The Main Diagonal of a Permutation Matrix
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 511 Advanced Linear Algebra Spring 2006
MATH 511 ADVANCED LINEAR ALGEBRA SPRING 2006 Sherod Eubanks HOMEWORK 2 x2:1 : 2; 5; 9; 12 x2:3 : 3; 6 x2:4 : 2; 4; 5; 9; 11 Section 2:1: Unitary Matrices Problem 2 If ¸ 2 σ(U) and U 2 Mn is unitary, show that j¸j = 1. Solution. If ¸ 2 σ(U), U 2 Mn is unitary, and Ux = ¸x for x 6= 0, then by Theorem 2:1:4(g), we have kxkCn = kUxkCn = k¸xkCn = j¸jkxkCn , hence j¸j = 1, as desired. Problem 5 Show that the permutation matrices in Mn are orthogonal and that the permutation matrices form a sub- group of the group of real orthogonal matrices. How many different permutation matrices are there in Mn? Solution. By definition, a matrix P 2 Mn is called a permutation matrix if exactly one entry in each row n and column is equal to 1, and all other entries are 0. That is, letting ei 2 C denote the standard basis n th element of C that has a 1 in the i row and zeros elsewhere, and Sn be the set of all permutations on n th elements, then P = [eσ(1) j ¢ ¢ ¢ j eσ(n)] = Pσ for some permutation σ 2 Sn such that σ(k) denotes the k member of σ. Observe that for any σ 2 Sn, and as ½ 1 if i = j eT e = σ(i) σ(j) 0 otherwise for 1 · i · j · n by the definition of ei, we have that 2 3 T T eσ(1)eσ(1) ¢ ¢ ¢ eσ(1)eσ(n) T 6 . -
Periodic Staircase Matrices and Generalized Cluster Structures
PERIODIC STAIRCASE MATRICES AND GENERALIZED CLUSTER STRUCTURES MISHA GEKHTMAN, MICHAEL SHAPIRO, AND ALEK VAINSHTEIN Abstract. As is well-known, cluster transformations in cluster structures of geometric type are often modeled on determinant identities, such as short Pl¨ucker relations, Desnanot–Jacobi identities and their generalizations. We present a construction that plays a similar role in a description of general- ized cluster transformations and discuss its applications to generalized clus- ter structures in GLn compatible with a certain subclass of Belavin–Drinfeld Poisson–Lie brackets, in the Drinfeld double of GLn, and in spaces of periodic difference operators. 1. Introduction Since the discovery of cluster algebras in [4], many important algebraic varieties were shown to support a cluster structure in a sense that the coordinate rings of such variety is isomorphic to a cluster algebra or an upper cluster algebra. Lie theory and representation theory turned out to be a particularly rich source of varieties of this sort including but in no way limited to such examples as Grassmannians [5, 18], double Bruhat cells [1] and strata in flag varieties [15]. In all these examples, cluster transformations that connect distinguished coordinate charts within a ring of regular functions are modeled on three-term relations such as short Pl¨ucker relations, Desnanot–Jacobi identities and their Lie-theoretic generalizations of the kind considered in [3]. This remains true even in the case of exotic cluster structures on GLn considered in [8, 10] where cluster transformations can be obtained by applying Desnanot–Jacobi type identities to certain structured matrices of a size far exceeding n. -
Arxiv:Math/0010243V1
FOUR SHORT STORIES ABOUT TOEPLITZ MATRIX CALCULATIONS THOMAS STROHMER∗ Abstract. The stories told in this paper are dealing with the solution of finite, infinite, and biinfinite Toeplitz-type systems. A crucial role plays the off-diagonal decay behavior of Toeplitz matrices and their inverses. Classical results of Gelfand et al. on commutative Banach algebras yield a general characterization of this decay behavior. We then derive estimates for the approximate solution of (bi)infinite Toeplitz systems by the finite section method, showing that the approximation rate depends only on the decay of the entries of the Toeplitz matrix and its condition number. Furthermore, we give error estimates for the solution of doubly infinite convolution systems by finite circulant systems. Finally, some quantitative results on the construction of preconditioners via circulant embedding are derived, which allow to provide a theoretical explanation for numerical observations made by some researchers in connection with deconvolution problems. Key words. Toeplitz matrix, Laurent operator, decay of inverse matrix, preconditioner, circu- lant matrix, finite section method. AMS subject classifications. 65T10, 42A10, 65D10, 65F10 0. Introduction. Toeplitz-type equations arise in many applications in mathe- matics, signal processing, communications engineering, and statistics. The excellent surveys [4, 17] describe a number of applications and contain a vast list of references. The stories told in this paper are dealing with the (approximate) solution of biinfinite, infinite, and finite hermitian positive definite Toeplitz-type systems. We pay special attention to Toeplitz-type systems with certain decay properties in the sense that the entries of the matrix enjoy a certain decay rate off the diagonal. -
THREE STEPS on an OPEN ROAD Gilbert Strang This Note Describes
Inverse Problems and Imaging doi:10.3934/ipi.2013.7.961 Volume 7, No. 3, 2013, 961{966 THREE STEPS ON AN OPEN ROAD Gilbert Strang Massachusetts Institute of Technology Cambridge, MA 02139, USA Abstract. This note describes three recent factorizations of banded invertible infinite matrices 1. If A has a banded inverse : A=BC with block{diagonal factors B and C. 2. Permutations factor into a shift times N < 2w tridiagonal permutations. 3. A = LP U with lower triangular L, permutation P , upper triangular U. We include examples and references and outlines of proofs. This note describes three small steps in the factorization of banded matrices. It is written to encourage others to go further in this direction (and related directions). At some point the problems will become deeper and more difficult, especially for doubly infinite matrices. Our main point is that matrices need not be Toeplitz or block Toeplitz for progress to be possible. An important theory is already established [2, 9, 10, 13-16] for non-Toeplitz \band-dominated operators". The Fredholm index plays a key role, and the second small step below (taken jointly with Marko Lindner) computes that index in the special case of permutation matrices. Recall that banded Toeplitz matrices lead to Laurent polynomials. If the scalars or matrices a−w; : : : ; a0; : : : ; aw lie along the diagonals, the polynomial is A(z) = P k akz and the bandwidth is w. The required index is in this case a winding number of det A(z). Factorization into A+(z)A−(z) is a classical problem solved by Plemelj [12] and Gohberg [6-7]. -
Chapter Four Determinants
Chapter Four Determinants In the first chapter of this book we considered linear systems and we picked out the special case of systems with the same number of equations as unknowns, those of the form T~x = ~b where T is a square matrix. We noted a distinction between two classes of T ’s. While such systems may have a unique solution or no solutions or infinitely many solutions, if a particular T is associated with a unique solution in any system, such as the homogeneous system ~b = ~0, then T is associated with a unique solution for every ~b. We call such a matrix of coefficients ‘nonsingular’. The other kind of T , where every linear system for which it is the matrix of coefficients has either no solution or infinitely many solutions, we call ‘singular’. Through the second and third chapters the value of this distinction has been a theme. For instance, we now know that nonsingularity of an n£n matrix T is equivalent to each of these: ² a system T~x = ~b has a solution, and that solution is unique; ² Gauss-Jordan reduction of T yields an identity matrix; ² the rows of T form a linearly independent set; ² the columns of T form a basis for Rn; ² any map that T represents is an isomorphism; ² an inverse matrix T ¡1 exists. So when we look at a particular square matrix, the question of whether it is nonsingular is one of the first things that we ask. This chapter develops a formula to determine this. (Since we will restrict the discussion to square matrices, in this chapter we will usually simply say ‘matrix’ in place of ‘square matrix’.) More precisely, we will develop infinitely many formulas, one for 1£1 ma- trices, one for 2£2 matrices, etc. -
Arxiv:2004.05118V1 [Math.RT]
GENERALIZED CLUSTER STRUCTURES RELATED TO THE DRINFELD DOUBLE OF GLn MISHA GEKHTMAN, MICHAEL SHAPIRO, AND ALEK VAINSHTEIN Abstract. We prove that the regular generalized cluster structure on the Drinfeld double of GLn constructed in [9] is complete and compatible with the standard Poisson–Lie structure on the double. Moreover, we show that for n = 4 this structure is distinct from a previously known regular generalized cluster structure on the Drinfeld double, even though they have the same compatible Poisson structure and the same collection of frozen variables. Further, we prove that the regular generalized cluster structure on band periodic matrices constructed in [9] possesses similar compatibility and completeness properties. 1. Introduction In [6, 8] we constructed an initial seed Σn for a complete generalized cluster D structure GCn in the ring of regular functions on the Drinfeld double D(GLn) and proved that this structure is compatible with the standard Poisson–Lie structure on D(GLn). In [9, Section 4] we constructed a different seed Σ¯ n for a regular D D generalized cluster structure GCn on D(GLn). In this note we prove that GCn D shares all the properties of GCn : it is complete and compatible with the standard Poisson–Lie structure on D(GLn). Moreover, we prove that the seeds Σ¯ 4(X, Y ) and T T Σ4(Y ,X ) are not mutationally equivalent. In this way we provide an explicit example of two different regular complete generalized cluster structures on the same variety with the same compatible Poisson structure and the same collection of frozen D variables. -
The Spectra of Large Toeplitz Band Matrices with A
MATHEMATICS OF COMPUTATION Volume 72, Number 243, Pages 1329{1348 S 0025-5718(03)01505-9 Article electronically published on February 3, 2003 THESPECTRAOFLARGETOEPLITZBANDMATRICES WITH A RANDOMLY PERTURBED ENTRY A. BOTTCHER,¨ M. EMBREE, AND V. I. SOKOLOV Abstract. (j;k) This paper is concerned with the union spΩ Tn(a) of all possible spectra that may emerge when perturbing a large n n Toeplitz band matrix × Tn(a)inthe(j; k) site by a number randomly chosen from some set Ω. The main results give descriptive bounds and, in several interesting situations, even (j;k) provide complete identifications of the limit of sp Tn(a)asn .Also Ω !1 discussed are the cases of small and large sets Ω as well as the \discontinuity of (j;k) the infinite volume case", which means that in general spΩ Tn(a)doesnot converge to something close to sp(j;k) T (a)asn ,whereT (a)isthecor- Ω !1 responding infinite Toeplitz matrix. Illustrations are provided for tridiagonal Toeplitz matrices, a notable special case. 1. Introduction and main results For a complex-valued continuous function a on the complex unit circle T,the infinite Toeplitz matrix T (a) and the finite Toeplitz matrices Tn(a) are defined by n T (a)=(aj k)j;k1 =1 and Tn(a)=(aj k)j;k=1; − − where a` is the `th Fourier coefficient of a, 2π 1 iθ i`θ a` = a(e )e− dθ; ` Z: 2π 2 Z0 Here, we restrict our attention to the case where a is a trigonometric polynomial, a , implying that at most a finite number of the Fourier coefficients are nonzero; equivalently,2P T (a) is a banded matrix. -
Conversion of Sparse Matrix to Band Matrix Using an Fpga For
CONVERSION OF SPARSE MATRIX TO BAND MATRIX USING AN FPGA FOR HIGH-PERFORMANCE COMPUTING by Anjani Chaudhary, M.S. A thesis submitted to the Graduate Council of Texas State University in partial fulfillment of the requirements for the degree of Master of Science with a Major in Engineering December 2020 Committee Members: Semih Aslan, Chair Shuying Sun William A Stapleton COPYRIGHT by Anjani Chaudhary 2020 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgement. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work, I, Anjani Chaudhary, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. ACKNOWLEDGEMENTS Throughout my research and report writing process, I am grateful to receive support and suggestions from the following people. I would like to thank my supervisor and chair, Dr. Semih Aslan, Associate Professor, Ingram School of Engineering, for his time, support, encouragement, and patience, without which I would not have made it. My committee members Dr. Bill Stapleton, Associate Professor, Ingram School of Engineering, and Dr. Shuying Sun, Associate Professor, Department of Mathematics, for their essential guidance throughout the research and my graduate advisor, Dr. Vishu Viswanathan, for providing the opportunity and valuable suggestions which helped me to come one more step closer to my goal. -
Copyrighted Material
JWST600-IND JWST600-Penney September 28, 2015 7:40 Printer Name: Trim: 6.125in × 9.25in INDEX Additive property of determinants, 244 Cofactor expansion, 240 Argument of a complex number, 297 Column space, 76 Column vector, 2 Band matrix, 407 Complementary vector, 319 Band width, 407 Complex eigenvalue, 302 Basis Complex eigenvector, 302 chain, 438 Complex linear transformation, 304 coordinate matrix for a basis, 217 Complex matrices, 301 coordinate transformation, 223 Complex number definition, 104 argument, 297 normalization, 315 conjugate, 302 ordered, 216 Complex vector space, 303 orthonormal, 315 Conjugate of a complex number, 302 point transformation, 223 Consumption matrix, 198 standard Coordinate matrix, 217 M(m,n), 119 Coordinates n, 119 coordinate vector, 216 Rn, 118 coordinate matrix for a basis, 217 COPYRIGHTEDcoordinate MATERIAL vector, 216 Cn, 302 point matrix, 217 Chain basis, 438 point transformation, 223 Characteristic polynomial, 275 Cramer’s rule, 265 Coefficient matrix, 75 Current, 41 Linear Algebra: Ideas and Applications, Fourth Edition. Richard C. Penney. © 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc. Companion website: www.wiley.com/go/penney/linearalgebra 487 JWST600-IND JWST600-Penney September 28, 2015 7:40 Printer Name: Trim: 6.125in × 9.25in 488 INDEX Data compression, 349 Haar function, 346 Determinant Hermitian additive property, 244 adjoint, 412 cofactor expansion, 240 symmetric, 414 Cramer’s rule, 265 Hermitian, orthogonal, 413 inverse matrix, 267 Homogeneous system, 80 Laplace -
Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation -
Alternating Sign Matrices, Extensions and Related Cones
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/311671190 Alternating sign matrices, extensions and related cones Article in Advances in Applied Mathematics · May 2017 DOI: 10.1016/j.aam.2016.12.001 CITATIONS READS 0 29 2 authors: Richard A. Brualdi Geir Dahl University of Wisconsin–Madison University of Oslo 252 PUBLICATIONS 3,815 CITATIONS 102 PUBLICATIONS 1,032 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Combinatorial matrix theory; alternating sign matrices View project All content following this page was uploaded by Geir Dahl on 16 December 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Alternating sign matrices, extensions and related cones Richard A. Brualdi∗ Geir Dahly December 1, 2016 Abstract An alternating sign matrix, or ASM, is a (0; ±1)-matrix where the nonzero entries in each row and column alternate in sign, and where each row and column sum is 1. We study the convex cone generated by ASMs of order n, called the ASM cone, as well as several related cones and polytopes. Some decomposition results are shown, and we find a minimal Hilbert basis of the ASM cone. The notion of (±1)-doubly stochastic matrices and a generalization of ASMs are introduced and various properties are shown. For instance, we give a new short proof of the linear characterization of the ASM polytope, in fact for a more general polytope. -
More Gaussian Elimination and Matrix Inversion
Week 7 More Gaussian Elimination and Matrix Inversion 7.1 Opening Remarks 7.1.1 Introduction * View at edX 289 Week 7. More Gaussian Elimination and Matrix Inversion 290 7.1.2 Outline 7.1. Opening Remarks..................................... 289 7.1.1. Introduction..................................... 289 7.1.2. Outline....................................... 290 7.1.3. What You Will Learn................................ 291 7.2. When Gaussian Elimination Breaks Down....................... 292 7.2.1. When Gaussian Elimination Works........................ 292 7.2.2. The Problem.................................... 297 7.2.3. Permutations.................................... 299 7.2.4. Gaussian Elimination with Row Swapping (LU Factorization with Partial Pivoting) 304 7.2.5. When Gaussian Elimination Fails Altogether................... 311 7.3. The Inverse Matrix.................................... 312 7.3.1. Inverse Functions in 1D.............................. 312 7.3.2. Back to Linear Transformations.......................... 312 7.3.3. Simple Examples.................................. 314 7.3.4. More Advanced (but Still Simple) Examples................... 320 7.3.5. Properties...................................... 324 7.4. Enrichment......................................... 325 7.4.1. Library Routines for LU with Partial Pivoting................... 325 7.5. Wrap Up.......................................... 327 7.5.1. Homework..................................... 327 7.5.2. Summary...................................... 327 7.1. Opening