Chapter One 1. Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sodium Silicate Crops
Sodium Silicate Crops 1 Identification of Petitioned Substance 2 3 Chemical Names: CAS Numbers: 4 Sodium Silicate 1344-09-8 5 6 Other Name: Other Codes: 7 Sodium metasilicate; Sodium silicate glass; EPA PC code: 072603 (NLM, 2011a); European 8 Sodium water glass; Silicic acid, sodium salt; Inventory of Existing Commercial Chemical 9 tetrasodium orthosilicate (IPCS, 2004) Substances (EINECS) Number: 215-687-4 (IPCS, 10 2004) 11 Trade Names: 12 Waterglass, Britesil, Sikalon, Silican, Carsil, 13 Dryseq, Sodium siloconate, Star, Soluble glass, 14 Sodium polysilicate (NLM, 2011a), N® - PQ 15 Corporation (OMRI, 2011) 16 Characterization of Petitioned Substance 17 18 Composition of the Substance: 19 The basic formula of sodium silicate is Na2O· nO2Si, which represents the components of silicon dioxide (SiO2) 20 and sodium oxide (Na2O) and the varying ratios of the two in the various formulations. This ratio is commonly 21 called the molar ratio (MR), which can range from 0.5 to 4.0 for sodium silicates and varies depending on the 22 composition of the specific sodium silicate. The structural formulas of these silicates are also variable and can be 23 complex, depending on the formulation, but generally do not have distinct molecular structures (IPCS, 2004). 24 The basic structure of soluble silicates, including sodium and potassium silicates, is a trigonal planar 25 arrangement of oxygen atoms around a central silicon atom, as depicted in Figure 1 below. Physical and 26 chemical properties of sodium silicate are summarized in Table 1, on page 2. 27 28 29 30 31 32 33 34 35 Figure 1: Chemical Structure of Sodium Silicate (NLM, 2011a) 36 37 Specific Uses of the Substance: 38 39 Sodium silicate and other soluble silicates have been used in many industries since the early 19th century. -
Guidance for Identification and Naming of Substance Under REACH
Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 GUIDANCE Guidance for identification and naming of substances under REACH and CLP May 2017 Version 2.1 2 Guidance for identification and naming of substances under REACH and CLP Version 2.1 - May 2017 LEGAL NOTICE This document aims to assist users in complying with their obligations under the REACH and CLP regulations. However, users are reminded that the text of the REACH and CLP Regulations is the only authentic legal reference and that the information in this document does not constitute legal advice. Usage of the information remains under the sole responsibility of the user. The European Chemicals Agency does not accept any liability with regard to the use that may be made of the information contained in this document. Guidance for identification and naming of substances under REACH and CLP Reference: ECHA-16-B-37.1-EN Cat. Number: ED-07-18-147-EN-N ISBN: 978-92-9495-711-5 DOI: 10.2823/538683 Publ.date: May 2017 Language: EN © European Chemicals Agency, 2017 If you have any comments in relation to this document please send them (indicating the document reference, issue date, chapter and/or page of the document to which your comment refers) using the Guidance feedback form. The feedback form can be accessed via the EVHA Guidance website or directly via the following link: https://comments.echa.europa.eu/comments_cms/FeedbackGuidance.aspx European Chemicals Agency Mailing address: P.O. Box 400, FI-00121 Helsinki, Finland Visiting address: Annankatu 18, Helsinki, Finland Guidance for identification and naming of substances under 3 REACH and CLP Version 2.1 - May 2017 PREFACE This document describes how to name and identify a substance under REACH and CLP. -
Study of the System Cao-Sio2-H2O at 30 C and of the Reaction of Water On
U.S. Department of Commerce Bureau of Standards RESEARCH PAPER RP687 Part of Bureau of Standards Journal of Research, vol. 12, June 1934 STUDY OF THE SYSTEM CaO-Si02-H2 AT 30 C AND OF THE REACTION OF WATER ON THE ANHYDROUS CALCIUM SILICATES By E. P. Flint and Lansing S. Wells abstract A graph has been prepared representing the solubility of silica at 30 C in solu- tions containing increasing concentrations of lime up to saturation, the solutions being in "equilibrium" with solid phases composed of hydrated combinations of lime and silica. An electrometric and analytical study of both supersaturated and unsaturated solutions of silica at definite concentrations of lime, when corre- lated with these equilibrium solubility relationships, indicates the existence of definite compounds in the system CaO-Si0 2-H 2 which may be the hydrated calcium salts of orthosilicic acid. Experimental values were obtained for the hydrolysis constants of these salts from which ionization constants for the four steps in the dissociation of orthosilicic acid were calculated. A study of the reaction of water upon the anhydrous calcium silicates (CaO Si02 , 3CaO- 2Si0 2 , 7-2CaO-Si0 ,3-2CaO Si0 , ) showed that the products formed depend 2 , 2 3CaOSi0 2 upon the equilibrium relationships of the system CaO-Si02-H 2 0. Of these compounds all but monocalcium silicate (CaO-Si02 ) form solutions which pre- cipitate hydrated calcium silicate on standing. Application of the same methods to a study of the reaction of water upon a portland cement indicated that hydrated calcium orthosilicate is formed during the hydration of portland cement. -
United States Patent (19) 11 4,169,930 Blount 45) Oct
United States Patent (19) 11 4,169,930 Blount 45) Oct. 2, 1979 (54) PROCESS FOR THE PRODUCTION OF 58 Field of Search ................. 260/448.2 N, 448.2 E; AMNO SILICATE COMPOUNDS AND 528/38 THER CONDENSATION PRODUCTS 76 Inventor: David H. Blount, 5450 Lea St., San 56) References Cited Diego, Calif. 92105 U.S. PATENT DOCUMENTS 21 Appl. No.: 786,617 4,011,253 3/1977 Blount ........................... 260/448.2 E 4,089,883 5/1978 Blount ....................... 260/448.2 E X (22) Filed: Apr. 8, 1977 Primary Examiner-Paul F. Shaver Related U.S. Application Data 57 ABSTRACT 60) Division of Ser. No. 652,338, Jan. 26, 1976, Pat. No. 4,033,935, which is a continuation-in-part of Ser. No. Silicic-amino compounds are formed by the chemical 559,313, Mar. 17, 1975, Pat. No. 3,979,362, which is a reaction of silicic acid with amino compounds in the continuation-in-part of Ser. No. 71,628, Sep. 11, 1970, presence of a suitable alkali at a suitably elevated tem abandoned. perature, and then by reacting the resultant compounds 51 Int. Cl’.............................................. C08G 77/04 with an aldehyde, a condensation product is formed. (52) U.S. C. .............................. 528/38; 260/448.2 N; 260/448.2 E 4 Claims, No Drawings 4,169,930 1. 2 PROCESS FOR THE PRODUCTION OF AMINO Reactions with other amino compounds are expected SILICATE COMPOUNDS AND THER to be similar to these, so that the mol ratios of the reac CONDENSATION PRODUCTS tants should be selected accordingly. Amino silicate compounds are theorized to react with CROSS-REFERENCE TO RELATED an aldehyde to form condensation products as follows: APPLICATIONS Urea silicate is theorized to react with formaldehyde This application is a division of U.S. -
Eco-Friendly Synthesis of Water-Glass-Based Silica Aerogels Via Catechol-Based Modifier
nanomaterials Article Eco-Friendly Synthesis of Water-Glass-Based Silica Aerogels via Catechol-Based Modifier Hyeonjung Kim 1 , Kangyong Kim 1 , Hyunhong Kim 1, Doo Jin Lee 2 and Jongnam Park 1,3,* 1 School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea; [email protected] (H.K.); [email protected] (K.K.); [email protected] (H.K.) 2 DPG Project and Chemical Business Planning Team, SKC, Seoul 03142, Korea; [email protected] 3 Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea * Correspondence: [email protected]; Tel.: +82-52-217-2927 Received: 15 October 2020; Accepted: 27 November 2020; Published: 1 December 2020 Abstract: Silica aerogels have attracted much attention owing to their excellent thermal insulation properties. However, the conventional synthesis of silica aerogels involves the use of expensive and toxic alkoxide precursors and surface modifiers such as trimethylchlorosilane. In this study, cost-effective water-glass silica aerogels were synthesized using an eco-friendly catechol derivative surface modifier instead of trimethylchlorosilane. Polydopamine was introduced to increase adhesion to the SiO2 surface. The addition of 4-tert-butyl catechol and hexylamine imparted hydrophobicity to the surface and suppressed the polymerization of the polydopamine. After an ambient pressure drying process, catechol-modified aerogel exhibited a specific surface area of 377 m2/g and an average pore diameter of approximately 21 nm. To investigate their thermal conductivities, glass wool sheets 1 1 were impregnated with catechol-modified aerogel. The thermal conductivity was 40.4 mWm− K− , 1 1 which is lower than that of xerogel at 48.7 mWm− K− . -
A Bound Form of Silicon in Glycosaminoglycans And
Proc. Nat. Acad. Sci. USA Vol. 70, No. 5, pp. 1608-1612, May 1973 A Bound Form of Silicon in Glycosaminoglycans and Polyuronides (polysaccharide matrix/connective tissue) KLAUS SCHWARZ Laboratory of Experimental Metabolic Diseases, Veterans Administration Hospital, Long Beach, California 90801; and Department of Biological Chemistry, School of Medicine, University of California at Los Angeles, Calif. 90024 Communicated by P. D. Boyer, March 19, 1973 ABSTRACT Silicon was found to be a constituent of notably hyaluronic acid, chondroitin 4-sulfate, dermatan certain glycosaminoglycans and polyuronides, where it sulfate, and heparan sulfate, contain relatively large amounts occurs firmly bound to the polysaccharide matrix. 330-554 ppm of bound Si were detected in purified hyaluronic acid of the element, not as free silicate ions or silicic acid but as a from umbilical cord, chondroitin 4-sulfate, dermatan firmly bound component of the polysaccharide matrix. High sulfate, and heparan sulfate. These amounts correspond to amounts of bound Si were also detected in two polyuronides, 1 atom of Si per 50,000-85,000 molecular weight or 130-280 pectin and alginic acid. Stability tests and enzymatic studies repeating units. 57-191 ppm occur in chondroitin 6-sulfate, evidence for the assumption that the Si is linked heparin, and keratan sulfate-2 from cartilage, while provide hyaluronic acids from vitreous humor and keratan sulfate- covalently to the polysaccharides in question, possibly as an 1 from cornea were Si-free. Large amounts of bound Si are ether (or ester-like) derivative of silicic acid, i.e., a silanolate. also present in pectin (2580 ppm) and alginic acid (451 ppm). -
Tetraethyl Orthosilicate
Tetraethyl orthosilicate sc-253664 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Tetraethyl orthosilicate STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY3 HEALTH2 HAZARD INSTABILITY1 SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE Used in production of weatherproof and acid proof mortar and cements, refractory bricks, other moulded objects; heat-resistant paints, chemical resistant paints, protective coatings for industrial buildings and castings. Also used in lacquers, as bonding agent and chemical intermediate. SYNONYMS C8-H20-O4-Si, (C2H5)4SiO4, "ethyl orthosilicate", "silicic acid, tetraethyl ester", Extrema, tetraethoxysilane, tetraethylsilicate, "tetraethyl orthosilicate", Silibond, "silane, tetraethoxy", "ethyl silicate 40", "ethyl silicate condensed", "(is 85% tetraethyl orthosilicate/ 15% polyethoxysiloxanes)" Section 2 - HAZARDS IDENTIFICATION CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Harmful by inhalation. Irritating to eyes and respiratory system. Flammable. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ The material is not thought to produce adverse health effects following -
Water at Molecular Interfaces: Structure and Dynamics Near Biomolecules and Amorphous Silica
WATER AT MOLECULAR INTERFACES: STRUCTURE AND DYNAMICS NEAR BIOMOLECULES AND AMORPHOUS SILICA DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ali A. Hassanali, M.S. Biophysics Graduate Program The Ohio State University 2010 Dissertation Committee: Professor Sherwin J. Singer, Adviser Professor Dongping Zhong Professor Terrence Conlisk Professor Justin Wu ABSTRACT Water, the fundamental constituent of life, has been found to have a critical role at both organic and inorganic surfaces. The properties of water near surfaces, is known to be different from water far away from the interface. This dissertation explores the degree to which inorganic materials such as amorphous silica (glass) and biomolecular surfaces change the properties of water. Of particular interest is the interplay between biological molecules - proteins and nucleic acids - and their aqueous environment, and how this determines biological function. The mobility of water near protein surfaces has been of considerable recent in- terest. There have been many reports in the literature postulating that interfacial water is incapable of undergoing rapid rotational motions due to strong electrostatic forces from the protein surface. This has led to confusing and conflicting interpre- tations on the molecular origin of the slow features observed in certain experiments that probe protein surfaces. Our theoretical studies resolve the conflicts and show that the slow dynamics observed, originates from the protein and water jostling in a concerted fashion. Our studies support a change in the paradigm for the function of proteins to include both the protein and the surrounding water as active participants in biological function. -
Characterization of Some Natural and Synthetic Materials with Silicate Structures
ISSN: 1402-1757 ISBN 978-91-7439-XXX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SIS Department of Engineering Sciences and Mathematics Division of Materials Science Edwin Escalera Mejia Characterization of Some Natural and Synthetic Materials With Silicate Structures With Edwin Escalera Mejia Characterization of Some Natural and Synthetic Materials ISSN: 1402-1757 ISBN 978-91-7439-553-2 Characterization of Some Natural and Luleå University of Technology 2013 Synthetic Materials With Silicate Structures Edwin Escalera Mejia Characterization of Some Natural and Synthetic Materials With Silicate Structures Edwin Escalera Mejia Luleå University of Technology Department of Engineering Sciences and Mathematics Division of Materials Science Printed by Universitetstryckeriet, Luleå 2013 ISSN: 1402-1757 ISBN 978-91-7439-553-2 Luleå 2013 www.ltu.se Abstract The present thesis deals with characterization of silicate structures with a determined morphology and structure such as ordered mesoporous silica and layered silicates. Mesoporous silica groups are amorphous solids exhibiting highly ordered pore structures with narrow pore size distributions and large surface areas. Porous materials are used in various applications such as in adsorption, separation, catalysis, molds for templating, etc. Another interesting group of layered materials are crystal silicates with minerals of natural origin. The silicates have a structure that consists of stacked layers in which planes of oxygen atoms coordinate to cations such as Si4+, Al3+, Mg2+, Fe3+ to form two dimensional sheets. The coordination of cations in adjacent sheets typically alternates between tetrahedral and octahedral. The properties and uses of the clays vary widely due to the differences in their structure and composition. -
Aqueous Synthesis of Compressible and Thermally Stable Cellulose
Article Cite This: ACS Appl. Nano Mater. 2018, 1, 6701−6710 www.acsanm.org Aqueous Synthesis of Compressible and Thermally Stable Cellulose fi − Nano bril Silica Aerogel for CO2 Adsorption † Feng Jiang, Sixiao Hu, and You-lo Hsieh* Fiber and Polymer Science, University of California, Davis, California 95616, United States *S Supporting Information ABSTRACT: Cellulose nanofibrils (CNF)−silica aerogels have been facilely synthesized via a one-step in situ aqueous sol−gel process of polymerizing and aging the silica precursor in the presence of CNFs to encompass the superior dry compressive strength and flexibility of CNF aerogels and the thermal stability of silica aerogels. Sodium silicate (Na2SiO3) was hydrolyzed and polymerized in the presence of CNFs at varied ratios to synthesize hydrogels whose storage and loss modulus confirmed CNFs to function as the structural skeleton. At the optimal 8:2 CNFs/Na2SiO3 composition, the hydrogels with homogeneously dispersed silica and CNF can be freeze-dried into hierarchically mesoporous aerogels with ultralow density of 7.7 mg/cm3, high specific surface of 342 m2/g, and pore volume of 0.86 cm3/g. This robust sol−gel approach employs naturally abundant silica and cellulose in aqueous system to generate improved CNF−silica aerogels that had much higher compressive strength and modulus of up to 28.5 and 177 kPa and structural flexibility than silica aerogel and enhanced thermal stability and specific surface over CNF aerogel. Further − functionalization of CNF silica aerogels via organosilane reaction introduced primary amine groups capable of capturing CO2 with an adsorption capacity of 1.49 mmol/g. -
Silicon Cycling in Soils Revisited
plants Review Silicon Cycling in Soils Revisited Jörg Schaller 1,* , Daniel Puppe 1, Danuta Kaczorek 1,2 , Ruth Ellerbrock 1 and Michael Sommer 1,3 1 Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany; [email protected] (D.P.); [email protected] (D.K.); [email protected] (R.E.); [email protected] (M.S.) 2 Department of Soil Environment Sciences, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland 3 Institute of Environmental Science and Geography, University of Potsdam, 14476 Potsdam, Germany * Correspondence: [email protected]; Tel.: +49-33432-82371 Abstract: Silicon (Si) speciation and availability in soils is highly important for ecosystem functioning, because Si is a beneficial element for plant growth. Si chemistry is highly complex compared to other elements in soils, because Si reaction rates are relatively slow and dependent on Si species. Consequently, we review the occurrence of different Si species in soil solution and their changes by polymerization, depolymerization, and condensation in relation to important soil processes. We show that an argumentation based on thermodynamic endmembers of Si dependent processes, as currently done, is often difficult, because some reactions such as mineral crystallization require months to years (sometimes even centuries or millennia). Furthermore, we give an overview of Si reactions in soil solution and the predominance of certain solid compounds, which is a neglected but important parameter controlling the availability, reactivity, and function of Si in soils. We further discuss the drivers of soil Si cycling and how humans interfere with these processes. The soil Si cycle is of major importance for ecosystem functioning; therefore, a deeper understanding of drivers of Si cycling (e.g., predominant speciation), human disturbances and the implication for important soil properties (water storage, nutrient availability, and micro aggregate stability) is of fundamental relevance. -
Synthesis and Characterization of Silicate Ester Prodrugs and Poly(Ethylene Glycol)
Synthesis and Characterization of Silicate Ester Prodrugs and Poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) Block Copolymers for Formulation into Prodrug-Loaded Nanoparticles A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Adam Richard Wohl IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy Thomas R. Hoye, Advisor September 2012 © Adam Richard Wohl September 2012 Acknowledgements I have been blessed to have the support of my family, friends, and colleagues. Without your help and encouragement, my graduate career would not have been possible. First of all, I would like to thank my advisor Prof. Tom Hoye. Over the past five years, he has been a consistent and patient mentor that leads first and foremost by setting a world-class example. He has taught me so much about analyzing problems, having fun while working hard, and always paying attention to the details. He has constantly taught me during our experimental discussions, results analysis, and late night (or, as I believe Tom would say, “mid-evening”) grant/manuscript writing sessions. I have learned not only many, many chemical concepts and scientific strategies, but also other valuable skills – how to clearly present ideas and make a compelling presentation to the right audience. Thank you, Tom, for all of the time that you have invested in both my scientific career and life – you have my utmost appreciation and respect. I would also like to thank Prof. Chris Macosko for all of his time, help, and expertise that he has provided to this collaborative project.