Nitrosocyanin, a Red Cupredoxin-Like Protein from Nitrosomonas Europaea† David M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Copper Protein and a Cytochrome Bind at the Same Site on Bacterial Cytochrome C Peroxidase† Sofia R
14566 Biochemistry 2004, 43, 14566-14576 A Copper Protein and a Cytochrome Bind at the Same Site on Bacterial Cytochrome c Peroxidase† Sofia R. Pauleta,‡,§ Alan Cooper,⊥ Margaret Nutley,⊥ Neil Errington,| Stephen Harding,| Francoise Guerlesquin,3 Celia F. Goodhew,‡ Isabel Moura,§ Jose J. G. Moura,§ and Graham W. Pettigrew‡ Veterinary Biomedical Sciences, Royal (Dick) School of Veterinary Studies, UniVersity of Edinburgh, Summerhall, Edinburgh EH9 1QH, U.K., Department of Chemistry, UniVersity of Glasgow, Glasgow G12 8QQ, U.K., Centre for Macromolecular Hydrodynamics, UniVersity of Nottingham, Sutton Bonington, Nottingham LE12 5 RD, U.K., Unite de Bioenergetique et Ingenierie des Proteines, IBSM-CNRS, 31 chemin Joseph Aiguier, 13402 Marseilles cedex 20, France, Requimte, Departamento de Quimica, CQFB, UniVersidade NoVa de Lisboa, 2829-516 Monte de Caparica, Portugal ReceiVed July 5, 2004; ReVised Manuscript ReceiVed September 9, 2004 ABSTRACT: Pseudoazurin binds at a single site on cytochrome c peroxidase from Paracoccus pantotrophus with a Kd of 16.4 µMat25°C, pH 6.0, in an endothermic reaction that is driven by a large entropy change. Sedimentation velocity experiments confirmed the presence of a single site, although results at higher pseudoazurin concentrations are complicated by the dimerization of the protein. Microcalorimetry, ultracentrifugation, and 1H NMR spectroscopy studies in which cytochrome c550, pseudoazurin, and cytochrome c peroxidase were all present could be modeled using a competitive binding algorithm. Molecular docking simulation of the binding of pseudoazurin to the peroxidase in combination with the chemical shift perturbation pattern for pseudoazurin in the presence of the peroxidase revealed a group of solutions that were situated close to the electron-transferring heme with Cu-Fe distances of about 14 Å. -
Dioxygen Activation in Soluble Methane Monooxygenase
Dioxygen Activation in Soluble Methane Monooxygenase The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Tinberg, Christine E., and Stephen J. Lippard. “Dioxygen Activation in Soluble Methane Monooxygenase.” Accounts of Chemical Research 44.4 (2011): 280–288. As Published http://dx.doi.org/10.1021/ar1001473 Publisher American Chemical Society Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/69856 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Dioxygen Activation in Soluble Methane Monooxygenase† Christine E. Tinberg and Stephen J. Lippard* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139 RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to) * To whom correspondence should be addressed. E-mail: [email protected]. Telephone: (617) 253-1892. Fax: (617) 258-8150. †Work from our laboratory discussed in this Account was funded by grant GM032134 from the National Institute of General Medical Sciences. 1 CONSPECTUS The controlled oxidation of methane to methanol is a chemical transformation of great industrial importance that is underutilized because of inefficient and costly synthetic procedures. Methane monooxygenase enzymes (MMOs) from methanotrophic bacteria achieve this chemistry efficiently under ambient conditions. In this Account we discuss the first step in the oxidation of methane at the carboxylate-bridged diiron active site of the soluble MMO (sMMO), namely, the reductive activation of atmospheric O2. -
The New Face of Protein-Bound Copper: the Type Zero Copper Site
Science Highlight – February 2010 The New Face of Protein-bound Copper: The Type Zero Copper Site Nature adapts copper ions to a multitude of tasks, yet in doing so forces the metal into only a few different electronic structures [1]. Mononuclear copper sites observed in native proteins either adopt the type 1 (T1) or type 2 (T2) electronic structure. T1 sites exhibit intense charge-transfer absorption giving rise to their alternate title, blue copper sites, due to highly covalent coordination by a thiol ligand donated by a cysteine sidechain in their host proteins. This interaction has consequences for the spectroscopic features of the protein, but more importantly gives rise to dramatic enhancement of electron transfer activity. T2 sites on the other hand resemble more closely aqueous copper(II) ions, and are found in catalytic domains rather than electron transfer sites. While investigating the factors that tune reduction potentials in the T2 C112D variant of Pseudomonas aeruginosa azurin [2], Kyle M. Lancaster, under the guidance of Harry B. Gray and John H. Richards at the California Institute of Technology, discovered a copper(II) coordination mode that did not easily fit either of the two classifications for a mononuclear copper(II) site. The C112D/M121L azurin variant displayed one of the fingerprinting features of T1 copper: namely, a narrow axial hyperfine (A||) in its EPR spectrum. However, the removal of C112 obviated any possibility for an intense charge transfer band in the spectrum. Finally, electrochemical measurements by Keiko Yokoyama demonstrated that this hard-ligand copper(II) site could attain a copper(II/I) reduction potential typical for a T1 copper protein. -
Computational Study of Redox Active Centers of Blue Copper Proteins: a Computational DFT Study Matej Pavelka, J.V
Computational Study of Redox Active Centers of Blue Copper Proteins: A Computational DFT Study Matej Pavelka, J.V. Burda To cite this version: Matej Pavelka, J.V. Burda. Computational Study of Redox Active Centers of Blue Copper Proteins: A Computational DFT Study. Molecular Physics, Taylor & Francis, 2009, 106 (24), pp.2733-2748. 10.1080/00268970802672684. hal-00513245 HAL Id: hal-00513245 https://hal.archives-ouvertes.fr/hal-00513245 Submitted on 1 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Molecular Physics For Peer Review Only Computational Study of Redox Active Centers of Blue Copper Proteins: A Computational DFT Study Journal: Molecular Physics Manuscript ID: TMPH-2008-0332.R1 Manuscript Type: Full Paper Date Submitted by the 07-Dec-2008 Author: Complete List of Authors: Pavelka, Matej; Charles University, Chemical Physics and Optics Burda, J.V.; Charles University, Czech Republic, Department of Chemical physics and optics DFT calculations, plastocyanin, blue copper proteins, copper Keywords: complexes URL: http://mc.manuscriptcentral.com/tandf/tmph Page 1 of 45 Molecular Physics 1 2 3 4 5 Computational Study of Redox Active Centers of Blue Copper 6 7 Proteins: A Computational DFT Study 8 9 10 11 Mat ěj Pavelka and Jaroslav V. -
Stellacyanin. Studies of the Metal-Binding Site Using X-Ray
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector STELLACYANIN Studies of the Metal-binding Site using X-ray Absorption Spectroscopy J. PEISACH Departments ofMolecular Pharmacology and Molecular Biology, Albert Einstein College ofMedicine, Bronx, New York 10461 L. POWERS AND W. E. BLUMBERG Bell Laboratories, Murray Hill, New Jersey 07974 B. CHANCE Johnson Research Foundation, University ofPennsylvania Medical School, Philadelphia, Pennsylvania 19104 ABSTRACT Stellacyanin is a mucoprotein of molecular weight -20,000 containing one copper atom in a blue or type I site. The metal ion can exist in both the Cu(II) and Cu(I) redox states. The metal binding site in plastocyanin, another blue copper protein, contains one cysteinyl, one methionyl, and two imidazoyl residues (Colman et al. 1978. Nature [Lond.l. 272:319-324.), but an exactly analogous site cannot exist in stellacyanin as it lacks methionine. The copper coordination in stellacyanin has been studied by x-ray edge absorption and extended k-ray absorption fine structure (EXAFS) analysis. A new, very conservative data analysis procedure has been introduced, which suggests that there are two nitrogen atoms in the first coordination shell of the oxidized [Cu(II)] protein and one in the reduced [Cu(I)] protein; these N atoms have normal Cu-N distances: 1.95-2.05 A. In both redox states there are either one or two sulfur atoms coordinating the copper, the exact number being indeterminable from the present data. In the oxidized state the Cu-S distance is intermediate between the short bond found in plastocyanin and those found in near tetragonal copper model compounds. -
Copper Transportion of WD Protein in Hepatocytes from Wilson Disease Patients in Vitro
PO Box 2345, Beijing 100023, China World J Gastroenterol 2001;7(6):846-851 Fax: +86-10-85381893 World Journal of Gastroenterology E-mail: [email protected] www.wjgnet.com Copyright © 2001 by The WJG Press ISSN 1007-9327 • ORIGINAL RESEARCH • Copper transportion of WD protein in hepatocytes from Wilson disease patients in vitro Guo-Qing Hou1, Xiu-Ling Liang2, Rong Chen2, Lien Tang3, Ying Wang2, Ping-Yi Xu2, Ying-Ru Zhang2, Cui-Hua Ou2 1Department of Neurology, Guangzhou First Municipal People’s Hospital, transportion by promoting the activity of copper Guangzhou Medical College, Guangzhou 510180, Guangdong Province, transportion P-type ATPase. China 2Department of Neurology, First Affiliated Hospital, Sun Yat-Sen CONCLUSION: Copper transportion P-type ATPase plays University of Medical Sciences, Guangzhou 510080, Guangdong an important role in hepatocytic copper metabolism. Province, China Dysfunction of hepatocytic WD protein copper 3Department of Pharmacology, University of Kentucky, Lexington, KY transportion might be one of the most important 40506, USA factors for WD. Supported by Key Clinical Program of Ministry of Ministry of Health (No.37091), “211 Project” of SUMS sponsored by Ministry of Health, Subject headings glucuronosyltranferase/genetics; and Guangdong Provincial Natural Science Foundation, No.990064 glucurono syltranferase/biosynthesis; DNA,complementary/ Correspondence to: Dr. Guo-qing Hou, Department of Neurology, genetics; liver/cytology; hasters; lung/cytology; animal Guangzhou First Municipal People’s Hospital, Guangzhou Medical College, 1 Panfu Rd, Guangzhou 510180, China. [email protected] Hou GQ, Liang XL, Chen R, Tang LW, Wang Y, Xu PY, Zhang YR, Ou Telephone: +86-20-81083090 Ext 596, Fax: +86-20-81094250 CH. -
The Life of a Professor Email Print
Log In ACS ACS Publications C&EN CAS About Subscribe Advertise Contact Join ACS Serving The Chemical, Life Sciences & Laboratory Worlds Search Adv anced Search Home Magazine News Departments Collections Blogs Multimedia Jobs Home > Volume 92 Issue 11 > The Lif e Of A Prof essor Volume 92 Issue 11 | pp. 14-18 Issue Date: March 17, 2014 0 0 MOST POPULAR COVER STORIES: TRAILBLAZER AND MENTOR Viewed Commented Shared The Life Of A Professor Email Print Spider Silk Poised For Commercial Department: Science & Technology, ACS News | Collection: Life Sciences Entry News Channels: JACS In C&EN Keywords: Priestley Medal, Stephen Lippard Controversy Clouds E-Cigarettes Reports Make Progress In Transforming C–H Bonds Into Druglike Motifs I am honored to receive the 2014 Priestley Medal. The award is a tribute to the talented Cover Stories students, both graduate and undergraduate, as well as postdoctoral associates who Global Top 50 have trained with me over nearly 50 years. I am proud of these individuals, for their Trailblazer And Mentor Milk Proteins Protect Fabrics From courage in agreeing to venture onto new snowfields to place the first footprints, for their The Life Of A Professor Fire relentless pursuit of the truth, and for their creative ideas and clever experiments that *Most Viewed in the last 7 days brought insight where previously there was often confusion. Of equal importance are the many collaborators who have greatly facilitated our ability to Advertisement make progress in areas beyond our knowledge base. If “professor” stands for “professional student,” these individuals have been my teachers. I thank them, the ACS Board of Directors who award this medal, and those who entered and supported my nomination. -
Toxicological Profile for Copper
TOXICOLOGICAL PROFILE FOR COPPER U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2004 COPPER ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. COPPER iii UPDATE STATEMENT A Toxicological Profile for Copper, Draft for Public Comment was released in September 2002. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, Mailstop F-32 Atlanta, Georgia 30333 COPPER vii QUICK REFERENCE FOR HEALTH CARE PROVIDERS Toxicological Profiles are a unique compilation of toxicological information on a given hazardous substance. Each profile reflects a comprehensive and extensive evaluation, summary, and interpretation of available toxicologic and epidemiologic information on a substance. Health care providers treating patients potentially exposed to hazardous substances will find the following information helpful for fast answers to often-asked questions. Primary Chapters/Sections of Interest Chapter 1: Public Health Statement: The Public Health Statement can be a useful tool for educating patients about possible exposure to a hazardous substance. It explains a substance’s relevant toxicologic properties in a nontechnical, question-and-answer format, and it includes a review of the general health effects observed following exposure. Chapter 2: Relevance to Public Health: The Relevance to Public Health Section evaluates, interprets, and assesses the significance of toxicity data to human health. -
Effect of Copper on the Mitochondrial Carnitine/Acylcarnitine Carrier Via
molecules Article Effect of Copper on the Mitochondrial Carnitine/Acylcarnitine Carrier Via Interaction with Cys136 and Cys155. Possible Implications in Pathophysiology 1, 1, 2 3 Nicola Giangregorio y, Annamaria Tonazzi y, Lara Console , Mario Prejanò , Tiziana Marino 3, Nino Russo 3 and Cesare Indiveri 2,* 1 CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) via Amendola 122/O, 70126 Bari, Italy; [email protected] (N.G.); [email protected] (A.T.) 2 Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036 Arcavacata di Rende, Italy; [email protected] 3 Department CTC (Chemistry and Chemical Technology) University of Calabria, Via Bucci 14C, 87036 Arcavacata di Rende, Italy; [email protected] (M.P.); [email protected] (T.M.); [email protected] (N.R.) * Correspondence: [email protected]; Tel.:+39-0984-492939 These authors contributed equally to this work. y Received: 23 December 2019; Accepted: 11 February 2020; Published: 13 February 2020 Abstract: The effect of copper on the mitochondrial carnitine/acylcarnitine carrier (CAC) was studied. Transport function was assayed as [3H]carnitine/carnitine antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Cu2+ (as well as Cu+) strongly inhibited the native transporter. The inhibition was reversed by GSH (reduced glutathione) or by DTE (dithioerythritol). Dose-response analysis of the inhibition of the native protein was performed from which an IC50 of 1.6 µM for Cu2+ was derived. -
2018 FACULTY RECOGNITION DINNER the Honorees
The 31st Annual FACULTY RECOGNITION DINNER Kellogg Global Hub October 25, 2018 The 31st Annual FACULTY RECOGNITION DINNER is hosted by President Morton Schapiro and Provost Jonathan Holloway. It honors members of the Northwestern faculty who have brought distinction to the University by earning important external recognition in the past year. The multidisciplinary Faculty Honors Committee reviewed award recipients identified by the deans and department chairs, selecting the most prestigious awards for University recognition. Each subcommittee reviewed awards in its respective fields. Arts and Humanities Life and Medical Chris Abani Sciences Richard Kieckhefer Serdar Bulun Sara Maza Bob Lamb Saul Morson Amy Rosenzweig Natasha Trethewey Clyde Yancy Engineering and Physical Social Sciences Sciences David Austen-Smith Yonggang Huang Shari Diamond Bryna Kra Jamie Druckman Tobin Marks Jan Eberly Chad Mirkin Larry Hedges Greg Olson Joel Mokyr Monica Olvera de la Cruz John Rogers Richard Silverman The Honorees Jan Achenbach Zdeněk Bažant Honorary Doctor of Science ASME Medal Clarkson University American Society of Mechanical Engineers Emma Adam Foreign Member Lyle Spencer Research Award Academy of Athens Spencer Foundation Alfred M. Freudenthal Medal Erik Andersen American Society of Civil Engineers Faculty Early Career Development (CAREER) Award Karl Bilimoria National Science Foundation President Association for Academic Surgery Torben Andersen Fellow Michelle Birkett Society for Economic Measurement Inaugural Member National Academies of Sciences, -
Surface Residues Dynamically Organize Water Bridges to Enhance Electron Transfer Between Proteins
Surface residues dynamically organize water bridges to enhance electron transfer between proteins Aurélien de la Lande,1,2,‡ Nathan S. Babcock,3,4 Jan Řezáč,1,2,∋ Barry C. Sanders,3,4 Dennis R. Salahub1,2,5,§ 1 Department of Chemistry 2 Institute for Biocomplexity and Informatics 3 Department of Physics and Astronomy 4 Institute for Quantum Information Science 5 Institute for Sustainable Energy, Environment and Economy University of Calgary, 2500 University Drive N. W., Calgary, Alberta, Canada, T2N 1N4 ‡ Present address: Laboratoire de Chimie Physique—Centre National de la RechercheScientifique - Unité Mixte de Recherche 8000, Université Paris-Sud 11, Bâtiment 349, Campus d’Orsay. 15, Rue Georges Clémenceau, 91405 Orsay Cedex, France. ∋ Present address: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic and Center for Biomolecules and Complex Molecular Systems, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic § To whom correspondence should be addressed: [email protected] Relevant Topics: respiratory chain, Marcus theory, pathway model, dynamic docking, blue copper proteins This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.0914457107/-/DCSupplemental. 1 Abstract Cellular energy production depends on electron transfer (ET) between proteins. In this theoretical study, we investigate the impact of structural and conformational variations on the electronic coupling between the redox proteins methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. We used molecular dynamics simulations to generate configurations over a duration of 40ns (sampled at 100fs intervals) in conjunction with an ET pathway analysis to estimate the ET coupling strength of each configuration. In the wild type complex, we find that the most frequently occurring molecular configurations afford superior electronic coupling due to the consistent presence of a water molecule hydrogen-bonded between the donor and acceptor sites. -
“Metalloproteins at the Crossroads of Design & Nature”
Virtual Symposium “Metalloproteins at the crossroads of design & nature” 27 January 2021 Keynote Lecture Prof. Hannah Shafaat Ohio State University Emergent Complexity: Reconstructing primordial energy conversion processes in model metalloproteins Abstract: Nature has evolved diverse systems to carry out energy conversion reactions. Metalloenzymes such as hydrogenase, carbon monoxide dehydrogenase, acetyl coenzyme A synthase, and methyl coenzyme M reductase use earth- abundant transition metals such as nickel and iron to generate and oxidize small-molecule fuels such as hydrogen, carbon monoxide, acetate, thioesters, and methane. These reactions are highly valuable to understand and harness in the context of the impending global energy and climate crisis. However, the native enzymes require complex multimetallic cofactors, are costly to isolate, highly sensitive to external conditions, and generally poorly suited for large- scale application. We are applying metalloprotein engineering approaches in order to better understand the mechanisms of the native enzymes and develop robust functional models with potential for implementation in anthropogenic energy conversion. Robust metalloprotein scaffolds such as rubredoxin, ferredoxin, and azurin and have been converted into model systems that mimic the structure and function of complex nickel metalloenzymes. By introducing non-native metals and redesigning the primary and secondary coordination spheres, we have installed novel activity into these simple electron transfer proteins, including