Handout Data Structures

Total Page:16

File Type:pdf, Size:1020Kb

Handout Data Structures Handout Data Structures Contents 1 Basic Data Structures 1 1.1 Abstract Data Structures . .1 1.2 C++ programming . .6 1.3 Trees and their Representations . 11 2 Tree Traversal 18 2.1 Recursion . 18 2.2 Euler traversal . 19 2.3 Using a Stack . 20 2.4 Using Link-Inversion . 23 2.5 Using Inorder Threads . 25 3 Binary Search Trees 31 3.1 Representing sets . 31 3.2 Augmented trees . 33 3.3 Comparing trees . 35 4 Balancing Binary Trees 42 4.1 Tree rotation . 42 4.2 AVL Trees . 43 4.3 Adding a Key to an AVL Tree . 45 4.4 Deletion in an AVL Tree . 49 4.5 Self-Organizing Trees . 52 4.6 Splay Trees . 53 5 Priority Queues 57 5.1 ADT Priority Queue . 57 5.2 Binary Heaps . 59 5.3 Leftist heaps . 63 5.4 Pairing Heap . 67 5.5 Double-ended Priority Queues . 67 6 B-Trees 72 6.1 B-Trees . 72 6.2 Deleting Keys . 75 6.3 Red-Black Trees . 77 7 Graphs 84 7.1 Representation . 84 7.2 Graph traversal . 85 7.3 Disjoint Sets, ADT Union-Find . 89 7.4 Minimal Spanning Trees . 93 7.5 Shortest Paths . 96 7.6 Topological Sort . 101 8 Hash Tables 105 8.1 Perfect Hash Function . 105 8.2 Open Addressing . 106 8.3 Chaining . 111 8.4 Choosing a hash function . 112 9 Data Compression 116 9.1 Huffman Coding . 116 9.2 Ziv-Lempel-Welch . 120 9.3 Burrows-Wheeler . 123 10 Pattern Matching 126 10.1 Knuth-Morris-Pratt . 126 10.2 Aho-Corasick . 131 10.3 Comparing texts . 132 10.4 Other methods . 140 Standard Reference Works 144 HJH, Leiden, September 13, 2020 ii WERK IN UITVOERING. De binary heap heeft uitleg gekregen (dit onderwerp werd uit de lesstof van algoritmiek geschrapt). CHECK. Graafalgoritmen, veelal algoritmiek, Geometrical data structure [doen we weinig aan]. TODO. Meer uitleg: Topsort is een toepassing van DFS; DFS bezoektijden en edge typen DFS-tree. Algoritmiek voorjaar 2019: In afwijking van de tentamenstof van eerdere jaren hebben we dit jaar: – wel topologisch sorteren, het algoritme van Prim en de implementatie van het algoritme van Kruskal behandeld, – niet de heap en heapsort behandeld. iii 1 Basic Data Structures Often the notation nil is used to indicate a null-pointer. In pictures the symbol L might be used, but in many case we just draw a dot without outgoing arcs. In C++ originally the value 0 or the macro NULL was used as null-pointer (inherited from C), but in modern C++11 an explicit constant nullptr is provided to avoid unwanted conversions in the context of function overloading. 1.1 Abstract Data Structures Definition 1.1. An abstract data structure (ADT) is a specification of the values stored in the data structure as well as a description (and signatures) of the oper- ations that can be performed. Thus an ADT is fixed by its domain which describes the values stored, the data elements and their structure (like set or linear list), and the operations performed on the data. In present day C++ the most common abstract data structures are implemented as template containers with specific member functions. In general if we want to code a given ADT, the specification fixes the ‘interface’, i.e., the functions and their types, the representation fixes the constructs used to store the data (arrays, pointers), while implementation means writing the actual code for the functions [picture after Stubbs and Webre 1985]. elements structure domain operations data structure specification representation implementation Stack. The stack keeps a linear sequence of objects. This sequence can be ac- cessed from one side only, which is called the top of the stack. The behaviour is called LIFO for last-in-first-out, as the last element added is the first that can be removed. The ADT STACK has the following operations: 1 •I NITIALIZE: void ! stack<T>. construct an empty sequence (). •I SEMPTY: void ! Boolean. check whether there the stack is empty, i.e., contains no elements). •S IZE: void ! Integer. return the number n of elements, the length of the sequence (x1;:::;xn). •T OP: void ! T. returns the top xn of the list (x1;:::;xn). Undefined on the empty sequence. •P USH(x): T ! void. add the given element x to the top of the sequence (x1;:::;xn), so afterwards the sequence is (x1;:::;xn;x). •P OP: void ! void. removes the topmost xn element of the sequence (x1;:::;xn), so afterwards the sequence is (x1;:::;xn−1). Undefined on the empty sequence. Stacks are implemented using an array or a (singly) linked list. In the array the topmost symbol is stored as an index to the array, whereas in the linked list there is a pointer to the topmost element. There is no need to maintain a pointer to the bottom element. top x x x x x x x top L x1 x2 xn Specification. There are several possible notations for pushing x to the stack S. In classical imperative programming style we write push(S,x), where the stack S is changed as result of the operation. In object oriented style we tend to write S.push(x). In functional style we also may write push(S,x), but here S itself is not changed, instead push(S,x) denotes the resulting stack. We have to make a distiction between the concept of the stack versus its instantiation in our preferred programming language. Languages have been developed to specify the syntax and semantics of ADT’s. One example is the VDM. Here the specification for the stack. VDM Vienna Development Method Stack of N 2 Function signatures: init: ! Stack push: N × Stack ! Stack top: Stack ! (N [ ERROR ) pop: Stack ! Stack isempty: Stack ! Boolean Semantics: top(init()) = ERROR top(push(i,s)) = i pop(init()) = init() pop(push(i, s)) = s isempty(init()) = true isempty(push(i, s)) = false Queue. The queue keeps a linear sequence of objects. Elements can be retrieved from one end (front), and added to the other end (back). The behaviour is called FIFO for first-in-first-out, as the elements are removed in the same order as they have been added. The ADT QUEUE has the following operations: •I NITIALIZE: construct an empty sequence (). •I SEMPTY: check whether there the queue is empty, i.e., contains no ele- ments). •S IZE: return the number n of elements, the length of the sequence (x1;:::;xn). •F RONT: returns the first element x1 of the sequence (x1;:::;xn). Undefined on the empty sequence. •E NQUEUE(x): add the given element x to the end/back of the sequence (x1;:::;xn), so afterwards the sequence is (x1;:::;xn;x). •D EQUEUE: removes the first element of the sequence (x1;:::;xn), so after- wards the sequence is (x2;:::;xn). Undefined on the empty sequence. Queues are implemented using a circular array or a (singly) linked list. In a circular array we keep track of the first and last elements of the queue within the array. The last element of the array is considered to be followed by the first array element when used by the queue; hence circular. Be careful: it is hard to distinguish a ‘full’ queue from an empty one. 3 linear list deque ‘deck’ stack stapel LIFO queue rij !FIFO! Figure 1: Hierarchy of linear lists. front back back front x x x x x x x x x x x x x first last last first first last x1 x2 xn L back front A Deque (‘deck’) or double-ended-queue is a linear sequence where only oper- ations are allowed on either end of the list, thus generalizing both stack and queue. Usually implemented as circular array or doubly linked list (see also below). There is no common naming convention for the operations in various program- ming languages. insert remove inspect back front back front back front C++ push_back push_front pop_back pop_front back front Perl push unshift pop shift [-1] [0] Python append appendleft pop popleft [-1] [0] List. A Linear List is an ADT that stores (linear) sequences of data elements. The operations include Initialization, EmptyTest, Retrieval, Change and Deletion of the value stored at a certain position, Addition of a new value "in between" two existing values, as well as before the first or after the last position. 4 at position inspect insert delete change × first position [6] last Hence, in order to specify the linear list we also require the notion of a po- sition in the list, to indicate where operations should take place. We also need instructions that move the position one forward or backward if we want to be able to traverse the list for inspection. (Such a traversal is not considered necessary for stacks and queues, where we can only inspect the topmost/front element.) It is rather tedious to give a good description of a general list and its opera- tions. We could start with the mathematical concept of a tuple and consider a list (x1;x2;:::;xn), with positions 1;2;:::;n. If we now add a new value at the start of the list it means all other values also have changed position. Not a natural choice for a programmer who might like to see positions as pointers. The most common implementation of the linear list is a doubly linked list, with pointers to the first and last element of the list, and for each element a pointer to its predecessor and successor (if it exists). Sometimes it is more convenient to treat the first and last pointers as special elements of the list.
Recommended publications
  • CMSC 341 Data Structure Asymptotic Analysis Review
    CMSC 341 Data Structure Asymptotic Analysis Review These questions will help test your understanding of the asymptotic analysis material discussed in class and in the text. These questions are only a study guide. Questions found here may be on your exam, although perhaps in a different format. Questions NOT found here may also be on your exam. 1. What is the purpose of asymptotic analysis? 2. Define “Big-Oh” using a formal, mathematical definition. 3. Let T1(x) = O(f(x)) and T2(x) = O(g(x)). Prove T1(x) + T2(x) = O (max(f(x), g(x))). 4. Let T(x) = O(cf(x)), where c is some positive constant. Prove T(x) = O(f(x)). 5. Let T1(x) = O(f(x)) and T2(x) = O(g(x)). Prove T1(x) * T2(x) = O(f(x) * g(x)) 6. Prove 2n+1 = O(2n). 7. Prove that if T(n) is a polynomial of degree x, then T(n) = O(nx). 8. Number these functions in ascending (slowest growing to fastest growing) Big-Oh order: Number Big-Oh O(n3) O(n2 lg n) O(1) O(lg0.1 n) O(n1.01) O(n2.01) O(2n) O(lg n) O(n) O(n lg n) O (n lg5 n) 1 9. Determine, for the typical algorithms that you use to perform calculations by hand, the running time to: a. Add two N-digit numbers b. Multiply two N-digit numbers 10. What is the asymptotic performance of each of the following? Select among: a. O(n) b.
    [Show full text]
  • Through the Concept of Data Structures, the Self- Balancing Binary Search Tree
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 06 Issue: 01 | Jan 2019 www.irjet.net p-ISSN: 2395-0072 THROUGH THE CONCEPT OF DATA STRUCTURES, THE SELF- BALANCING BINARY SEARCH TREE Asniya Sadaf Syed Atiqur Rehman1, Avantika kishor Bakale2, Priyanka Patil3 1,2,3Department of Computer Science and Engineering, Prof Ram Meghe College of Engineering and Management, Badnera -------------------------------------------------------------------------***------------------------------------------------------------------------ ABSTRACT - In the word of computing tree is a known way of implementing balancing tree as binary hierarchical data structure which stores information tree they are originally discovered by Bayer and are naturally in the form of hierarchy style. Tree is a most nowadays extensively (diseased) in the standard powerful and advanced data structure. This paper is literature or algorithm Maintaining the invariant of red mainly focused on self -balancing binary search tree(BST) black tree through Haskell types system using the nested also known as height balanced BST. A BST is a type of data data types this give small list noticeable overhead. Many structure that adjust itself to provide the consistent level gives small list overhead can be removed by the use of of node access. This paper covers the different types of BST existential types [4]. their analysis, complexity and application. 3.1. AVL TREE Key words: AVL Tree, Splay Tree, Skip List, Red Black Tree, BST. AVL Tree is best example of self-balancing search tree; this means that AVL Tree is also binary search tree 1. INTRODUCTION which is also balancing tree. A binary tree is said to be Tree data structures are the similar like Maps and Sets, balanced if different between the height of left and right.
    [Show full text]
  • Data Structures and Algorithms Binary Heaps (S&W 2.4)
    Data structures and algorithms DAT038/TDA417, LP2 2019 Lecture 12, 2019-12-02 Binary heaps (S&W 2.4) Some slides by Sedgewick & Wayne Collections A collection is a data type that stores groups of items. stack Push, Pop linked list, resizing array queue Enqueue, Dequeue linked list, resizing array symbol table Put, Get, Delete BST, hash table, trie, TST set Add, ontains, Delete BST, hash table, trie, TST A priority queue is another kind of collection. “ Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won't usually need your code; it'll be obvious.” — Fred Brooks 2 Priority queues Collections. Can add and remove items. Stack. Add item; remove the item most recently added. Queue. Add item; remove the item least recently added. Min priority queue. Add item; remove the smallest item. Max priority queue. Add item; remove the largest item. return contents contents operation argument value size (unordered) (ordered) insert P 1 P P insert Q 2 P Q P Q insert E 3 P Q E E P Q remove max Q 2 P E E P insert X 3 P E X E P X insert A 4 P E X A A E P X insert M 5 P E X A M A E M P X remove max X 4 P E M A A E M P insert P 5 P E M A P A E M P P insert L 6 P E M A P L A E L M P P insert E 7 P E M A P L E A E E L M P P remove max P 6 E M A P L E A E E L M P A sequence of operations on a priority queue 3 Priority queue API Requirement.
    [Show full text]
  • Lecture 04 Linear Structures Sort
    Algorithmics (6EAP) MTAT.03.238 Linear structures, sorting, searching, etc Jaak Vilo 2018 Fall Jaak Vilo 1 Big-Oh notation classes Class Informal Intuition Analogy f(n) ∈ ο ( g(n) ) f is dominated by g Strictly below < f(n) ∈ O( g(n) ) Bounded from above Upper bound ≤ f(n) ∈ Θ( g(n) ) Bounded from “equal to” = above and below f(n) ∈ Ω( g(n) ) Bounded from below Lower bound ≥ f(n) ∈ ω( g(n) ) f dominates g Strictly above > Conclusions • Algorithm complexity deals with the behavior in the long-term – worst case -- typical – average case -- quite hard – best case -- bogus, cheating • In practice, long-term sometimes not necessary – E.g. for sorting 20 elements, you dont need fancy algorithms… Linear, sequential, ordered, list … Memory, disk, tape etc – is an ordered sequentially addressed media. Physical ordered list ~ array • Memory /address/ – Garbage collection • Files (character/byte list/lines in text file,…) • Disk – Disk fragmentation Linear data structures: Arrays • Array • Hashed array tree • Bidirectional map • Heightmap • Bit array • Lookup table • Bit field • Matrix • Bitboard • Parallel array • Bitmap • Sorted array • Circular buffer • Sparse array • Control table • Sparse matrix • Image • Iliffe vector • Dynamic array • Variable-length array • Gap buffer Linear data structures: Lists • Doubly linked list • Array list • Xor linked list • Linked list • Zipper • Self-organizing list • Doubly connected edge • Skip list list • Unrolled linked list • Difference list • VList Lists: Array 0 1 size MAX_SIZE-1 3 6 7 5 2 L = int[MAX_SIZE]
    [Show full text]
  • Priority Queues and Binary Heaps Chapter 6.5
    Priority Queues and Binary Heaps Chapter 6.5 1 Some animals are more equal than others • A queue is a FIFO data structure • the first element in is the first element out • which of course means the last one in is the last one out • But sometimes we want to sort of have a queue but we want to order items according to some characteristic the item has. 107 - Trees 2 Priorities • We call the ordering characteristic the priority. • When we pull something from this “queue” we always get the element with the best priority (sometimes best means lowest). • It is really common in Operating Systems to use priority to schedule when something happens. e.g. • the most important process should run before a process which isn’t so important • data off disk should be retrieved for more important processes first 107 - Trees 3 Priority Queue • A priority queue always produces the element with the best priority when queried. • You can do this in many ways • keep the list sorted • or search the list for the minimum value (if like the textbook - and Unix actually - you take the smallest value to be the best) • You should be able to estimate the Big O values for implementations like this. e.g. O(n) for choosing the minimum value of an unsorted list. • There is a clever data structure which allows all operations on a priority queue to be done in O(log n). 107 - Trees 4 Binary Heap Actually binary min heap • Shape property - a complete binary tree - all levels except the last full.
    [Show full text]
  • Search Trees
    Lecture III Page 1 “Trees are the earth’s endless effort to speak to the listening heaven.” – Rabindranath Tagore, Fireflies, 1928 Alice was walking beside the White Knight in Looking Glass Land. ”You are sad.” the Knight said in an anxious tone: ”let me sing you a song to comfort you.” ”Is it very long?” Alice asked, for she had heard a good deal of poetry that day. ”It’s long.” said the Knight, ”but it’s very, very beautiful. Everybody that hears me sing it - either it brings tears to their eyes, or else -” ”Or else what?” said Alice, for the Knight had made a sudden pause. ”Or else it doesn’t, you know. The name of the song is called ’Haddocks’ Eyes.’” ”Oh, that’s the name of the song, is it?” Alice said, trying to feel interested. ”No, you don’t understand,” the Knight said, looking a little vexed. ”That’s what the name is called. The name really is ’The Aged, Aged Man.’” ”Then I ought to have said ’That’s what the song is called’?” Alice corrected herself. ”No you oughtn’t: that’s another thing. The song is called ’Ways and Means’ but that’s only what it’s called, you know!” ”Well, what is the song then?” said Alice, who was by this time completely bewildered. ”I was coming to that,” the Knight said. ”The song really is ’A-sitting On a Gate’: and the tune’s my own invention.” So saying, he stopped his horse and let the reins fall on its neck: then slowly beating time with one hand, and with a faint smile lighting up his gentle, foolish face, he began..
    [Show full text]
  • CS210-Data Structures-Module-29-Binary-Heap-II
    Data Structures and Algorithms (CS210A) Lecture 29: • Building a Binary heap on 풏 elements in O(풏) time. • Applications of Binary heap : sorting • Binary trees: beyond searching and sorting 1 Recap from the last lecture 2 A complete binary tree How many leaves are there in a Complete Binary tree of size 풏 ? 풏/ퟐ 3 Building a Binary heap Problem: Given 풏 elements {푥0, …, 푥푛−1}, build a binary heap H storing them. Trivial solution: (Building the Binary heap incrementally) CreateHeap(H); For( 풊 = 0 to 풏 − ퟏ ) What is the time Insert(푥,H); complexity of this algorithm? 4 Building a Binary heap incrementally What useful inference can you draw from Top-down this Theorem ? approach The time complexity for inserting a leaf node = ?O (log 풏 ) # leaf nodes = 풏/ퟐ , Theorem: Time complexity of building a binary heap incrementally is O(풏 log 풏). 5 Building a Binary heap incrementally What useful inference can you draw from Top-down this Theorem ? approach The O(풏) time algorithm must take O(1) time for each of the 풏/ퟐ leaves. 6 Building a Binary heap incrementally Top-down approach 7 Think of alternate approach for building a binary heap In any complete 98 binaryDoes treeit suggest, how a manynew nodes approach satisfy to heapbuild propertybinary heap ? ? 14 33 all leaf 37 11 52 32 nodes 41 21 76 85 17 25 88 29 Bottom-up approach 47 75 9 57 23 heap property: “Every ? node stores value smaller than its children” We just need to ensure this property at each node.
    [Show full text]
  • Programmatic Testing of the Standard Template Library Containers
    Programmatic Testing of the Standard Template Library Containers y z Jason McDonald Daniel Ho man Paul Stro op er May 11, 1998 Abstract In 1968, McIlroy prop osed a software industry based on reusable comp onents, serv- ing roughly the same role that chips do in the hardware industry. After 30 years, McIlroy's vision is b ecoming a reality. In particular, the C++ Standard Template Library STL is an ANSI standard and is b eing shipp ed with C++ compilers. While considerable attention has b een given to techniques for developing comp onents, little is known ab out testing these comp onents. This pap er describ es an STL conformance test suite currently under development. Test suites for all of the STL containers have b een written, demonstrating the feasi- bility of thorough and highly automated testing of industrial comp onent libraries. We describ e a ordable test suites that provide go o d co de and b oundary value coverage, including the thousands of cases that naturally o ccur from combinations of b oundary values. We showhowtwo simple oracles can provide fully automated output checking for all the containers. We re ne the traditional categories of black-b ox and white-b ox testing to sp eci cation-based, implementation-based and implementation-dep endent testing, and showhow these three categories highlight the key cost/thoroughness trade- o s. 1 Intro duction Our testing fo cuses on container classes |those providing sets, queues, trees, etc.|rather than on graphical user interface classes. Our approach is based on programmatic testing where the number of inputs is typically very large and b oth the input generation and output checking are under program control.
    [Show full text]
  • Functional Data Structures with Isabelle/HOL
    Functional Data Structures with Isabelle/HOL Tobias Nipkow Fakultät für Informatik Technische Universität München 2021-6-14 1 Part II Functional Data Structures 2 Chapter 6 Sorting 3 1 Correctness 2 Insertion Sort 3 Time 4 Merge Sort 4 1 Correctness 2 Insertion Sort 3 Time 4 Merge Sort 5 sorted :: ( 0a::linorder) list ) bool sorted [] = True sorted (x # ys) = ((8 y2set ys: x ≤ y) ^ sorted ys) 6 Correctness of sorting Specification of sort :: ( 0a::linorder) list ) 0a list: sorted (sort xs) Is that it? How about set (sort xs) = set xs Better: every x occurs as often in sort xs as in xs. More succinctly: mset (sort xs) = mset xs where mset :: 0a list ) 0a multiset 7 What are multisets? Sets with (possibly) repeated elements Some operations: f#g :: 0a multiset add mset :: 0a ) 0a multiset ) 0a multiset + :: 0a multiset ) 0a multiset ) 0a multiset mset :: 0a list ) 0a multiset set mset :: 0a multiset ) 0a set Import HOL−Library:Multiset 8 1 Correctness 2 Insertion Sort 3 Time 4 Merge Sort 9 HOL/Data_Structures/Sorting.thy Insertion Sort Correctness 10 1 Correctness 2 Insertion Sort 3 Time 4 Merge Sort 11 Principle: Count function calls For every function f :: τ 1 ) ::: ) τ n ) τ define a timing function Tf :: τ 1 ) ::: ) τ n ) nat: Translation of defining equations: E[[f p1 ::: pn = e]] = (Tf p1 ::: pn = T [[e]] + 1) Translation of expressions: T [[g e1 ::: ek]] = T [[e1]] + ::: + T [[ek]] + Tg e1 ::: ek All other operations (variable access, constants, constructors, primitive operations on bool and numbers) cost 1 time unit 12 Example: @ E[[ [] @ ys = ys ]] = (T@ [] ys = T [[ys]] + 1) = (T@ [] ys = 2) E[[ (x # xs)@ ys = x #(xs @ ys) ]] = (T@ (x # xs) ys = T [[x #(xs @ ys)]] + 1) = (T@ (x # xs) ys = T@ xs ys + 5) T [[x #(xs @ ys)]] = T [[x]] + T [[xs @ ys]] + T# x (xs @ ys) = 1 + (T [[xs]] + T [[ys]] + T@ xs ys) + 1 = 1 + (1 + 1 + T@ xs ys) + 1 13 if and case So far we model a call-by-value semantics Conditionals and case expressions are evaluated lazily.
    [Show full text]
  • Leftist Trees
    DEMO : Purchase from www.A-PDF.com to remove the watermark5 Leftist Trees 5.1 Introduction......................................... 5-1 5.2 Height-Biased Leftist Trees ....................... 5-2 Definition • InsertionintoaMaxHBLT• Deletion of Max Element from a Max HBLT • Melding Two Max HBLTs • Initialization • Deletion of Arbitrary Element from a Max HBLT Sartaj Sahni 5.3 Weight-Biased Leftist Trees....................... 5-8 University of Florida Definition • Max WBLT Operations 5.1 Introduction A single-ended priority queue (or simply, a priority queue) is a collection of elements in which each element has a priority. There are two varieties of priority queues—max and min. The primary operations supported by a max (min) priority queue are (a) find the element with maximum (minimum) priority, (b) insert an element, and (c) delete the element whose priority is maximum (minimum). However, many authors consider additional operations such as (d) delete an arbitrary element (assuming we have a pointer to the element), (e) change the priority of an arbitrary element (again assuming we have a pointer to this element), (f) meld two max (min) priority queues (i.e., combine two max (min) priority queues into one), and (g) initialize a priority queue with a nonzero number of elements. Several data structures: e.g., heaps (Chapter 3), leftist trees [2, 5], Fibonacci heaps [7] (Chapter 7), binomial heaps [1] (Chapter 7), skew heaps [11] (Chapter 6), and pairing heaps [6] (Chapter 7) have been proposed for the representation of a priority queue. The different data structures that have been proposed for the representation of a priority queue differ in terms of the performance guarantees they provide.
    [Show full text]
  • CS 270 Algorithms
    CS 270 Algorithms Week 10 Oliver Kullmann Binary heaps Sorting Heapification Building a heap 1 Binary heaps HEAP- SORT Priority 2 Heapification queues QUICK- 3 Building a heap SORT Analysing 4 QUICK- HEAP-SORT SORT 5 Priority queues Tutorial 6 QUICK-SORT 7 Analysing QUICK-SORT 8 Tutorial CS 270 General remarks Algorithms Oliver Kullmann Binary heaps Heapification Building a heap We return to sorting, considering HEAP-SORT and HEAP- QUICK-SORT. SORT Priority queues CLRS Reading from for week 7 QUICK- SORT 1 Chapter 6, Sections 6.1 - 6.5. Analysing 2 QUICK- Chapter 7, Sections 7.1, 7.2. SORT Tutorial CS 270 Discover the properties of binary heaps Algorithms Oliver Running example Kullmann Binary heaps Heapification Building a heap HEAP- SORT Priority queues QUICK- SORT Analysing QUICK- SORT Tutorial CS 270 First property: level-completeness Algorithms Oliver Kullmann Binary heaps In week 7 we have seen binary trees: Heapification Building a 1 We said they should be as “balanced” as possible. heap 2 Perfect are the perfect binary trees. HEAP- SORT 3 Now close to perfect come the level-complete binary Priority trees: queues QUICK- 1 We can partition the nodes of a (binary) tree T into levels, SORT according to their distance from the root. Analysing 2 We have levels 0, 1,..., ht(T ). QUICK- k SORT 3 Level k has from 1 to 2 nodes. Tutorial 4 If all levels k except possibly of level ht(T ) are full (have precisely 2k nodes in them), then we call the tree level-complete. CS 270 Examples Algorithms Oliver The binary tree Kullmann 1 ❚ Binary heaps ❥❥❥❥ ❚❚❚❚ ❥❥❥❥ ❚❚❚❚ ❥❥❥❥ ❚❚❚❚ Heapification 2 ❥ 3 ❖ ❄❄ ❖❖ Building a ⑧⑧ ❄ ⑧⑧ ❖❖ heap ⑧⑧ ❄ ⑧⑧ ❖❖❖ 4 5 6 ❄ 7 ❄ HEAP- ⑧ ❄ ⑧ ❄ SORT ⑧⑧ ❄ ⑧⑧ ❄ Priority 10 13 14 15 queues QUICK- is level-complete (level-sizes are 1, 2, 4, 4), while SORT ❥ 1 ❚❚ Analysing ❥❥❥❥ ❚❚❚❚ QUICK- ❥❥❥ ❚❚❚ SORT ❥❥❥ ❚❚❚❚ 2 ❥❥ 3 ♦♦♦ ❄❄ ⑧ Tutorial ♦♦ ❄❄ ⑧⑧ ♦♦♦ ⑧ 4 ❄ 5 ❄ 6 ❄ ⑧⑧ ❄❄ ⑧ ❄ ⑧ ❄ ⑧⑧ ❄ ⑧⑧ ❄ ⑧⑧ ❄ 8 9 10 11 12 13 is not (level-sizes are 1, 2, 3, 6).
    [Show full text]
  • Parallelization of Bulk Operations for STL Dictionaries
    Parallelization of Bulk Operations for STL Dictionaries Leonor Frias1?, Johannes Singler2 [email protected], [email protected] 1 Dep. de Llenguatges i Sistemes Inform`atics,Universitat Polit`ecnicade Catalunya 2 Institut f¨urTheoretische Informatik, Universit¨atKarlsruhe Abstract. STL dictionaries like map and set are commonly used in C++ programs. We consider parallelizing two of their bulk operations, namely the construction from many elements, and the insertion of many elements at a time. Practical algorithms are proposed for these tasks. The implementation is completely generic and engineered to provide best performance for the variety of possible input characteristics. It features transparent integration into the STL. This can make programs profit in an easy way from multi-core processing power. The performance mea- surements show the practical usefulness on real-world multi-core ma- chines with up to eight cores. 1 Introduction Multi-core processors bring parallel computing power to the customer at virtu- ally no cost. Where automatic parallelization fails and OpenMP loop paralleliza- tion primitives are not strong enough, parallelized algorithms from a library are a sensible choice. Our group pursues this goal with the Multi-Core Standard Template Library [6], a parallel implementation of the C++ STL. To allow best benefit from the parallel computing power, as many operations as possible need to be parallelized. Sequential parts could otherwise severely limit the achievable speedup, according to Amdahl’s law. Thus, it may be profitable to parallelize an operation even if the speedup is considerably less than the number of threads. The STL contains four kinds of generic dictionary types, namely set, map, multiset, and multimap.
    [Show full text]