Cosmologycontradictscover.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Cosmologycontradictscover.Pdf Cover Illustration by J. E. Mullat THE BIG BANG AND THE BIG CRUNCH From Public Domain: designed by Luke Mastin OBSERVATIONS THAT SEEM TO CONTRADICT THE BIG BANG MODEL WHILE AT THE SAME TIME SUPPORT AN ALTERNATIVE COSMOLOGY Forrest W. Noble and Timothy M. Cooper The Pantheory Research Organization, Cerritos, California 90703 USA HUBBLE-INDEPENDENT PROCEDURE CALCULATING DISTANCES TO COSMOLOGICAL OBJECTS Joseph E. Mullat AN EXPERIMENT COMPARING ANGULAR DIAMETER DISTANCES BETWEEN PAIRS OF QUASARS Joseph E. Mullat and Forrest W. Noble Project and Technical Editor: J. E. Mullat, Copenhagen 2019 ISBN‐13 978‐8740‐40‐411‐1 Private Publishing Platform Byvej 269 2650, Hvidovre, Denmark [email protected] I The Postulate COSMOLOGY THAT CONTRADICTS THE BIG BANG THEORY The Standard and The Alternative Cosmological Models, Distances Calculation to Galaxies without Hubble Constant, An Experiment comparing angular Diameter Distances For the alternative cosmological models discussed in the book, distances to galaxies are calculated without using the Hubble constant. Initially, in the present and in the future, a new space in the form of a quantum vacuum and matter will arise inde‐ pendently in the Universe as a result of parallel and simultane‐ ous gravitational interaction, forming a new quantum vacuum and visible matter. The average energy density in the Universe decreases, new regions appear, previously being hidden under the quantum transition from the hypothetical Background Gravi‐ tational Field. When a minimum (average critical energy density) is reached, the gravitational transition to quantum vacuum and visible matter will begin to decrease its acceleration. We recre‐ ated the inflationary phase of the Universe based on the postu‐ late of decreasing density. An experiment was also carried out to compare the angular diameters of the distances between pairs of quasars according to data from open access. Unlike all known geometric models of the Euclidean metric space, the gravitational transition of the Background Gravitation Field into matter, respectively, would presumably occur in the metric space of the stereographic projection into the three‐ dimensional surface of the four‐dimensional manifold. It doesnʹt matter how we describe energy‐field, calling it ether, gravitons, or vice versa, converting it back into the ether or energy‐field. It should be clear to everyone that this renaming does not change the essence of the gravitational transition. II About the Authors Pantheory Research Organization. Forrest Noble Director: Our published research papers to date relate to theoretical cosmology and related theoretical physics. Most of this work promotes alternative explanations and equations contrary to dark energy, dark matter, Inflation and Big Bang cosmology in general. Forrest W. Noble One of Tim’s interests in the contrarian theory herein is that it contradicts major aspects of most theories in modern physics yet it cannot be disproved by observations to date based upon alternative interpretations of them. Tim is a stress engineer in the aerospace industry and has a Master’s degree in Systems Engineering. Timothy M. Cooper Joseph Emmanuel Mullat currently works as Independent Researcher. Joseph does research in Game Theory, Public Economics, Optimal Taxation, Data Analysis and Cosmology. The most recent publication is ʹOn the Possibility of Describing Events in Cosmology at the Scale of Average Relativistic Density of Matterʹ. Joseph E. Mullat III Critical Views, credits from Public Domain It seems to me (ie., for the writer of this critical lines, which follows; the source will not be disclosed, ed.) that Scientists ʺinventʺ some concepts in order to prevent their old ideas becoming untenable. Dark Matter and Dark Energy are ʺinventionsʺ that highlight the errors in current theory, they just do not really exist, and a modification to current theory is required to ʺfix this upʺ. For instance ʺdark matterʺ is supposed to be 80% of all the matter in the Universe. What it is telling me (author of these current lines, ed.) is current theories of Gravitation and the Big Bang are out by nearly an order of magnitude. You can ʺkeepʺ the current theory only if you ʺbalance the booksʺ using a ʺhuge fudge factorʺ. The real problem is quantum entanglement has not been introduced into theories of cosmology yet and that is where the problem is. Space‐time is not primary to the Universe and it is the pre‐existing geometry that is ʺrealʺ. It illustrates just how little science knows and how reactionary it is to any change. There are plenty of theoretical solutions to this problem but the ʺelephant in the roomʺ is there is a reluctance to commit to primary research in the areas that will cause real change because change is going to hurt a large number of established reputations. Therefore the question ʺWhat was first: The Dark or the Visible matterʺ, the answer is there can only be one form of matter. Too many people are watching Star Wars and have turned to the ʺDark Sideʺ for answers and are not keeping a weather eye on their instruments. If they finally find ʺthe elephantʺ, they will be attacked and savaged by those who have their pensions to protect. Contents Preface 7 Public Domain: the Big Bang and the big Crunch Introduction 23 The Expanding Universe and the Hubble’s Law 26 Cosmic Background Radiation 31 Dark Matter 34 Cosmic Inflation 39 Timeline of the Big Bang 46 Accelerating Universe and the Dark Energy 51 Antimatter 57 The Big Crunch, the Big Freeze and the Big Rip 60 To fully understand Superstrings and Quantum Gravity 64 Conclusion 71 Support of an Alternative Cosmology Introduction 75 Discussion I 76 Problems 1.1—1.9 77 Summaries of the Above Problems 97 Explaining of the Pan Theory 98 Conclusions 107 References 110 Distances to Cosmological Objects Introduction 113 Preliminaries 120 The Model 125 The ‐equation 138 Results 148 Discussion 158 Concluding remarks 160 Mathematical derivation 162 Appendix 164 References 169 Angular Diameter Distances 175 Postscript 198 Name Index 205 VI Comments edited by J. Mullat & F. Noble “In the beginning, there was nothing. Well, not quite nothing—more of a Nothing with Potential. A nothingness in which packets of energy fleeted in and out of existence, popping into oblivion as quickly as they appeared. One of these fluctuations had just enough energy to take off. It inflated wildly out of control—one moment infinitesimally small, mo‐ ments later light‐years across. All of space and time was created in that instant, and as that energy slowed, it cooled and froze into matter— protons and neutrons and photons. This baby Universe kept expanding, over billions of years, and those particles coalesced into stars and plan‐ ets and eventually humans.” Source unknown PREFACE Cosmological phenomena are not exactly a subject of physical sci‐ ence as many might think. We cannot perform experiments on the Uni‐ verse. In contrast, physics is a science, where researchers can conduct experiments on various natural phenomena that can be reproduced by others in a laboratory. In cosmology, we can only look at the skies and speculate what stands behind the light reaching our telescopes. 1 We can predict the location of planets and stars at closer distances by applying classical Newtonian mechanics, when we use the ordering of the events on the time scale. Still, cosmology relies on numerous pic‐ tures of the Universe, aiming to shed some light on phenomena at far away distances. Of course, researchers can verify the correctness of the mathematical reasoning performed by their colleagues, but this does not bring them closer to the truth hidden in the vast expanses of the Universe. The dark matter is an example of such speculation that is inherent in the study of the Universe. Cosmologists call something that cannot be explained as dark matter, and have even introduced the concept of dark energy. Yet, despite these many assumptions and speculations, cosmol‐ ogy is very interesting and useful, even if it is not an experimental sci‐ 1 Disney, M. J., “The Case Against Cosmology,” Physics and Astronomy, Cardiff University, Cardiff CF24 3YB, Wales, UK. 7 Notes from the public domain ence. Remember Aristarchus, who with his primitive tools needed only common sense and the knowledge of trigonometry to calculate the dis‐ tance from the Earth to the Sun with great accuracy, using only the di‐ mensions of the Earth’s shadow projected onto the Moon’s surface. Aristarchus from Samos, fl. c.310 BC — c.230 BC, was a Greek astrono‐ mer and mathematician of the Alexandrian school. It is said that he was the first to propose the heliocentric theory of the Universe. As cosmologists also speculate about the origins of the Universe, they posit neither existence of some point prior to which neither time nor space existed, and refer to it as singularity problem of time. Space has a density of energy, which largely determines the dynamics of cos‐ mic objects and the Universe as a whole. Given these many assump‐ tions, it is reasonable to speculate about the Universe dynamics, as many researchers claim that it is expanding and its density of energy is decreasing. Space and time despite the speculations still are subjects of physical science and are defined in general terms, by presently accepted theory, as fundamental structures for coordinating objects and their states: a relationship system that reflects the coordination of coexisting objects (distance, orientation etc.), together form space, and a relationship sys‐ tem that determines the consistency of successive states or phenomena of flow‐series events, ordering, preferences, etc., together accordingly form time. The space in which we live—the usual three‐dimensional space—is a physical object bounded by a certain set of parameters, the change of which over time is described by dynamic systems.
Recommended publications
  • A Revised View of the Canis Major Stellar Overdensity with Decam And
    MNRAS 501, 1690–1700 (2021) doi:10.1093/mnras/staa2655 Advance Access publication 2020 October 14 A revised view of the Canis Major stellar overdensity with DECam and Gaia: new evidence of a stellar warp of blue stars Downloaded from https://academic.oup.com/mnras/article/501/2/1690/5923573 by Consejo Superior de Investigaciones Cientificas (CSIC) user on 15 March 2021 Julio A. Carballo-Bello ,1‹ David Mart´ınez-Delgado,2 Jesus´ M. Corral-Santana ,3 Emilio J. Alfaro,2 Camila Navarrete,3,4 A. Katherina Vivas 5 and Marcio´ Catelan 4,6 1Instituto de Alta Investigacion,´ Universidad de Tarapaca,´ Casilla 7D, Arica, Chile 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, E-18080 Granada, Spain 3European Southern Observatory, Alonso de Cordova´ 3107, Casilla 19001, Santiago, Chile 4Millennium Institute of Astrophysics, Santiago, Chile 5Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile 6Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Av. Vicuna˜ Mackenna 4860, 782-0436 Macul, Santiago, Chile Accepted 2020 August 27. Received 2020 July 16; in original form 2020 February 24 ABSTRACT We present the Dark Energy Camera (DECam) imaging combined with Gaia Data Release 2 (DR2) data to study the Canis Major overdensity. The presence of the so-called Blue Plume stars in a low-pollution area of the colour–magnitude diagram allows us to derive the distance and proper motions of this stellar feature along the line of sight of its hypothetical core. The stellar overdensity extends on a large area of the sky at low Galactic latitudes, below the plane, and in the range 230◦ <<255◦.
    [Show full text]
  • Cosmicflows-3: Cosmography of the Local Void
    Draft version May 22, 2019 Preprint typeset using LATEX style AASTeX6 v. 1.0 COSMICFLOWS-3: COSMOGRAPHY OF THE LOCAL VOID R. Brent Tully, Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Daniel Pomarede` Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA, Universite' Paris-Saclay, 91191 Gif-sur-Yvette, France Romain Graziani University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Hel´ ene` M. Courtois University of Lyon, UCB Lyon 1, CNRS/IN2P3, IPN Lyon, France Yehuda Hoffman Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel Edward J. Shaya University of Maryland, Astronomy Department, College Park, MD 20743, USA ABSTRACT Cosmicflows-3 distances and inferred peculiar velocities of galaxies have permitted the reconstruction of the structure of over and under densities within the volume extending to 0:05c. This study focuses on the under dense regions, particularly the Local Void that lies largely in the zone of obscuration and consequently has received limited attention. Major over dense structures that bound the Local Void are the Perseus-Pisces and Norma-Pavo-Indus filaments sepa- rated by 8,500 km s−1. The void network of the universe is interconnected and void passages are found from the Local Void to the adjacent very large Hercules and Sculptor voids. Minor filaments course through voids. A particularly interesting example connects the Virgo and Perseus clusters, with several substantial galaxies found along the chain in the depths of the Local Void. The Local Void has a substantial dynamical effect, causing a deviant motion of the Local Group of 200 − 250 km s−1.
    [Show full text]
  • Constructing a Galactic Coordinate System Based on Near-Infrared and Radio Catalogs
    A&A 536, A102 (2011) Astronomy DOI: 10.1051/0004-6361/201116947 & c ESO 2011 Astrophysics Constructing a Galactic coordinate system based on near-infrared and radio catalogs J.-C. Liu1,2,Z.Zhu1,2, and B. Hu3,4 1 Department of astronomy, Nanjing University, Nanjing 210093, PR China e-mail: [jcliu;zhuzi]@nju.edu.cn 2 key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, PR China 3 Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, PR China 4 Graduate School of Chinese Academy of Sciences, Beijing 100049, PR China e-mail: [email protected] Received 24 March 2011 / Accepted 13 October 2011 ABSTRACT Context. The definition of the Galactic coordinate system was announced by the IAU Sub-Commission 33b on behalf of the IAU in 1958. An unrigorous transformation was adopted by the Hipparcos group to transform the Galactic coordinate system from the FK4-based B1950.0 system to the FK5-based J2000.0 system or to the International Celestial Reference System (ICRS). For more than 50 years, the definition of the Galactic coordinate system has remained unchanged from this IAU1958 version. On the basis of deep and all-sky catalogs, the position of the Galactic plane can be revised and updated definitions of the Galactic coordinate systems can be proposed. Aims. We re-determine the position of the Galactic plane based on modern large catalogs, such as the Two-Micron All-Sky Survey (2MASS) and the SPECFIND v2.0. This paper also aims to propose a possible definition of the optimal Galactic coordinate system by adopting the ICRS position of the Sgr A* at the Galactic center.
    [Show full text]
  • The Milky Way's Disk of Classical Satellite Galaxies in Light of Gaia
    MNRAS 000,1{20 (2019) Preprint 14 November 2019 Compiled using MNRAS LATEX style file v3.0 The Milky Way's Disk of Classical Satellite Galaxies in Light of Gaia DR2 Marcel S. Pawlowski,1? and Pavel Kroupa2;3 1Leibniz-Institut fur¨ Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam, Germany 2Helmholtz-Institut fur¨ Strahlen- und Kernphysik, University of Bonn, Nussallee 14-16, D- 53115 Bonn, Germany 3Charles University in Prague, Faculty of Mathematics and Physics, Astronomical Institute, V Holeˇsoviˇck´ach 2, CZ-180 00 Praha 8, Czech Republic Accepted 2019 November 7. Received 2019 November 7; in original form 2019 August 26 ABSTRACT We study the correlation of orbital poles of the 11 classical satellite galaxies of the Milky Way, comparing results from previous proper motions with the independent data by Gaia DR2. Previous results on the degree of correlation and its significance are confirmed by the new data. A majority of the satellites co-orbit along the Vast Polar Structure, the plane (or disk) of satellite galaxies defined by their positions. The orbital planes of eight satellites align to < 20◦ with a common direction, seven even orbit in the same sense. Most also share similar specific angular momenta, though their wide distribution on the sky does not support a recent group infall or satellites- of-satellites origin. The orbital pole concentration has continuously increased as more precise proper motions were measured, as expected if the underlying distribution shows true correlation that is washed out by observational uncertainties. The orbital poles of the up to seven most correlated satellites are in fact almost as concentrated as expected for the best-possible orbital alignment achievable given the satellite posi- tions.
    [Show full text]
  • Marat Arakelian: Life and Scientific Activity 0.7 MB
    Communications of BAO, Vol. 66, Issue 2, 2019, pp. 112-120 Marat Arakelian: Life and Scientific Activity A. M. Mickaelian∗ NAS RA Byurakan Astrophysical Observatory (BAO), Byurakan 0213, Aragatzotn Province, Armenia Abstract We review the life and scientific activity of one of the outstanding Armenian astronomers Marat Arakelian (1929-1983). Arakelian was one of the prominent Byurakan astronomers, the author of famous Arakelian galaxies, which at present are target for many-sided studies with ground-based and space telescopes. Arakelian is known as a distinguished specialist in the theoretical astrophysics and extragalactic astronomy. Keywords: active galaxies, AGN, Starburst Galaxies, quasars, Seyfert galaxies, LINERs Introduction Prof. Arakelian is one of the prominent Byurakan astronomers, the author of famous Arakelian galaxies, which at present are target for many-sided studies with ground-based and space telescopes. Arakelian is known as a distinguished specialist in the theoretical astrophysics and extragalactic as- tronomy. Life and Activities Marat Arsen Arakelian was born on January 15, 1929, in Goris, Armenia, USSR. He studied at the Physical-Mathematical Department of the Yerevan State University (YSU) and graduated from ∗[email protected], Corresponding author A. M. Mickaelian 112 DOI: 10.52526/25792776-2019.66.2-112 Marat Arakelian: Life and Scientific Activity it in 1951, among the first students specialized on Astrophysics. He was directed to the Byurakan Astrophysical Observatory (BAO), where he worked first as assistant astronomer, and later as junior research associate. Soon he became a postgraduate student at the Leningrad State University (LSU, presently, St. Petersburg), finished the studies in 1955, and in 1956 successfully passed his Ph.D.
    [Show full text]
  • A Dusty, Normal Galaxy in the Epoch of Reionization
    A dusty, normal galaxy in the epoch of reionization Darach Watson1, Lise Christensen1, Kirsten Kraiberg Knudsen2, Johan Richard3, Anna Gallazzi4,1, and Michał Jerzy Michałowski5 Candidates for the modest galaxies that formed most of the stars in the early universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-UV imaging1. But it has proved difficult for existing spectrographs to characterise them in the UV2,3,4. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant UV-selected galaxy detected in dust emission is only at z = 3.25, and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at this early epoch6,7,8. Here we report thermal dust emission from an archetypal early universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5±0.2 from a spectroscopic detection of the Lyα break. A1689-zD1 is representative of the star-forming population during reionisation9, with a total star- –1 formation rate of about 12 M yr . The galaxy is highly evolved: it has a large stellar mass, and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7, in spite of the very short time since they first appeared.
    [Show full text]
  • Modelling the Size Distribution of Cosmic Voids
    Alma Mater Studiorum | Universita` di Bologna SCUOLA DI SCIENZE Corso di Laurea Magistrale in Astrofisica e Cosmologia Dipartimento di Fisica e Astronomia Modelling the size distribution of Cosmic Voids Tesi di Laurea Magistrale Candidato: Relatore: Tommaso Ronconi Lauro Moscardini Correlatori: Marco Baldi Federico Marulli Sessione I Anno Accademico 2015-2016 Contents Contentsi Introduction vii 1 The cosmological framework1 1.1 The Friedmann-Robertson-Walker metric...............2 1.1.1 The Hubble Law and the reddening of distant objects....4 1.1.2 Friedmann Equations......................5 1.1.3 Friedmann Models........................6 1.1.4 Flat VS Curved Universes....................8 1.2 The Standard Cosmological Model...................9 1.3 Jeans Theory and Expanding Universes................ 12 1.3.1 Instability in a Static Universe................. 13 1.3.2 Instability in an Expanding Universe.............. 14 1.3.3 Primordial Density Fluctuations................ 15 1.3.4 Non-Linear Evolution...................... 17 2 Cosmic Voids in the large scale structure 19 2.1 Spherical evolution............................ 20 2.1.1 Overdensities........................... 23 2.1.2 Underdensities.......................... 24 2.2 Excursion set formalism......................... 26 2.2.1 Press-Schechter halo mass function and exstension...... 29 2.3 Void size function............................. 31 2.3.1 Sheth and van de Weygaert model............... 33 2.3.2 Volume conserving model (Vdn)................ 35 2.4 Halo bias................................. 36 3 Methods 38 3.1 CosmoBolognaLib: C++ libraries for cosmological calculations... 38 3.2 N-body simulations............................ 39 3.2.1 The set of cosmological simulations............... 40 3.3 Void Finders............................... 42 3.4 From centres to spherical non-overlapped voids............ 43 3.4.1 Void centres...........................
    [Show full text]
  • On the Nature of Filaments of the Large-Scale Structure of the Universe Irina Rozgacheva, I Kuvshinova
    On the nature of filaments of the large-scale structure of the Universe Irina Rozgacheva, I Kuvshinova To cite this version: Irina Rozgacheva, I Kuvshinova. On the nature of filaments of the large-scale structure of the Universe. 2018. hal-01962100 HAL Id: hal-01962100 https://hal.archives-ouvertes.fr/hal-01962100 Preprint submitted on 20 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. On the nature of filaments of the large-scale structure of the Universe I. K. Rozgachevaa, I. B. Kuvshinovab All-Russian Institute for Scientific and Technical Information of Russian Academy of Sciences (VINITI RAS), Moscow, Russia e-mail: [email protected], [email protected] Abstract Observed properties of filaments which dominate in large-scale structure of the Universe are considered. A part from these properties isn’t described within the standard ΛCDM cosmological model. The “toy” model of forma- tion of primary filaments owing to the primary scalar and vector gravitational perturbations in the uniform and isotropic cosmological model which is filled with matter with negligible pressure, without use of a hypothesis of tidal interaction of dark matter halos is offered.
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Modeling and Interpretation of the Ultraviolet Spectral Energy Distributions of Primeval Galaxies
    Ecole´ Doctorale d'Astronomie et Astrophysique d'^Ile-de-France UNIVERSITE´ PARIS VI - PIERRE & MARIE CURIE DOCTORATE THESIS to obtain the title of Doctor of the University of Pierre & Marie Curie in Astrophysics Presented by Alba Vidal Garc´ıa Modeling and interpretation of the ultraviolet spectral energy distributions of primeval galaxies Thesis Advisor: St´ephane Charlot prepared at Institut d'Astrophysique de Paris, CNRS (UMR 7095), Universit´ePierre & Marie Curie (Paris VI) with financial support from the European Research Council grant `ERC NEOGAL' Composition of the jury Reviewers: Alessandro Bressan - SISSA, Trieste, Italy Rosa Gonzalez´ Delgado - IAA (CSIC), Granada, Spain Advisor: St´ephane Charlot - IAP, Paris, France President: Patrick Boisse´ - IAP, Paris, France Examinators: Jeremy Blaizot - CRAL, Observatoire de Lyon, France Vianney Lebouteiller - CEA, Saclay, France Dedicatoria v Contents Abstract vii R´esum´e ix 1 Introduction 3 1.1 Historical context . .4 1.2 Early epochs of the Universe . .5 1.3 Galaxytypes ......................................6 1.4 Components of a Galaxy . .8 1.4.1 Classification of stars . .9 1.4.2 The ISM: components and phases . .9 1.4.3 Physical processes in the ISM . 12 1.5 Chemical content of a galaxy . 17 1.6 Galaxy spectral energy distributions . 17 1.7 Future observing facilities . 19 1.8 Outline ......................................... 20 2 Modeling spectral energy distributions of galaxies 23 2.1 Stellar emission . 24 2.1.1 Stellar population synthesis codes . 24 2.1.2 Evolutionary tracks . 25 2.1.3 IMF . 29 2.1.4 Stellar spectral libraries . 30 2.2 Absorption and emission in the ISM . 31 2.2.1 Photoionization code: CLOUDY .......................
    [Show full text]
  • Quantitative Morphology of Galaxies in the Core of the Coma Cluster
    To appear in Astrophys. Journal Quantitative Morphology of Galaxies in the Core of the Coma Cluster Carlos M. Guti´errez, Ignacio Trujillo1, Jose A. L. Aguerri Instituto de Astrof´ısica de Canarias, E-38205, La Laguna, Tenerife, Spain Alister W. Graham Department of Astronomy, University of Florida, Gainesville, Florida, USA and Nicola Caon Instituto de Astrof´ısica de Canarias, E-38205, La Laguna, Tenerife, Spain ABSTRACT We present a quantitative morphological analysis of 187 galaxies in a region covering the central 0.28 square degrees of the Coma cluster. Structural param- eters from the best-fitting S´ersic r1/n bulge plus, where appropriate, exponential disc model, are tabulated here. This sample is complete down to a magnitude of R=17 mag. By examining the Edwards et al. (2002) compilation of galaxy redshifts in the direction of Coma, we find that 163 of the 187 galaxies are Coma arXiv:astro-ph/0310527v1 19 Oct 2003 cluster members, and the rest are foreground and background objects. For the Coma cluster members, we have studied differences in the structural and kine- matic properties between early- and late-type galaxies, and between the dwarf and giant galaxies. Analysis of the elliptical galaxies reveals correlations among the structural parameters similar to those previously found in the Virgo and Fornax clusters. Comparing the structural properties of the Coma cluster disc galaxies with disc galaxies in the field, we find evidence for an environmental dependence: the scale lengths of the disc galaxies in Coma are 30% smaller. A kinematical analysis shows marginal differences between the velocity distri- butions of ellipticals with S´ersic index n < 2 (dwarfs) and those with n > 2 1Present address: Max–Planck–Institut f¨ur Astronomie, K¨onigstuhl 17, D–69117, Heidelberg, Germany –2– (giants); the dwarf galaxies having a greater (cluster) velocity dispersion.
    [Show full text]
  • X-Ray Jets Aneta Siemiginowska
    Chandra News Issue 21 Spring 2014 Published by the Chandra X-ray Center (CXC) X-ray Jets Aneta Siemiginowska The Active Galaxy 4C+29.30 Credit: X-ray: NASA/CXC/SAO/A.Siemiginowska et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA Contents X-ray Jets HETG 3 Aneta Siemiginowska 18 David Huenemoerder (for the HETG team) 10 Project Scientist’s Report 20 LETG Martin Weisskopf Jeremy Drake 11 Project Manager’s Report 23 Chandra Calibration Roger Brissenden Larry David Message of Thanks to Useful Web Addresses 12 Harvey Tananbaum 23 The Chandra Team Belinda Wilkes Appointed as CIAO 4.6 13 Director of the CXC 24 Antonella Fruscione, for the CIAO Team Of Programs and Papers: Einstein Postdoctoral Fellowship 13 Making the Chandra Connection 29 Program Sherry Winkelman & Arnold Rots Andrea Prestwich Chandra Related Meetings Cycle 14 Peer Review Results 14 and Important Dates 30 Belinda Wilkes ACIS Chandra Users’ Committee 14 Paul Plucinsky, Royce Buehler, 34 Membership List Gregg Germain, & Richard Edgar HRC CXC 2013 Science Press 15 Ralph Kraft, Hans Moritz Guenther 35 Releases (SAO), and Wolfgang Pietsch (MPE) Megan Watzke The Chandra Newsletter appears once a year and is edited by Paul J. Green, with editorial assistance and layout by Evan Tingle. We welcome contributions from readers. Comments on the newsletter, or corrections and additions to the hardcopy mailing list should be sent to: [email protected]. Spring, 2014 3 X-ray Jets many unanswered questions, including the nature of relativistic jets, jet energetics, particle content, parti- Aneta Siemiginowska cle acceleration and emission processes. Both statis- tical studies of large samples of jets across the entire The first recorded observation of an extragalac- electromagnetic spectrum and deep broad-band imag- tic jet was made almost a century ago.
    [Show full text]