Ice Hockey Checking Detection from Indoor Localization Data

Total Page:16

File Type:pdf, Size:1020Kb

Ice Hockey Checking Detection from Indoor Localization Data Juha-Pekka Parto ICE HOCKEY CHECKING DETECTION FROM INDOOR LOCALIZATION DATA Master of Science thesis Faculty of Information Technology and Communication Sciences Examiner: Prof. Joni Kämäräinen January 2021 i ABSTRACT Juha-Pekka Parto: Ice hockey checking detection from indoor localization data Master of Science thesis Tampere University Master’s Degree Programme in Information Technology January 2021 The purpose of this thesis was to perform a preliminary investigation of detecting bodychecks between ice hockey players automatically based on indoor localization data. The objectives of the thesis were to create a bodycheck dataset, train a machine learning algorithm with the dataset and evaluate the performance of the algorithm on full match runs. The location data was obtained from the Wisehockey sport analytics platform. The body- checks of fourteen professional ice hockey matches were annotated manually using a custom annotation tool. The location data of players involved in the annotated bodychecks and randomly selected gameplay moments were gathered into a dataset. A random forest machine learning algorithm was trained on the dataset. The performance of the classifer was measured with receiver-operating characteristics and area under the curve metrics. These metrics were com- puted for cross-validation splits from the dataset and full matches that were used to create the dataset. The trained classifer performs well in the light of the metrics. It reaches an average AUC of 0.995 on the validation splits during the training phase and 0.992 on the full match runs. The classifer produces a small amount of false positives relative to the number of all negative cases during the full match runs. However, the absolute number of false positives is still many times larger than the amount of actual bodychecks that were annotated in the matches. The fnal system as such does not achieve suffcient performance to be used in a production environment. Typical false positives are situations where the players are contesting the puck and are in close contact. The outcome of this thesis is that the objectives have been met and the purpose has been fulflled. The number of false positives can be lowered by further developing the methods presented in this thesis. The performance of the learning system can be improved even without adding any new data sources. The attributes that were extracted from the location data are not ideal. For example, the representation only accounts for two players and ignores all other players on the ice. Other development directions could be to supplement the location data with acceleration data. Acceleration data would provide information about the impact forces that are present during bodychecks. Another option is to capture video footage of the detected bodychecks and analyze the footage with computer vision. Keywords: machine learning, indoor localization, ice hockey, checking The originality of this thesis has been checked using the Turnitin OriginalityCheck service. ii TIIVISTELMÄ Juha-Pekka Parto: Jääkiekon taklausten tunnistaminen sisäpaikannusdatasta Diplomityö Tampereen yliopisto Tietotekniikan koulutusohjelma Tammikuu 2021 Tämän diplomityön tavoitteena oli tutkia taklauksien automaattista tunnistamista jääkiekon pe- laajien paikannusdatasta. Tavoitteena oli luoda datajoukko taklauksista, kouluttaa koneoppimisal- goritmi datajoukon avulla ja mitata algoritmin suorituskyky kokonaisilla otteluilla. Paikannusdata saatiin Wisehockey urheiluanalytiikka-alustasta. Neljäntoista jääkiekko-ottelun taklaukset annotoitiin videomateriaaleista, jotka toistettiin omatekoisella annotointityökalulla. Da- tajoukkoon kerättiin paikannusdata annotoiduista taklauksista ja satunnaisesti valituista hetkistä ottelun aikana. Satunnaismetsäluokittelija valittiin approksimoimaan oppimisen kohteena ollutta funktiota. Luokittelijan suorituskykyä mitatiin ”receiver operating characteristics”-käyrien ja ”area under the curve”-metriikan avulla. Nämä metriikat ilmoitetaan tässä työssä luokittelijan koulutus- vaiheessa validointidatalle ja datajoukon luonnissa käytetyille kokonaisille otteluille. Koulutettu luokittelija suoriutuu hyvin metriikoiden valossa. Se saavuttaa koulutusvaiheessa 0.995 ja kokonaisille otteluille 0.992 keskiarvon ”area under the curve”-metriikalle. Luokittelija tuottaa pienen määrän vääriä hälytyksiä suhteessa kaikkien ei-taklaus tapausten määrään. Vää- rien hälytysten lukumäärä on kuitenkin moninkertainen annotoituihin taklauksiin nähden. Tässä työssä saavutettu lopullinen järjestelmä ei saavuta riittävän hyvää suorituskykyä, jotta sitä voisi käyttää tuotantojärjestelmässä taklausten automaattiseen tunnistamiseen. Tyypillinen väärä hä- lytys on tilanne, jossa pelaajat kamppailevat kiekosta ja ovat lähikontaktissa toistensa kanssa. Lopputuloksena työn tavoitteet saavutettiin ja työn tarkoitus täytettiin. Väärien hälytysten määrää voidaan vähentää kehittämällä tässä työssä esitettyjä menetelmiä. Suorituskykyä voidaan parantaa ilman minkään uudenlaisen datan lisäämistä. Paikannusdatas- ta lasketut ominaisuudet eivät ole parhaimmat mahdolliset. Ominaisuuksissa ei esimerkiksi oteta huomioon muuta kuin kaksi pelaajaa. Kaikki muut pelaajat jääkiekkokaukalossa jätetään huomiot- ta. Järjestelmää voidaan kehittää myös tukemalla paikannusdataa esimerkiksi kiihtyvyysdatalla. Kiihtyvyysdata antaisi tietoa taklauksien aikana ilmaantuvista voimista. Yksi mahdollinen kehitys- suunta on videomateriaalin kerääminen tunnistetuista taklauksista ja analysoimalla videoita kone- näön avulla. Avainsanat: koneoppiminen, sisäpaikannus, jääkiekko, taklaus Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla. iii CONTENTS 1 Introduction . 1 2 Related work . 4 3 Theoretical background . 5 3.1 Indoor localization . 5 3.1.1 Bluetooth and Bluetooth Low Energy . 5 3.1.2 Angle of arrival . 6 3.1.3 Quuppa Intelligent Locating System . 6 3.1.4 Wisehockey . 7 3.2 Machine learning . 8 3.2.1 Receiver operating characteristics . 11 3.2.2 Decision tree learning . 13 3.2.3 Random forests . 15 4 Bodycheck dataset . 17 4.1 Ground truth annotations . 18 4.2 Annotated data . 20 4.3 Dataset analysis . 21 5 Experiments . 26 5.1 The representation and the target function . 26 5.2 The function approximation algorithm . 27 5.3 The full match evaluation . 28 6 Summary . 31 7 Conclusions . 38 References . 40 iv LIST OF FIGURES 1.1 An example bodycheck. 2 3.1 Quuppa indoor localization system overview [18]. 7 3.2 Wisehockey data collection process in the ice hockey scenario. 8 3.3 A screenshot of a video generated from the location data. 10 3.4 The structure of a confusion matrix [25]. 12 3.5 A ROC/AUC example [26]. 13 3.6 A decision tree example [24]. 14 3.7 An illustration of k-fold cross-validation splits. 15 3.8 An example of attribute importance. 16 4.1 A screenshot of the annotation tool. 19 4.2 Average bodychecks in each period. 22 4.3 Bodycheck distribution among player roles. 22 4.4 Bodycheck distribution between home and away teams. 23 4.5 A 2d histogram of all annotated bodychecks in the dataset. 24 4.6 A 2d histogram of all randomly selected non bodychecks. 24 4.7 The bodychecks of the home team in match 429. 25 5.1 ROC/AUC over 14-fold cross-validation training. 28 5.2 Averaged and sorted feature importances. 29 5.3 ROC/AUC over 14 full matches. 30 6.1 Relative false positive trend vs. probability threshold. 32 6.2 False positive trend vs. probability threshold. 32 6.3 False positive example 1. 34 6.4 False positive example 2. 35 6.5 False negative example 1. 36 6.6 False negative example 2. 37 v LIST OF TABLES 6.1 Confusion matrices from the full run on match 429. 33 vi LIST OF PROGRAMS AND ALGORITHMS 3.1 An example of combined location and clock data. .9 4.1 Example metadata fle. 19 4.2 Example annotations. 20 vii LIST OF SYMBOLS AND ABBREVIATIONS API Application programming interface FIR Finite impulse response ISM Industry, scientifc, medical RFID Radio-frequency identifcation UWB Ultra-wideband 1 1 INTRODUCTION In recent years, many different technologies have been adopted in team sports. Large amounts of data including player movement, health statistics and performance from train- ing and matches is being collected. The players train and compete while being monitored by a variety of sensors. The collected data is used to gain information about the play- ers and that information can help coaches and managers to optimize training to improve competition performance. [1] Wearable technologies provide new opportunities for media, television and betting com- panies. The collected data can be combined into datasets which can be used to improve the performance of teams and leagues as an extension. Improved on-feld performance results in increased prize money and more sponsorship deals. Professional betting com- panies use these datasets to exploit ineffciencies in the market to maximize their profts. [1] Perhaps the most important motivation for automatic bodycheck detection is to prevent player injury. According to Hootman et al. concussions amount to 7.9% of all injuries in men’s ice hockey [2]. Coaches and players are interested in injury situations because they want to learn how to avoid them. Automatic bodycheck detection could lead to a vast collection of information about bodychecks without a lot of manual labor. This collection could then be analyzed by teams and coaches and thus be used to improve training practices. Overall, players could be trained better with more in depth knowledge about the situations that
Recommended publications
  • Finland Olympic Player Register At
    Finland 2018 Olympic Player Register Marko Anttila Right Wing -- shoots R Born May 27 1985 -- Lempaala, Finland [36 years ago] Height 6.07 -- Weight 229 Drafted by Chicago Blackhawks round 9 #260 overall 2004 NHL Entry Draft Regular Season Playoffs Season Team League GP G A Pts PIM +/- GP G A Pts PIM 2004-05 Ilves Tampere SM-liiga 28 2 1 3 10 -1 3 0 0 0 0 2005-06 Ilves Tampere SM-liiga 50 4 3 7 46 -6 4 0 0 0 0 2006-07 Ilves Tampere SM-liiga 53 2 2 4 34 -13 7 1 0 1 8 2007-08 Ilves Tampere SM-liiga 56 14 9 23 90 0 2008-09 Ilves Tampere SM-liiga 53 8 14 22 69 3 3 0 0 0 2 2009-10 Ilves Tampere SM-liiga 57 8 18 26 52 3 -- -- -- -- -- 2010-11 Ilves Tampere SM-liiga 33 5 8 13 26 -5 2011-12 TPS Turku SM-liiga 59 14 22 36 36 -21 2 0 1 1 4 2012-13 TPS Turku SM-liiga 60 17 24 41 68 9 -- -- -- -- -- 2013-14 Novokuznetsk Metallurg KHL 16 2 4 6 10 -8 -- -- -- -- -- 2013-14 Orebro HK SweHL 22 13 7 20 30 5 -- -- -- -- -- 2014-15 Orebro HK SweHL 52 14 6 20 16 1 6 0 1 1 8 2015-16 Orebro HK SweHL 49 8 6 14 28 1 2 1 1 2 35 2016-17 Jokerit Helsinki KHL 56 7 9 16 41 -5 4 0 1 1 2 2017-18 Jokerit Helsinki KHL 52 8 8 16 26 4 10 1 1 2 4 2018-19 Jokerit Helsinki KHL 38 11 4 15 21 9 6 1 2 3 3 2019-20 Jokerit Helsinki KHL 61 11 7 18 14 3 6 2 2 4 4 2020-21 Jokerit Helsinki KHL 57 8 6 14 44 -1 4 0 0 0 14 2021-22 Jokerit Helsinki KHL 9 2 0 2 0 2 Jonas Enlund Center -- shoots L Born Nov 3 1987 -- Helsinki, Finland [33 years ago] Height 6.00 -- Weight 209 Drafted by Atlanta Thrashers round 6 #165 overall 2006 NHL Entry Draft Regular Season Playoffs Season Team League
    [Show full text]
  • Careers Are Remembered by Olympic Success
    Publisher: International Ice Hockey Federation, Editor-in-Chief: Jan-Ake Edvinsson Editors: Kimmo Leinonen, Szymon Szemberg Layout: Szymon Szemberg, Assistant Editor: Jenny Wiedeke September 2003 - Vol 7 - No 4 Edward Groeger Edward Photo: HOME OPENER. IIHF President René Fasel (left) is all smiles as IOC President Jacques Rogge drops the puck for the inaugural face-off between Fasel and the Mayor of Zurich, Elmar Ledergerber. The August 21 ceremony, which officially inaugurated the new IIHF offices, is witnessed by Christian Huber, the President Councillor of the Government of Kanton Zurich, and by Juan Antonio Samaranch, Lifetime IOC Honorary President. See more on the inauguration on page 11. Careers are remembered by Olympic success The 115th IOC Session in Prague, Czech Republic on July 1 was Olympic Winter Games. Indeed, the Olympics - and the Olympic ice hockey tourna- thrilling for sports fans and ice hockey fans in particular. And just ment - have an inner strength that goes beyond individual participation. like in hockey, there could only be one winner. Out of three very good bids for the 2010 Olympic Winter Games, Vancouver came out Heroes are made in the Olympics, regardless of what merit you bring with you coming into the Games. On August 11, a shock hit the world of hockey when Herb victorious. Brooks died in a car accident. In February 1980 a virtually unknown Brooks brought a group of college no-names to Lake Placid and proved that miracles can happen. II As president of the RENÉ FASEL EDITORIAL International Ice Hockey II None of his players became superstars and Brooks never won a championship in Federation, I cannot deny that going to Canada with an Olympic ice hockey tourna- the pro-ranks after Lake Placid, but their careers will always be measured by what ment presents a huge opportunity for our sport.
    [Show full text]
  • Page 2.Qxd 19.3.2010 14:52 Uhr Seite 12
    10-0552_IIHF_IceTimes_April2010.qxp:Page 2.qxd 19.3.2010 14:52 Uhr Seite 12 12 Volume 14 Number 2 April 2010 Norway’s Hove always on call April 2010 Volume 14 Number 2 The golden girl among women’s Published by International Ice Hockey Federation Editor-in-Chief Horst Lichtner Editor Szymon Szemberg Design Jenny Wiedeke international officials By Andrew Podnieks Olympics take the game to the next level Aina Hove's rise to the top of the referees' pool in women's hockey has been swift. The Norwegian didn't referee her first top division game until 2007, and two years later she was in the gold- medal game. But she has been surrounded by hockey her whole life. Her brother was a player; her husband has been a linesman; and, her sister, Marta, was a linesman in 2006 in Turin. Hove tal- ked about her career the day after she officiated the Canada- United States game for gold on February 25, 2010. Norway's men's team isn't a powerhouse, so for a woman it must have MAKING A STAND: Aina Hove has gotten the nod to been even tougher to play. How did you come to love hockey? officiate the last two gold medal games at major inter- national women’s events. In 2009, she called the USA- When I was a kid in Trondheim, my dad made an outdoor rink for the kids Canada final at the Women’s World Championship, to play on. It was a soccer field in the summer. I had nice red, figure ska- while in February, she again got the call to whistle the tes, like any girl.
    [Show full text]
  • Vancouver Canucks Media Guide 2008.09 Schedule
    2008.09 VANCOUVER CANUCKS MEDIA GUIDE 2008.09 SCHEDULE NATIONAL TV TV CANUCKS TV TV PAY-PER-VIEW (CBC OR TSN) JANUARY SUNMON TUE WED THUFRI SAT 12NSH ATL 3 TV 5:00 TV 4:30 HOME AWAY 4 DAL 567 EDM 8 SJ 91STL 0 SJ SEPTEMBER PS DENOTES PRESEASON GAMES SUN MON TUEWED THU FRI SAT TV 7:00 TV 7:00 7:30 TV 7:00 TV 7:00 14 15 16 17 18 19 20 11 12 13 NJ 14 15 PHX 16 17 TV 7:00 TV 7:00 21 22EDM 23 EDM 24 25 26 27 SJ 18 CBS 19 20SJ 21 22 23 24 TV TV PS 6:00 PS 7:00 PS 7:30 TV 5:00 TV 7:30 ALL-STAR BREAK 28 ANA 29 30 25 26 27 28 NSH 29 30 31 MIN TV PS 5:00 TV 7:30 TV 7:00 OCTOBER FEBRUARY SUN MON TUEWED THU FRI SAT SUNMON TUE WED THUFRI SAT 12CGY SJ 34 123 CAR 456 7 CHI TV PS 7:00 PS 7:00 TV 7:00 TV 7:00 5 ANA 678 9 CGY 10 11 CGY 8910 STL 11 12PHX 13 DAL 14 PS 7:00 TV 7:30 TV 7:00 TV 5:30 TV 6:00 TV 5:30 12 13 WAS 14 15 16DET 17 BUF 18 15 MTL 16 17 CGY 18 19 OTT 20 21 TOR TV 4:00 TV 4:30 TV 4:30 TV 7:00 TV 6:30 TV 4:30 TV 4:00 19 CHI 20 21 CBS 22 23 24 25 EDM 22 23 24 MTL 25 26 27 TB 28 TV 4:00 TV 4:00 TV 7:00 TV 4:30 TV 7:00 26 27 28 BOS 29 30LA 31 ANA TV 7:00 TV 7:30 TV 7:00 NOVEMBER MARCH SUN MON TUE WED THU FRISAT SUNMON TUEWED THUFRI SAT 1 1 CBS 2 3 MIN 4 567 SJ TV 5:00 TV 7:00 TV 7:00 2 DET 3 4 NSH 5 6 PHX 7 8 MIN 8 9 LA 10 11 ANA 12 13 LA 14 TV 7:00 TV 7:00 TV 7:00 TV 7:00 91011 12 COL 13 14 15 TOR TV 7:30 TV 7:00 TV 7:00 TV 7:00 TV 4:00 15 COL 16 17 DAL 18 19 STL 20 21 PHX 16 17 18 19 20 21 22 NYI NYR MIN PIT TV 7:00 TV 7:00 TV 7:00 TV 7:00 TV 4:00 TV 4:30 TV 5:00 TV 11AM 22 23 24 DAL 25 26STL 27 COL 28 23 24 DET 25 26 27 CGY 28 29 CGY TV 5:30 TV 5:30 TV 6:00 TV 7:00 TV 7:00 TV 7:00 30 29 CHI 30 31 MIN TV 4:00 TV 5:00 DECEMBER APRIL SUN MON TUE WED THU FRISAT SUNMON TUEWED THUFRI SAT 1 CBS 2345DET MIN 6 COL 1 2 ANA 3 4 EDM TV 4:00 TV 4:30 TV 5:00 7:00 TV 7:00 TV 7:00 7 COL 8 9 NSH 10 11 12 13 EDM 5 COL 6 7 CGY 8 9 LA 10 11 COL TV 5:00 TV 5:00 TV 7:00 TV 7:00 TV 7:00 TV 7:00 TV 12PM 14 FLA 15 16 17 EDM 18 19 20 CHI 12 13 14 15 16 17 18 TV 7:00 TV 7:30 TV 7:00 21 22 ANA 23 SJ 24 25 26 EDM 27 * GAME DATES, OPPONENTS & TIMES SUBJECT TO CHANGE.
    [Show full text]
  • 2007 SC Playoff Summaries
    DETROIT RED WINGS STANLEY CUP CHAMPIONS 2 0 0 8 Chris Chelios, Daniel Cleary, Pavel Datsyuk, Aaron Downey, Dallas Drake, Kris Draper, Valtteri Filppula, Johan Franzen, Dominik Hasek, Darren Helm, Tomas Holmstrom, Jiri Hudler, Tomas Kopecky, Niklas Kronwall, Brett Lebda, Nicklas Lidstrom CAPTAIN, Andreas Lilja, Kirk Maltby, Darren McCarty, Derek Meech, Chris Osgood, Brian Rafalski, Mikael Samuelsson, Brad Stuart, Henrik Zetterberg Michael Ilitch OWNER/GOVERNOR Ken Holland GENERAL MANAGER, Mike Babcock HEAD COACH © Steve Lansky 2010 bigmouthsports.com NHL and the word mark and image of the Stanley Cup are registered trademarks and the NHL Shield and NHL Conference logos are trademarks of the National Hockey League. All NHL logos and marks and NHL team logos and marks as well as all other proprietary materials depicted herein are the property of the NHL and the respective NHL teams and may not be reproduced without the prior written consent of NHL Enterprises, L.P. Copyright © 2010 National Hockey League. All Rights Reserved. 2008 EASTERN CONFERENCE QUARTER—FINAL 1 MONTRÉAL CANADIENS 104 v. 8 BOSTON BRUINS 94 GM BOB GAINEY, HC GUY CARBONNEAU v. GM PETER CHIARELLI, HC CLAUDE JULIEN CANADIENS WIN SERIES IN 7 Thursday, April 10 1900 h et on HNIC Saturday, April 12 1900 h et on HNIC BOSTON 1 @ MONTREAL 4 BOSTON 2 @ MONTREAL 3 OVERTIME FIRST PERIOD FIRST PERIOD 1. MONTREAL, Sergei Kostitsyn 1 (Patrice Brisebois) 0:34 1. MONTREAL, Roman Hamrlik 1 (Bryan Smolinski, Steve Begin) 18:30 2. MONTREAL, Andrei Kostitsyn 1 (Tomas Plekanec) 2:02 GWG 3. BOSTON, Shane Hnidy 1 (Andrew Ference, Phil Kessel) 8:34 Penalties – Markov M 5:52, Streit M 11:00, Chara B 14:03, Reich B Higgins M 20:00 Penalties – Hnidy B 5:43, Markov M 14:16, Murray B Komisarek M 17:46 SECOND PERIOD 2.
    [Show full text]
  • 10 Chicago Blackhawks 2009
    PRESENTED BY CHICAGO BLACKHAWKS MEDIA GUIDE BLACKHAWKS CHICAGO 2009 - 10 CHICAGO BLACKHAWKS MEDIA GUIDE BLACKHAWKS CHICAGO 2009 - 10 2009 - 10 CHICAGO BLACKHAWKS MEDIA GUIDE #2%$)43 #2%$)43 Editors ..........................Brandon Faber, Adam Kempenaar, Paul Kennedy, Adam Rogowin and John Sandberg Design, Layout and Production ......................................................................................................John Sandberg Cover Design ...................................................................................................................................Chris Weibring Editorial Assistance ..................................................................................................Brad Boron and Lauren Lang Photography ....................................................................................... Bill Smith, Rudy Ayasse and Getty Images Printing ..................................................................................................................... The Graphic Arts Studio, Inc. © 2009 Chicago Blackhawks The information contained in this publication was compiled by the Chicago Blackhawks and is provided as a courtesy to our media and fans, and may be used only for personal and editorial purposes. Any commercial use of this information without the prior written consent of the Chicago Blackhawks is prohibited. CHICAGOBLACKHAWKS.COM 1 4!",%/&#/.4%.43 Credits ................................................ 1 Game-by-Game Summaries ........80-91 Brandon Pirri ....................................111
    [Show full text]
  • Main Partners of Olympic Team Finland Content Greetings from Rio 2016
    TEAM FINLAND XXIII Olympic Winter Games PyeongChang 2018 Main Partners of Olympic Team Finland Content Greetings from Rio 2016 . 4. Alpine Skiing . 6 Biathlon . 8 Cross-Country . 14 Curling . .22 . Figure Skating . .24 . Freestyle . 25 Ice Hockey, Men . 28 Ice Hockey, Women . 54. Nordic Combined . 78 Ski Jumping . 82 Snowboarding . 86 Speed Skating . 92 Abbreviations and notes . 96 Management . 104 Support Staff . 105 Medical Team . .106 Schedule . 108 Map . 110 Edited by: Sports Museum of Finland, Information Service Vesa Tikander Photographs: Finnish Olympic Committee, Tailorframe . PyeongChang 2018 Layout: Hanna Rättö Press: Grano Oy Publisher: Finnish Olympic Committee ©Copyright Sports Museum of Finland and Finnish Olympic Committee ISBN 978-952-5794-72-4 (NID) ISBN 978-952-5794-73-1 (PDF) Sport Museum of Finland Information Service: vesa tikander@urheilumuseo. fi. Finnish Olympic Committee: www .olympiakomitea fi. International Olympic Committee: www .olympic .org PyeongChang 2018: www .pyeongchang2018 .com Greetings from Summer Olympians and Paralympians Mira Potkonen Boxing, Olympic Bronze Medalist 2016 Olympic Games offer a chance to do something unique, something that you have always dreamed of . The most important thing is to keep the faith, maintain inner peace, and concentrate on your own routines . I highly appreciate winter athletes and follow closely winter Olympics . Among all the great winter sports, snowboarding is my favorite . Good luck for the Finnish team in PyeongChang, fight on! 4 Jarkko Nieminen Tennis, Olympian 2004, 2008 and 2012 Olympics are the most inspiring of all the sporting events . For an individual athlete, Olympics offer a chance to become a part of a great team, feel exceptional friendship, and share unforgettable experien- ces with the other athletes .
    [Show full text]