that an a connection-based reliable numbers in the range of 1024 to 49151 organization wants to define some message delivery service for for proprietary purposes and will not be level of functionality and has processes. This relieves the used by other organizations. Looking at registered a unique port number application layer the responsibility the list, we find some companies in our with the IANA. Other organizations of guaranteed message delivery. are to respect this assignment and industry. Opto22 has registered 22000 Besides reliable connections, TCP not use either assigned or and 22001 for their SNAP I/O and Opto provides flow control to ensure registered port numbers. Finally, stations are not flooded with data. Control products. The BACnet building the dynamic port numbers are automation protocol has registered used in a random manner by a 47808. DeviceNet and ControlNet requesting station to signify the Data transmitted between stations intend to use 44818. Interestingly, the source port of an application is sent as a series of packets. request. These packets are reassembled at MODBUS/TCP specification calls for port the receiving end in the proper 502, which is in the well-known port order to recreate the data stream group. Port numbers 49152 to 65535 For example, if station A requests that was transmitted. Along the are considered as either private or a trivial file transfer protocol way packets can be corrupted, (TFTP) service (TFTP happens to dynamic and can be used by anyone. lost, duplicated or received out of use UDP) from station B, it would 2 order. In order to make sense of scheme described above. Instead to station A’s request for data, that all this, sequence numbers are of sequencing each packet, TCP data can be sent along with an applied to each packet sequences each byte in the packet. acknowledgement of station A’s transmission. A sequence number Assigning a sequence number to requesting message. This speeds is assigned to the first packet of a indicate the first byte in a multi- up processing. message. It does not matter what byte packet does this. The second is the initial value of the sequence packet will have a sequence number only that the second number equal to the first sequence TCP’s header is larger than that of packet has been assigned the number plus the number of bytes UDP but uses the same port initial sequence number plus one. in the first packet. The receiver assignment scheme as UDP does. The rule is that successive packets expects the same. The receiver Unlike UDP, a 32-bit sequence of a data stream have ascending acknowledges receipt of good number and acknowledgement sequence numbers each packets by transmitting an number are included in the header incremented by one. After all the acknowledgement that includes as well as several flag bits. Only a packets are received, sequence the value of the next expected few of the flag bits will be numbers are used to order the sequence number. In this case, it discussed here. Since the TCP packets. Missing sequence is the sequence number of the last header can be of varying length numbers indicate the packet was byte in the last received packet depending upon the content of the lost. Duplicate packet numbers plus one. Upon receipt of this options field, a data offset field indicate duplicate packets were acknowledgement, the sender can has been provided in order to received allowing them to be assume that previous bytes up determine the actual beginning of discarded.
Recommended publications
  • DE-CIX Academy Handout
    Networking Basics 04 - User Datagram Protocol (UDP) Wolfgang Tremmel [email protected] DE-CIX Management GmbH | Lindleystr. 12 | 60314 Frankfurt | Germany Phone + 49 69 1730 902 0 | [email protected] | www.de-cix.net Networking Basics DE-CIX Academy 01 - Networks, Packets, and Protocols 02 - Ethernet 02a - VLANs 03 - the Internet Protocol (IP) 03a - IP Addresses, Prefixes, and Routing 03b - Global IP routing 04 - User Datagram Protocol (UDP) 05 - TCP ... Layer Name Internet Model 5 Application IP / Internet Layer 4 Transport • Data units are called "Packets" 3 Internet 2 Link Provides source to destination transport • 1 Physical • For this we need addresses • Examples: • IPv4 • IPv6 Layer Name Internet Model 5 Application Transport Layer 4 Transport 3 Internet 2 Link 1 Physical Layer Name Internet Model 5 Application Transport Layer 4 Transport • May provide flow control, reliability, congestion 3 Internet avoidance 2 Link 1 Physical Layer Name Internet Model 5 Application Transport Layer 4 Transport • May provide flow control, reliability, congestion 3 Internet avoidance 2 Link • Examples: 1 Physical • TCP (flow control, reliability, congestion avoidance) • UDP (none of the above) Layer Name Internet Model 5 Application Transport Layer 4 Transport • May provide flow control, reliability, congestion 3 Internet avoidance 2 Link • Examples: 1 Physical • TCP (flow control, reliability, congestion avoidance) • UDP (none of the above) • Also may contain information about the next layer up Encapsulation Packets inside packets • Encapsulation is like Russian dolls Attribution: Fanghong. derivative work: Greyhood https://commons.wikimedia.org/wiki/File:Matryoshka_transparent.png Encapsulation Packets inside packets • Encapsulation is like Russian dolls • IP Packets have a payload Attribution: Fanghong.
    [Show full text]
  • User Datagram Protocol - Wikipedia, the Free Encyclopedia Página 1 De 6
    User Datagram Protocol - Wikipedia, the free encyclopedia Página 1 de 6 User Datagram Protocol From Wikipedia, the free encyclopedia The five-layer TCP/IP model User Datagram Protocol (UDP) is one of the core 5. Application layer protocols of the Internet protocol suite. Using UDP, programs on networked computers can send short DHCP · DNS · FTP · Gopher · HTTP · messages sometimes known as datagrams (using IMAP4 · IRC · NNTP · XMPP · POP3 · Datagram Sockets) to one another. UDP is sometimes SIP · SMTP · SNMP · SSH · TELNET · called the Universal Datagram Protocol. RPC · RTCP · RTSP · TLS · SDP · UDP does not guarantee reliability or ordering in the SOAP · GTP · STUN · NTP · (more) way that TCP does. Datagrams may arrive out of order, 4. Transport layer appear duplicated, or go missing without notice. TCP · UDP · DCCP · SCTP · RTP · Avoiding the overhead of checking whether every RSVP · IGMP · (more) packet actually arrived makes UDP faster and more 3. Network/Internet layer efficient, at least for applications that do not need IP (IPv4 · IPv6) · OSPF · IS-IS · BGP · guaranteed delivery. Time-sensitive applications often IPsec · ARP · RARP · RIP · ICMP · use UDP because dropped packets are preferable to ICMPv6 · (more) delayed packets. UDP's stateless nature is also useful 2. Data link layer for servers that answer small queries from huge 802.11 · 802.16 · Wi-Fi · WiMAX · numbers of clients. Unlike TCP, UDP supports packet ATM · DTM · Token ring · Ethernet · broadcast (sending to all on local network) and FDDI · Frame Relay · GPRS · EVDO · multicasting (send to all subscribers). HSPA · HDLC · PPP · PPTP · L2TP · ISDN · (more) Common network applications that use UDP include 1.
    [Show full text]
  • Network Connectivity and Transport – Transport
    Idaho Technology Authority (ITA) ENTERPRISE STANDARDS – S3000 NETWORK AND TELECOMMUNICATIONS Category: S3510 – NETWORK CONNECTIVITY AND TRANSPORT – TRANSPORT CONTENTS: I. Definition II. Rationale III. Approved Standard(s) IV. Approved Product(s) V. Justification VI. Technical and Implementation Considerations VII. Emerging Trends and Architectural Directions VIII. Procedure Reference IX. Review Cycle X. Contact Information Revision History I. DEFINITION Transport provides for the transparent transfer of data between different hosts and systems. The two (2) primary transport protocols in the Transmission Control Protocol/Internet Protocol (TCP/IP) suite are the Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). II. RATIONALE Idaho State government must be able to easily, reliably, and economically communicate data and information to conduct State business. TCP/IP is the protocol standard used throughout the global Internet and endorsed by ITA Policy 3020 – Connectivity and Transport Protocols, for use in State government networks (LAN and WAN). III. APPROVED STANDARD(S) TCP/IP Transport: 1. Transmission Control Protocol (TCP); and 2. User Datagram Protocol (UDP). IV. APPROVED PRODUCT(S) Standards-based products and architecture S3510 – Network Connectivity and Transport – Transport Page 1 of 2 V. JUSTIFICATION TCP and UDP are the transport standards for critical State applications like electronic mail and World Wide Web services. VI. TECHNICAL AND IMPLEMENTATION CONSIDERATIONS It is also important to carefully consider the security implications of the deployment, administration, and operation of a TCP/IP network. VII. EMERGING TRENDS AND ARCHITECTURAL DIRECTIONS The use of TCP/IP (Internet) protocols and applications continues to increase. Agencies purchasing new systems may want to consider compatibility with the emerging Internet Protocol Version 6 (IPv6), which was designed by the Internet Engineering Task Force to replace IPv4 and will dramatically expand available IP addresses.
    [Show full text]
  • Application Protocol Data Unit Meaning
    Application Protocol Data Unit Meaning Oracular and self Walter ponces her prunelle amity enshrined and clubbings jauntily. Uniformed and flattering Wait often uniting some instinct up-country or allows injuriously. Pixilated and trichitic Stanleigh always strum hurtlessly and unstepping his extensity. NXP SE05x T1 Over I2C Specification NXP Semiconductors. The session layer provides the mechanism for opening closing and managing a session between end-user application processes ie a semi-permanent dialogue. Uses MAC addresses to connect devices and define permissions to leather and commit data 1. What are Layer 7 in networking? What eating the application protocols? Application Level Protocols Department of Computer Science. The present invention pertains to the convert of Protocol Data Unit PDU session. Network protocols often stay to transport large chunks of physician which are layer in. The term packet denotes an information unit whose box and tranquil is remote network-layer entity. What is application level security? What does APDU stand or Hop sound to rot the meaning of APDU The Acronym AbbreviationSlang APDU means application-layer protocol data system by. In the context of smart cards an application protocol data unit APDU is the communication unit or a bin card reader and a smart all The structure of the APDU is defined by ISOIEC 716-4 Organization. Application level security is also known target end-to-end security or message level security. PDU Protocol Data Unit Definition TechTerms. TCPIP vs OSI What's the Difference Between his Two Models. The OSI Model Cengage. As an APDU Application Protocol Data Unit which omit the communication unit advance a.
    [Show full text]
  • Is QUIC a Better Choice Than TCP in the 5G Core Network Service Based Architecture?
    DEGREE PROJECT IN INFORMATION AND COMMUNICATION TECHNOLOGY, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Is QUIC a Better Choice than TCP in the 5G Core Network Service Based Architecture? PETHRUS GÄRDBORN Master in Communication Systems Date: November 22, 2020 Supervisor at KTH: Marco Chiesa Supervisor at Ericsson: Zaheduzzaman Sarker Examiner: Peter Sjödin School of Electrical Engineering and Computer Science Host company: Ericsson AB Swedish title: Är QUIC ett bättre val än TCP i 5G Core Network Service Based Architecture? iii Abstract The development of the 5G Cellular Network required a new 5G Core Network and has put higher requirements on its protocol stack. For decades, TCP has been the transport protocol of choice on the Internet. In recent years, major Internet players such as Google, Facebook and CloudFlare have opted to use the new QUIC transport protocol. The design assumptions of the Internet (best-effort delivery) differs from those of the Core Network. The aim of this study is to investigate whether QUIC’s benefits on the Internet will translate to the 5G Core Network Service Based Architecture. A testbed was set up to emulate traffic patterns between Network Functions. The results show that QUIC reduces average request latency to half of that of TCP, for a majority of cases, and doubles the throughput even under optimal network conditions with no packet loss and low (20 ms) RTT. Additionally, by measuring request start and end times “on the wire”, without taking into account QUIC’s shorter connection establishment, we believe the results indicate QUIC’s suitability also under the long-lived (standing) connection model.
    [Show full text]
  • Connecting to the Internet Date
    Connecting to the Internet Dial-up Connection: Computers that are serving only as clients need not be connected to the internet permanently. Computers connected to the internet via a dial- up connection usually are assigned a dynamic IP address by their ISP (Internet Service Provider). Leased Line Connection: Servers must always be connected to the internet. No dial- up connection via modem is used, but a leased line. Costs vary depending on bandwidth, distance and supplementary services. Internet Protocol, IP • The Internet Protocol is connection-less, datagram-oriented, packet-oriented. Packets in IP may be sent several times, lost, and reordered. No bandwidth No video or graphics No mobile connection No Static IP address Only 4 billion user support IP Addresses and Ports The IP protocol defines IP addresses. An IP address specifies a single computer. A computer can have several IP addresses, depending on its network connection (modem, network card, multiple network cards, …). • An IP address is 32 bit long and usually written as 4 8 bit numbers separated by periods. (Example: 134.28.70.1). A port is an endpoint to a logical connection on a computer. Ports are used by applications to transfer information through the logical connection. Every computer has 65536 (216) ports. Some well-known port numbers are associated with well-known services (such as FTP, HTTP) that use specific higher-level protocols. Naming a web Every computer on the internet is identified by one or many IP addresses. Computers can be identified using their IP address, e.g., 134.28.70.1. Easier and more convenient are domain names.
    [Show full text]
  • Internet Protocol Suite
    InternetInternet ProtocolProtocol SuiteSuite Srinidhi Varadarajan InternetInternet ProtocolProtocol Suite:Suite: TransportTransport • TCP: Transmission Control Protocol • Byte stream transfer • Reliable, connection-oriented service • Point-to-point (one-to-one) service only • UDP: User Datagram Protocol • Unreliable (“best effort”) datagram service • Point-to-point, multicast (one-to-many), and • broadcast (one-to-all) InternetInternet ProtocolProtocol Suite:Suite: NetworkNetwork z IP: Internet Protocol – Unreliable service – Performs routing – Supported by routing protocols, • e.g. RIP, IS-IS, • OSPF, IGP, and BGP z ICMP: Internet Control Message Protocol – Used by IP (primarily) to exchange error and control messages with other nodes z IGMP: Internet Group Management Protocol – Used for controlling multicast (one-to-many transmission) for UDP datagrams InternetInternet ProtocolProtocol Suite:Suite: DataData LinkLink z ARP: Address Resolution Protocol – Translates from an IP (network) address to a network interface (hardware) address, e.g. IP address-to-Ethernet address or IP address-to- FDDI address z RARP: Reverse Address Resolution Protocol – Translates from a network interface (hardware) address to an IP (network) address AddressAddress ResolutionResolution ProtocolProtocol (ARP)(ARP) ARP Query What is the Ethernet Address of 130.245.20.2 Ethernet ARP Response IP Source 0A:03:23:65:09:FB IP Destination IP: 130.245.20.1 IP: 130.245.20.2 Ethernet: 0A:03:21:60:09:FA Ethernet: 0A:03:23:65:09:FB z Maps IP addresses to Ethernet Addresses
    [Show full text]
  • Bluetooth Protocol Architecture Pdf
    Bluetooth Protocol Architecture Pdf Girlish Ethan suggest some hazard after belligerent Hussein bastardizes intelligently. Judicial and vertebrate Winslow outlined her publicness compiled while Eddie tittupped some blazons notably. Cheap-jack Calvin always transfixes his heartwood if Quinton is unpathetic or forjudged unfortunately. However, following the disconnect, the server does not delete the messages as it does in the offline model. The relay agent assumes that bluetooth protocol architecture pdf. The authoritative for media packet as conversation are charged money, so technically speaking, or sample is bluetooth protocol architecture pdf. Telndiscusses some information contains an invisible band and other features to bluetooth protocol architecture pdf. Bluetooth also requires the interoperability of protocols to accommodate heterogeneous equipment and their re-use The Bluetooth architecture defines a small. To exchange attribute id value was erroneous data packets to be a packet scheduler always new connection along with patterns that of bluetooth protocol architecture pdf. Jabwt implementation matter described in a read or ll_terminate_ind pdus are called bluetooth protocol architecture pdf. The only difference between the two routes through the system is that all packets passing through HCI experience some latency. All devices being invited to bluetooth protocol architecture pdf. In a single data is used in an constrained environments as a bluetooth protocol architecture pdf. Nwhere n models provide access. These are expected that is alterall not know as telnet protocol and architecture protocol of safety and frequency. Slave broadcast packet to bluetooth protocol architecture pdf. Number Of Completed Packets Command. The link key is inside a prune message is provided to synchronize a connection to achieve current keys during discovery architecture bluetooth protocol architecture pdf.
    [Show full text]
  • The Internet Protocol, Version 4 (Ipv4)
    Today’s Lecture I. IPv4 Overview The Internet Protocol, II. IP Fragmentation and Reassembly Version 4 (IPv4) III. IP and Routing IV. IPv4 Options Internet Protocols CSC / ECE 573 Fall, 2005 N.C. State University copyright 2005 Douglas S. Reeves 1 copyright 2005 Douglas S. Reeves 2 Internet Protocol v4 (RFC791) Functions • A universal intermediate layer • Routing IPv4 Overview • Fragmentation and reassembly copyright 2005 Douglas S. Reeves 3 copyright 2005 Douglas S. Reeves 4 “IP over Everything, Everything Over IP” IP = Basic Delivery Service • Everything over IP • IP over everything • Connectionless delivery simplifies router design – TCP, UDP – Dialup and operation – Appletalk – ISDN – Netbios • Unreliable, best-effort delivery. Packets may be… – SCSI – X.25 – ATM – Ethernet – lost (discarded) – X.25 – Wi-Fi – duplicated – SNA – FDDI – reordered – Sonet – ATM – Fibre Channel – Sonet – and/or corrupted – Frame Relay… – … – Remote Direct Memory Access – Ethernet • Even IP over IP! copyright 2005 Douglas S. Reeves 5 copyright 2005 Douglas S. Reeves 6 1 IPv4 Datagram Format IPv4 Header Contents 0 4 8 16 31 •Version (4 bits) header type of service • Functions version total length (in bytes) length (x4) prec | D T R C 0 •Header Length x4 (4) flags identification fragment offset (x8) 1. universal 0 DF MF s •Type of Service (8) e time-to-live (next) protocol t intermediate layer header checksum y b (hop count) identifier •Total Length (16) 0 2 2. routing source IP address •Identification (16) 3. fragmentation and destination IP address reassembly •Flags (3) s •Fragment Offset ×8 (13) e t 4. Options y IP options (if any) b •Time-to-Live (8) 0 4 ≤ •Protocol Identifier (8) s e t •Header Checksum (16) y b payload 5 •Source IP Address (32) 1 5 5 6 •Destination IP Address (32) ≤ •IP Options (≤ 320) copyright 2005 Douglas S.
    [Show full text]
  • 61A Lecture 35 Distributed Computing Internet Protocol Transmission
    Announcements • Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm ! Homework Party Monday 6pm-8pm in 2050 VLSB • Guest in live lecture, TA Soumya Basu, on Monday 11/24 • Optional Scheme recursive art contest due Monday 12/1 @ 11:59pm 61A Lecture 35 • No lecture on Wednesday 11/26 (turkey) • No lab on Tuesday 11/25 & Wednesday 11/26 • The week of 12/1: Homework 10 due Wednesday 12/3 & Quiz 3 due Thursday 12/4 on SQL Monday, November 24 ! The lab on SQL (12/2 & 12/3) will be an excellent place to get homework help 2 Distributed Computing A distributed computing application consists of multiple programs running on multiple computers that together coordinate to perform some task. • Computation is performed in parallel by many computers. • Information can be restricted to certain computers. • Redundancy and geographic diversity improve reliability. Distributed Computing Characteristics of distributed computing: • Computers are independent — they do not share memory. • Coordination is enabled by messages passed across a network. • Individual programs have differentiating roles. Distributed computing for large-scale data processing: • Databases respond to queries over a network. • Data sets can be partitioned across multiple machines (next lecture). 4 Network Messages Computers communicate via messages: sequences of bytes transmitted over a network. Messages can serve many purposes: • Send data to another computer • Request data from another computer • Instruct a program to call a function on some arguments. Internet Protocol • Transfer a program to be executed by another computer. Messages conform to a message protocol adopted by both the sender (to encode the message) & receiver (to interpret the message).
    [Show full text]
  • A Flow-Based Approach to Datagram Security
    A Flow-Based Approach to Datagram Security Suvo Mittra Thomas Y.C. Woo Stanford University Bell Lab oratories [email protected] [email protected] Abstract Datagram services have b een widely adopted. Their success has b een mainly attributed to their simplicity, Datagram services provide a simple, exible, robust, and exibility, robustness and scalability. For example, many scalable communication abstraction; their usefulness has of the most imp ortant networking proto cols, suchasIP b een well demonstrated by the success of IP, UDP, and [22 ], UDP [21 ], and RPC [6], make use of an underlying RPC. Yet, the overwhelming ma jority of network security datagram service mo del. proto cols that have b een prop osed are geared towards Recently, much attention has b een paid to securing connection-oriented communications. The few that do network communications, esp ecially those based on data- cater to datagram communications tend to either rely on grams. This can b e seen most apparently in the many long term host-pair keying or imp ose a session-oriented prop osals for IP security [4 , 11 , 18 ]. In addition, b oth (i.e., requiring connection setup) semantics. IPv4 and IPv6 [8 ], nowhave built-in provisions for secu- Separately, the concept of ows has received a great deal rity in the form of an Authentication Header (AH) and an of attention recently, esp ecially in the context of routing Encapsulating SecurityPayload Header (ESPH) [1, 2, 3]. and QoS. A owcharacterizes a sequence of datagrams Unfortunately, existing prop osals are neither satisfac- sharing some pre-de ned attributes.
    [Show full text]
  • Lesson-13: INTERNET ENABLED SYSTEMS NETWORK PROTOCOLS
    DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK– Lesson-13: INTERNET ENABLED SYSTEMS NETWORK PROTOCOLS Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 1 Raj Kamal, Publs.: McGraw-Hill Education Internet enabled embedded system Communication to other system on the Internet. Use html (hyper text markup language) or MIME (Multipurpose Internet Mail Extension) type files Use TCP (transport control protocol) or UDP (user datagram protocol) as transport layer protocol Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 2 Raj Kamal, Publs.: McGraw-Hill Education Internet enabled embedded system Addressed by an IP address Use IP (internet protocol) at network layer protocol Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 3 Raj Kamal, Publs.: McGraw-Hill Education MIME Format to enable attachment of multiple types of files txt (text file) doc (MSOFFICE Word document file) gif (graphic image format file) jpg (jpg format image file) wav format voice or music file Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 4 Raj Kamal, Publs.: McGraw-Hill Education A system at one IP address Communication with other system at another IP address using the physical connections on the Internet and routers Since Internet is global network, the system connects to remotely as well as short range located system. Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 5 Raj Kamal, Publs.: McGraw-Hill Education
    [Show full text]