3D Fractal Flame Wisps Yujie Shu Clemson University, [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer Graphics and Visualization
European Research Consortium for Informatics and Mathematics Number 44 January 2001 www.ercim.org Special Theme: Computer Graphics and Visualization Next Issue: April 2001 Next Special Theme: Metacomputing and Grid Technologies CONTENTS KEYNOTE 36 Physical Deforming Agents for Virtual Neurosurgery by Michele Marini, Ovidio Salvetti, Sergio Di Bona 3 by Elly Plooij-van Gorsel and Ludovico Lutzemberger 37 Visualization of Complex Dynamical Systems JOINT ERCIM ACTIONS in Theoretical Physics 4 Philippe Baptiste Winner of the 2000 Cor Baayen Award by Anatoly Fomenko, Stanislav Klimenko and Igor Nikitin 38 Simulation and Visualization of Processes 5 Strategic Workshops – Shaping future EU-NSF collaborations in in Moving Granular Bed Gas Cleanup Filter Information Technologies by Pavel Slavík, František Hrdliãka and Ondfiej Kubelka THE EUROPEAN SCENE 39 Watching Chromosomes during Cell Division by Robert van Liere 5 INRIA is growing at an Unprecedented Pace and is starting a Recruiting Drive on a European Scale 41 The blue-c Project by Markus Gross and Oliver Staadt SPECIAL THEME 42 Augmenting the Common Working Environment by Virtual Objects by Wolfgang Broll 6 Graphics and Visualization: Breaking new Frontiers by Carol O’Sullivan and Roberto Scopigno 43 Levels of Detail in Physically-based Real-time Animation by John Dingliana and Carol O’Sullivan 8 3D Scanning for Computer Graphics by Holly Rushmeier 44 Static Solution for Real Time Deformable Objects With Fluid Inside by Ivan F. Costa and Remis Balaniuk 9 Subdivision Surfaces in Geometric -
Fractal 3D Magic Free
FREE FRACTAL 3D MAGIC PDF Clifford A. Pickover | 160 pages | 07 Sep 2014 | Sterling Publishing Co Inc | 9781454912637 | English | New York, United States Fractal 3D Magic | Banyen Books & Sound Option 1 Usually ships in business days. Option 2 - Most Popular! This groundbreaking 3D showcase offers a rare glimpse into the dazzling world of computer-generated fractal art. Prolific polymath Clifford Pickover introduces the collection, which provides background on everything from Fractal 3D Magic classic Mandelbrot set, to the infinitely porous Menger Sponge, to ethereal fractal flames. The following eye-popping gallery displays mathematical formulas transformed into stunning computer-generated 3D anaglyphs. More than intricate designs, visible in three dimensions thanks to Fractal 3D Magic enclosed 3D glasses, will engross math and optical illusions enthusiasts alike. If an item you have purchased from us is not working as expected, please visit one of our in-store Knowledge Experts for free help, where they can solve your problem or even exchange the item for a product that better suits your needs. If you need to return an item, simply bring it back to any Micro Center store for Fractal 3D Magic full refund or exchange. All other products may be returned within 30 days of purchase. Using the software may require the use of a computer or other device that must meet minimum system requirements. It is recommended that you familiarize Fractal 3D Magic with the system requirements before making your purchase. Software system requirements are typically found on the Product information specification page. Aerial Drones Micro Center is happy to honor its customary day return policy for Aerial Drone returns due to product defect or customer dissatisfaction. -
Math 253: Mathematical Methods for Data Visualization – Course Introduction and Overview (Spring 2020)
Math 253: Mathematical Methods for Data Visualization – Course introduction and overview (Spring 2020) Dr. Guangliang Chen Department of Math & Statistics San José State University Math 253 course introduction and overview What is this course about? Context: Modern data sets often have hundreds, thousands, or even millions of features (or attributes). ←− large dimension Dr. Guangliang Chen | Mathematics & Statistics, San José State University2/30 Math 253 course introduction and overview This course focuses on the statistical/machine learning task of dimension reduction, also called dimensionality reduction, which is the process of reducing the number of input variables of a data set under consideration, for the following benefits: • It reduces the running time and storage space. • Removal of multi-collinearity improves the interpretation of the parameters of the machine learning model. • It can also clean up the data by reducing the noise. • It becomes easier to visualize the data when reduced to very low dimensions such as 2D or 3D. Dr. Guangliang Chen | Mathematics & Statistics, San José State University3/30 Math 253 course introduction and overview There are two different kinds of dimension reduction approaches: • Feature selection approaches try to find a subset of the original features variables. Examples: subset selection, stepwise selection, Ridge and Lasso regression. ←− Already covered in Math 261A • Feature extraction transforms the data in the high-dimensional space to a space of fewer dimensions. ←− Focus of this course Examples: principal component analysis (PCA), ISOmap, and linear discriminant analysis (LDA). Dr. Guangliang Chen | Mathematics & Statistics, San José State University4/30 Math 253 course introduction and overview Dimension reduction methods to be covered in this course: • Linear projection methods: – PCA (for unlabled data), – LDA (for labled data) • Nonlinear embedding methods: – Multidimensional scaling (MDS), ISOmap – Locally linear embedding (LLE) – Laplacian eigenmaps Dr. -
Volume Rendering
Volume Rendering 1.1. Introduction Rapid advances in hardware have been transforming revolutionary approaches in computer graphics into reality. One typical example is the raster graphics that took place in the seventies, when hardware innovations enabled the transition from vector graphics to raster graphics. Another example which has a similar potential is currently shaping up in the field of volume graphics. This trend is rooted in the extensive research and development effort in scientific visualization in general and in volume visualization in particular. Visualization is the usage of computer-supported, interactive, visual representations of data to amplify cognition. Scientific visualization is the visualization of physically based data. Volume visualization is a method of extracting meaningful information from volumetric datasets through the use of interactive graphics and imaging, and is concerned with the representation, manipulation, and rendering of volumetric datasets. Its objective is to provide mechanisms for peering inside volumetric datasets and to enhance the visual understanding. Traditional 3D graphics is based on surface representation. Most common form is polygon-based surfaces for which affordable special-purpose rendering hardware have been developed in the recent years. Volume graphics has the potential to greatly advance the field of 3D graphics by offering a comprehensive alternative to conventional surface representation methods. The object of this thesis is to examine the existing methods for volume visualization and to find a way of efficiently rendering scientific data with commercially available hardware, like PC’s, without requiring dedicated systems. 1.2. Volume Rendering Our display screens are composed of a two-dimensional array of pixels each representing a unit area. -
An Introduction to Apophysis © Clive Haynes MMXX
Apophysis Fractal Generator An Introduction Clive Haynes Fractal ‘Flames’ The type of fractals generated are known as ‘Flame Fractals’ and for the curious, I append a note about their structure, gleaned from the internet, at the end of this piece. Please don’t ask me to explain it! Where to download Apophysis: go to https://sourceforge.net/projects/apophysis/ Sorry Mac users but it’s only available for Windows. To see examples of fractal images I’ve generated using Apophysis, I’ve made an Issuu e-book and here’s the URL. https://issuu.com/fotopix/docs/ordering_kaos Getting Started There’s not a defined ‘follow this method workflow’ for generating interesting fractals. It’s really a matter of considerable experimentation and the accumulation of a knowledge-base about general principles: what the numerous presets tend to do and what various options allow. Infinite combinations of variables ensure there’s also a huge serendipity factor. I’ve included a few screen-grabs to help you. The screen-grabs are detailed and you may need to enlarge them for better viewing. Once Apophysis has loaded, it will provide a Random Batch of fractal patterns. Some will be appealing whilst many others will be less favourable. To generate another set, go to File > Random Batch (shortcut Ctrl+B). Screen-grab 1 Choose a fractal pattern from the batch and it will appear in the main window (Screen-grab 1). Depending upon the complexity of the fractal and the processing power of your computer, there will be a ‘wait time’ every time you change a parameter. -
Annotated List of References Tobias Keip, I7801986 Presentation Method: Poster
Personal Inquiry – Annotated list of references Tobias Keip, i7801986 Presentation Method: Poster Poster Section 1: What is Chaos? In this section I am introducing the topic. I am describing different types of chaos and how individual perception affects our sense for chaos or chaotic systems. I am also going to define the terminology. I support my ideas with a lot of examples, like chaos in our daily life, then I am going to do a transition to simple mathematical chaotic systems. Larry Bradley. (2010). Chaos and Fractals. Available: www.stsci.edu/~lbradley/seminar/. Last accessed 13 May 2010. This website delivered me with a very good introduction into the topic as there are a lot of books and interesting web-pages in the “References”-Sektion. Gleick, James. Chaos: Making a New Science. Penguin Books, 1987. The book gave me a very general introduction into the topic. Harald Lesch. (2003-2007). alpha-Centauri . Available: www.br-online.de/br- alpha/alpha-centauri/alpha-centauri-harald-lesch-videothek-ID1207836664586.xml. Last accessed 13. May 2010. A web-page with German video-documentations delivered a lot of vivid examples about chaos for my poster. Poster Section 2: Laplace's Demon and the Butterfly Effect In this part I describe the idea of the so called Laplace's Demon and the theory of cause-and-effect chains. I work with a lot of examples, especially the famous weather forecast example. Also too I introduce the mathematical concept of a dynamic system. Jeremy S. Heyl (August 11, 2008). The Double Pendulum Fractal. British Columbia, Canada. -
Graph Visualization and Navigation in Information Visualization 1
HERMAN ET AL.: GRAPH VISUALIZATION AND NAVIGATION IN INFORMATION VISUALIZATION 1 Graph Visualization and Navigation in Information Visualization: a Survey Ivan Herman, Member, IEEE CS Society, Guy Melançon, and M. Scott Marshall Abstract—This is a survey on graph visualization and navigation techniques, as used in information visualization. Graphs appear in numerous applications such as web browsing, state–transition diagrams, and data structures. The ability to visualize and to navigate in these potentially large, abstract graphs is often a crucial part of an application. Information visualization has specific requirements, which means that this survey approaches the results of traditional graph drawing from a different perspective. Index Terms—Information visualization, graph visualization, graph drawing, navigation, focus+context, fish–eye, clustering. involved in graph visualization: “Where am I?” “Where is the 1 Introduction file that I'm looking for?” Other familiar types of graphs lthough the visualization of graphs is the subject of this include the hierarchy illustrated in an organisational chart and Asurvey, it is not about graph drawing in general. taxonomies that portray the relations between species. Web Excellent bibliographic surveys[4],[34], books[5], or even site maps are another application of graphs as well as on–line tutorials[26] exist for graph drawing. Instead, the browsing history. In biology and chemistry, graphs are handling of graphs is considered with respect to information applied to evolutionary trees, phylogenetic trees, molecular visualization. maps, genetic maps, biochemical pathways, and protein Information visualization has become a large field and functions. Other areas of application include object–oriented “sub–fields” are beginning to emerge (see for example Card systems (class browsers), data structures (compiler data et al.[16] for a recent collection of papers from the last structures in particular), real–time systems (state–transition decade). -
From Surface Rendering to Volume
What is Computer Graphics? • Computational process of generating images from models and/or datasets using computers • This is called rendering (computer graphics was traditionally considered as a rendering method) • A rendering algorithm converts a geometric model and/or dataset into a picture Department of Computer Science CSE564 Lectures STNY BRK Center for Visual Computing STATE UNIVERSITY OF NEW YORK What is Computer Graphics? This process is also called scan conversion or rasterization How does Visualization fit in here? Department of Computer Science CSE564 Lectures STNY BRK Center for Visual Computing STATE UNIVERSITY OF NEW YORK Computer Graphics • Computer graphics consists of : 1. Modeling (representations) 2. Rendering (display) 3. Interaction (user interfaces) 4. Animation (combination of 1-3) • Usually “computer graphics” refers to rendering Department of Computer Science CSE564 Lectures STNY BRK Center for Visual Computing STATE UNIVERSITY OF NEW YORK Computer Graphics Components Department of Computer Science CSE364 Lectures STNY BRK Center for Visual Computing STATE UNIVERSITY OF NEW YORK Surface Rendering • Surface representations are good and sufficient for objects that have homogeneous material distributions and/or are not translucent or transparent • Such representations are good only when object boundaries are important (in fact, only boundary geometric information is available) • Examples: furniture, mechanical objects, plant life • Applications: video games, virtual reality, computer- aided design Department of -
Abstracts to the 15Th Annual International Conference, Denver, CO
Dedicated to the development of nonlinear science worldwide since 1991 Abstracts to the 15th Annual International Conference, Denver, CO 2005 Society for Chaos Theory in Psychology & Life Sciences 2005 CONFERENCE SOCIETY FOR CHAOS THEORY IN PSYCHOLOGY & LIFE SCIENCES August 4-6, University of Denver, Denver, CO PROGRAM ABSTRACTS* Listed Alphabetically by First Author Where Chaos Dissolves Susan Aaron, University of Toronto Nonlinearity functions in a world view where boundaries are defined by such terms autopoiesis as a continual exchange between organism and environment. Persons and their environment, and indeed their engagement with a world are thus defined by this interchange in the world. Thus a worldview is created where boundaries are often the cultural norm. Nonlinear as a broad and nonmathematical concern relates to patterns, or social even perceptual constructions that are relatively loose or non- structured comparatively within this relationship. One can apply the concept of chaos to return us to order as an opposite of it. I am suggesting that perhaps we may never lose order or have a methodology in the world that exists more dynamically than the separation of individual and environment. We are actively engaged as a world participant but apply certain constructs to divide up the actions of a world, to what end and at what loss? I propose a discussion and a demonstration of art, technology and ecology and communication in relation to space that considers the need or not need of formation of boundaries relative to the individual’s actions in the world. Here space is a cultural label rather than a guaranteed entity. -
Scalable Exact Visualization of Isocontours in Road Networks Via Minimum-Link Paths∗
Journal of Computational Geometry jocg.org SCALABLE EXACT VISUALIZATION OF ISOCONTOURS IN ROAD NETWORKS VIA MINIMUM-LINK PATHS∗ Moritz Baum,y Thomas Bläsius,z Andreas Gemsa,y Ignaz Rutter,yx and Franziska Wegnery Abstract. Isocontours in road networks represent the area that is reachable from a source within a given resource limit. We study the problem of computing accurate isocontours in realistic, large-scale networks. We propose isocontours represented by polygons with minimum number of segments that separate reachable and unreachable components of the network. Since the resulting problem is not known to be solvable in polynomial time, we introduce several heuristics that run in (almost) linear time and are simple enough to be implemented in practice. A key ingredient is a new practical linear-time algorithm for minimum-link paths in simple polygons. Experiments in a challenging realistic setting show excellent performance of our algorithms in practice, computing near-optimal solutions in a few milliseconds on average, even for long ranges. 1 Introduction How far can I drive my battery electric vehicle, given my position and the current state of charge? This question expresses range anxiety (the fear of getting stranded) caused by limited battery capacities and a sparse charging infrastructure. An answer in the form of a map that visualizes the reachable region helps to find charging stations in range and to overcome range anxiety. This reachable region is bounded by curves that represent points of constant energy consumption; such curves are usually called isocontours (or isolines). 2 Isocontours are typically considered in the context of functions f : R R, e. -
Herramientas Para Construir Mundos Vida Artificial I
HERRAMIENTAS PARA CONSTRUIR MUNDOS VIDA ARTIFICIAL I Á E G B s un libro de texto sobre temas que explico habitualmente en las asignaturas Vida Artificial y Computación Evolutiva, de la carrera Ingeniería de Iistemas; compilado de una manera personal, pues lo Eoriento a explicar herramientas conocidas de matemáticas y computación que sirven para crear complejidad, y añado experiencias propias y de mis estudiantes. Las herramientas que se explican en el libro son: Realimentación: al conectar las salidas de un sistema para que afecten a sus propias entradas se producen bucles de realimentación que cambian por completo el comportamiento del sistema. Fractales: son objetos matemáticos de muy alta complejidad aparente, pero cuyo algoritmo subyacente es muy simple. Caos: sistemas dinámicos cuyo algoritmo es determinista y perfectamen- te conocido pero que, a pesar de ello, su comportamiento futuro no se puede predecir. Leyes de potencias: sistemas que producen eventos con una distribución de probabilidad de cola gruesa, donde típicamente un 20% de los eventos contribuyen en un 80% al fenómeno bajo estudio. Estos cuatro conceptos (realimentaciones, fractales, caos y leyes de po- tencia) están fuertemente asociados entre sí, y son los generadores básicos de complejidad. Algoritmos evolutivos: si un sistema alcanza la complejidad suficiente (usando las herramientas anteriores) para ser capaz de sacar copias de sí mismo, entonces es inevitable que también aparezca la evolución. Teoría de juegos: solo se da una introducción suficiente para entender que la cooperación entre individuos puede emerger incluso cuando las inte- racciones entre ellos se dan en términos competitivos. Autómatas celulares: cuando hay una población de individuos similares que cooperan entre sí comunicándose localmente, en- tonces emergen fenómenos a nivel social, que son mucho más complejos todavía, como la capacidad de cómputo universal y la capacidad de autocopia. -
Graphics and Visualization (GV)
1 Graphics and Visualization (GV) 2 Computer graphics is the term commonly used to describe the computer generation and 3 manipulation of images. It is the science of enabling visual communication through computation. 4 Its uses include cartoons, film special effects, video games, medical imaging, engineering, as 5 well as scientific, information, and knowledge visualization. Traditionally, graphics at the 6 undergraduate level has focused on rendering, linear algebra, and phenomenological approaches. 7 More recently, the focus has begun to include physics, numerical integration, scalability, and 8 special-purpose hardware, In order for students to become adept at the use and generation of 9 computer graphics, many implementation-specific issues must be addressed, such as file formats, 10 hardware interfaces, and application program interfaces. These issues change rapidly, and the 11 description that follows attempts to avoid being overly prescriptive about them. The area 12 encompassed by Graphics and Visual Computing (GV) is divided into several interrelated fields: 13 • Fundamentals: Computer graphics depends on an understanding of how humans use 14 vision to perceive information and how information can be rendered on a display device. 15 Every computer scientist should have some understanding of where and how graphics can 16 be appropriately applied and the fundamental processes involved in display rendering. 17 • Modeling: Information to be displayed must be encoded in computer memory in some 18 form, often in the form of a mathematical specification of shape and form. 19 • Rendering: Rendering is the process of displaying the information contained in a model. 20 • Animation: Animation is the rendering in a manner that makes images appear to move 21 and the synthesis or acquisition of the time variations of models.