19 64ApJ. . .140. . .35M 3840 40 factory platematerialisavailable.Theseformsfallintotwogeneralcategories:{a)“weak”sources, having luminositiesrangingbetween10-10erg/secradiatedpower;and{h)“strong”sources, classification) ;alloftheDgalaxiesoccurin“strong”radio-sourcecategory.TheseD-galaxyradio having elliptical-likeinnerregionssurroundedbyanextendedenvelope(the“Dsystems”ofMorgan’s is notaradiosource.Afistofsomethenearerclustersthistypegiven.Thesourcestendto source category. luminosities greaterthan10erg/sec.Thespiralgalaxiesobservedtoberadiosourcesareinthe“weak” sources frequentlyhavedoubleormultiplenuclei.AspecialcaseoftheDgalaxieswithnucleiis envelope; thedumbbellsalsooccurexclusivelyamong“strong”sources. the “dumbbells,”consistingoftwoseparated,approximatelyequal,nucleisurroundedbyacommon listed; theyhavearangeinluminosityoftheorder10.Ofsomewhatsimilaropticalappearanceare have theopticalappearanceofstars—sometimesaccompaniedbyfaintwisps;fourtheseobjectsare located initscluster,andverymuchlargerbrighterthananyothergalaxythecluster.Anumber occur inclustersofaspecialkind:galaxieswhicharedominatedbysingleDsystem,centrally scale components.The“dumbbellradiosources”haveamarkedtendencytosimplestructure ly, inthesensethatspectraofallfourquasi-stellarsourceshaveverybroademissionlines,while of othersimilarclustersgalaxieshavebeenfoundtoadominatingDgalaxyinwhichthis sharply fromthe“weak”group,majorityofwhichare highlyflattenedspirals.TheDgalaxiesare comprised ofasingle,nearlysymmetrical,Gaussian.Thequasi-stellarradiosourceshavevariety velopes. The“N”radiogalaxiesareeasilydistinguishedfromthequasi-stellarsourcesspectroscopical- occur inclustersofrichness2onAbell’ssystem. mately relatedtotheradiostructure.InbothCentaurusA and3C33theradiosourcesarelocatednear radio properties,alltypesofstructurebeingpresent. source group,buttheirmeanradioluminosityisoftheorder50timeslessthanquasi-stellar emission linesinthe“N”sourcesaremuchsharper.Theradiostrongradio- “N radiogalaxies,”whichconsistofbrilliant,starlikenucleilocatedinrelativelysmallerandfainten- supergiant galaxieshavingadiameteralongmajoraxiswhich averages50kpc,whethertheyareradio parent . sources ornot.Thus,about60percentofradioaresmaller than,orcomparableto,thesizeof the axisofrotationgalaxy. sources. a single,peculiargalaxy. of collidinggalaxies;thereisnotonesourcewherethiscould beconsideredamorelikelyexplanationthan The mostluminousgroupofextragalacticradiosourcesistheso-calledquasi-stellarsources,which © American Astronomical Society A descriptionisgivenoftheopticalformsidentifiedextragalacticradiosourcesforwhichsatis- The Dradiogalaxiesoccuroverarangeof10000to1inluminosity.Anumberthese The mostcommonlyencounteredopticalformsoftheidentifiedextragalacticradiosourcesaregalaxies The “N”radiosourcestendtohaveastructurewhichislongandnarrowwithsomesmall- There arefaintopticalextensionsinNGC5128,1316,and7720whichseemtobeinti- No highlyflattenedgalaxieswereobservedamongthe“strong” sources;inthisrespecttheydiffer The opticalevidenceisstronglyagainsttheearlierinterpretation ofradiosourcesintermsapair Owens ValleyRadioObservatory,CaliforniaInstituteofTechnology Mount WilsonandPalomarObservatories,CarnegieInstitutionof A DISCUSSIONOFGALAXIESIDENTIFIED Washington, andCaliforniaInstituteofTechnology Yerkes Observatory,UniversityofChicago WITH RADIOSOURCES Thomas A.Matthews William W.Morgan Received March9>1964 Maarten Schmidt Provided bytheNASA Astrophysics DataSystem ABSTRACT AND 35 19 64ApJ. . .140. . .35M 36 T.A.MATTHEWS,W.MORGAN,ANDM.SCHMIDT Geographic Society-PalomarObservatorySkySurvey. Inaddition,large-scale200-inch These includesuchthingsas:closedoublegalaxiesinacommonenvelopewhichsome- from opticalphotographs.Inthecourseofthisstudy,certaingroupsobjectshave , ontheassumption thattheHubbleconstantH=100km/sec/Mpc. The features doesnotprovethattheobjectisrequiredidentification,sinceothersimilar plumes, orotherunusualstructures.Thepresenceofonemorethese which theidentificationsarewellestablishedandforaclassificationcanbemade plates ofsometheobjectswereavailable. primarily theblueandred48-inchSchmidtplates thatweretakenfortheNational plate materialavailabletoallowthegalaxybe examinedinsomedetail,sothatan nated fromthelistofobjectsdescribedinthispaper. known abouttheobject,anditisfeltthatallsuchmisidentificationshavebeenelimi- These misidentificationsusuallystandoutwhenasufficientamountofinformationis objects areknown(foratleastsomeofthefeatures)whichdonothaveassociatedradio presence ofabsorptionunexpectedinsometypesgalaxies;andthejets, cluster; asymmetricalfaintouterextensionswhichseemtoberelatedtheradiostruc- times showsignsofgravitationalinteraction;thepresenceD-galaxycharacteristics cases wemustdrawmoreheavilyontheothercriteriaformakinganidentification. agreement oftheradiocentroidwithopticalobject.Formostidentifications data anddescribestheclassesintowhichobjectsfall. emerged asbeingassociatedwithradiosources.Thispaperpresentstheobservational to datenoattempthasbeenmadeclassifytheobjectsusingonlythosesourcesfor colliding spirals,ellipticals,orSOgalaxies,inadditiontothenormalspirals.However, emitted inergs/sec;and (4) theopticalformtypes. when theyexist;(2)thedistancetosource;(3) the logarithmoftotalradiopower optical formclassificationcouldbegiven.Theplate materialusedforthisstudywas in preparation). identified sourcescontributeagreatdealtothecertaintyoftheiridentification(Schmidt, optical objectshaveunusuallystrongemissionlineswhichimmediatelysetthemapart sources. However,themoreunusualobject,probableisidentification. several quasi-stellarobjects;thestarlikeappearanceofsomenon-stellar ture; thepresenceofanunusuallyblueobject,particularlywheninhighgalacticlatitude; the radiocentroidbyasmuchone-halfofdiameter(e.g.,3C273).Inthese ever, someidentificationsarefelttobecertainwheretheopticalobjectisdisplacedfrom the knowledgeaboutidentifiedsources.Thefirstrequisiteisareasonablepositional the presenceofanultravioletexcessinobject,suchasSandagehasusedtodiscover to date,thisagreementiswithintheerrorsofmeasurementradiocentroid.How- true identificationisveryfaint,onewillbetemptedtomisidentifytheopticalobject. as beingunusual.Forthesereasons,thespectrathathavebeentakenofmany tion given:(1)thenameofsource,togetherwith NGCnumbersandothernames— (see below);thedominantcharacterofgalaxyinluminosityandsizewhena © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The definitionofawell-identifiedradiosourceisnoteasyasitbasedonthesum In thepastgalaxiesidentifiedwithradiosourceshavebeencalledatvarioustimes The secondcriterionisthepresenceofunusualopticalfeaturesondirectphotographs. The third,andveryimportant,criterionisbasedontheopticalspectra.Mostof The distances(r=cz/E) oftheobjectsweredeterminedmainlyfrom measured The fifty-twoextragalacticradiosourceslistedinTable 1havethefollowinginforma- Before anidentificationcouldbeincludedinthisdiscussion, therehadtobeadequate Some radiosourcesfallinaregionwheremanyopticalobjectsarefound;andifthe n. DATATORSOURCES I. INTRODUCTION 19 64ApJ. . .140. . .35M 10. 11. 21. 20. 13. 12. 16. 14. 23. 17. 15. 26. 24. 18. 31. 30. 27. 25. 19. 34. 33. 32. 29. 28. 22. 36. 40. 38. 37. 35. 41. 39. 44. 43. 42. 48. 47. 45. 49. 46 50. plate byMinkowski.SpectrogramSchmidtwithslit along majoraxisofnucleusshowsstrongly 52. 51. 4. 3. 9. 6. 5. 2. 8. 7. 1. © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem No. 3.—DE4inD3envelope,withmajoraxisofnucleusturned towardminoraxisofenvelope.200-inch No. 3C48 3C40 3C 47 3C 33 MOO-222 3C 66 3C 75 3C 71 3C 83.1 3C 78 M05-4J 3C 88 M03-31 3C 84 3C 98 3C 219 3C 195 3C 147 3C 227 3C 218 3C 264 3C 234 3C 231 3C 270 3C 273 3C 272.1 3C 274 3C310 M13-4^ 3C 278 3C 295 3C 338 3C 317 3C315 3C 327 SC 382 3C 348 3C 386 3C 353 SC 445 3C 388 3C 405 M2S-112 3C 442 3C 433 3C430 SC 465 Source 4261 3034 4374 4258 3862 1316 1218 4490 4486 1265 4782-3 1275 1068 5457 5236 5128 6166 7236-7 7720 253 224 NGC 545-7 [Notes toTable1continuedonpage 38] Data onRadioSources NOTES TOTABLE1 TABLE 1 For A M31 Pic A Per A M77 Hya A M82 Vir A,M87 M84 M101 M83 Cen A Her A CTA 80 Cyg A Other r (Mpc) 1100 1280 1640 1380 (320) (300) 520 180 470 550 100 160 320 470 310 160 300 270 100 250 170 170 170 (10) (50) 91 53 92 87 64 54 54 65 17 11 43 63 90 11 11 91 11 88 79 0.83 3.2 3.2 6.2 4.7 6.3: 3.5 7.2 42.83 41.88 44.67 44.21 41.48 38.69 42.25 41.67 40.13 39.08 42.06 41.77 42.03 41.55 43.11 42.19 43.60 45.29 43.06 43.22 42.92 43.46 40.24 40.33 41.60 44.49 39.17 39.62 41.37 41.67 41.87 38.78 45.30 38.09 39.62 42.95 42.47 41.69 41.96 44.20 43.15 42.50 42.86 40.04 41.50 44.71 42.94 43.25 log L 42.52 41.51 41.96 42.32 gkS5 Qs cD4 afS6 gS2p ED2 Qs DE4 DE3 db D4 D3-4 ED2 ED3-4 cD5 cD2 Qs ND1 ED3 I N1 DE3 Optical fgSl I gS5 DEI N1 fSl Qs E2 ED3 db E2 cD: db DE3 cD4 cD4 db cD4: DE3-4 cD3: DE2 D3 : D2 cD3 D4: ED4: db c?D4 D5 N1 Type 19 64ApJ. . .140. . .35M in thetext. inclined lines;spectrogramwithslitalongminoraxisshowsnoinclination.Theradiosourceisdiscussed by alittlelessthanone-halftheradiodiameterfromdumbbell.Noothergalaxiesaresuspectedof of envelope.RedshiftbyMinkowskiandZwicky(seeMaltbyetal.1962;Minkowski,Pub.A.S.P.,70, in clusterA426,richness2.RedshiftfromHumasonetal.(1956). ski. RedshiftbyMinkowski(seeMaltbyetal.1962). contributing totheradioemission.RedshiftbyMinkowski(seeMaltbyetal.1962). Baade andMinkowski(1954&)byBurbidgeetal.(1963)arenotveryprominent.Brightestgalaxy 143, 1958). nucleus inenvelope.200-inchplatebySchmidt. Absorption innuclearregion(Burbidgeetal.1963).MemberoftheFornaxIclustergalaxies(Zwicky Probably inpoorclustering. ski (1961Ô). In poor,faintcluster;verymuchbrighterthananyotherclustermember.200-inchplatesbySandage and Baade.Theradiostructurehasthreecomponents:ahaloofabout5'indiameter,anelongatedcore shown inFigure9,andahotspotof11"diameterwhoseexactlocationisnotknown.RedshiftbyMinkow- 1959), richness1. lines. 200-inchplatebySandage;classifiedfrompositivecopy. 200-inch platebySchmidt. second galaxyalsohasextensionsinpositionangles120°and240°.Onlythebrightemission than othergalaxiesingroup.Almoststarlikeon48-inchEplate.Brightnessgreatlyenhanced falls 30"totheeastofgalaxyindirectionstrongercomponentdoubleradiosource. The intensityratioofthecomponentsis4:1,andover-alldiameter2.1'inpositionangle90°. member. Asecondfaintergalaxyinpositionangle120°isjoinedtothebrighteronebyabridge.This inch platebySchmidt. a tightgroupsurroundingthecDgalaxy.RedshiftbyMinkowski (1960). Virgo clusterofgalaxies,richness1.RedshiftfromHumasonetal.(1956). brightest galaxyinclusterA2052,richness0. determined bySersic(1960).Theradiosourceisdiscussed in thetext. of about3'andisdisplacedby1.2'tothenortheastfromgalaxy. O plate,andstellarinappearance.120-inchLickplatebyE.M.Burbidge. A2199, richness2.200-inchplateandredshiftbyMinkowski (1961a). © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem No. 9.—ED2+EDIincommonenvelope.InclusterA400,richness1.Theradiocentroidisdisplaced No. 8.—RedshiftfromHumason,Mayall,andSandage(1956). No. 6.—RedshiftbyGreenstein(GreensteinandMatthews1963). No. 5.—RedshiftbySchmidt(SchmidtandMatthews1964). No. 4.—cD3inD4envelope.BrightestgalaxyclusterA194,richness0.Secondaryedge No. 12.—Classifiedon48-inchSchmidtredplate.Onthisplatethepeculiarfeaturesdiscussedby No. 11.—InclusterA426,richness2.RedshiftfromHumasonetal.(1956). No. 16.—FormclassifiedondirectphotographfromMountStromlo74-inchplatetakenbyW.Tifft. No. 18.—DE3inD1envelope.Maybesimilarto3C33.Brightestgalaxyfaintclustering.Secondary No. 17.—RedshiftbySchmidt(SchmidtandMatthews1964). No. 13.—ForAclassifiedfromaslightlyenlargedpositivecopyof48-inchSchmidtplatebyE.Herzog. No. 7.—InclusterA347,richness0.Secondarygalaxyinouterenvelope.200-inchplatebyMinkow- No. 14.—Probablyinpoorclustering. No. 19.—Doublenucleus;notcompletelyresolved.Thereisanothergalaxyintheouterenvelope. No. 26.—AmemberoftheVirgoclustergalaxies,richness1.RedshiftfromHumasonetal.(1965). No. 27.—AccordingtoSandage,thereisabsorptioninthenucleus(Wade1960).Amemberof No. 28.—RedshiftbySchmidt(1963). No. 24.—ProbablyoutlyingmemberofclusterA1367,richness2.Theradiosourcehasadiameter No. 21.—Bright.Possiblenebulouswispindirectionofcentroidradiosource.The No. 20.—cDl:inD5envelope.Atcenterofclusterrichness2,whichitisbyfarthebrightest No. 38.—cD2inD4envelope.Threecondensationsin—or projectedon—envelope.Outstandingly No. 36.—DE2+DE3incommonenvelope.Infaint,poor cluster. No. 31.—DE2+DE2incommonenvelope.RedshiftbyGreenstein (1961). No. 23.—TypegalaxyforclassNl.Onedgeofgroupingaround6faintgalaxies.N1muchbrighter No. 37.—DE2+DE3incommonenvelope.Atedgeoffaint, elongatedcluster,richness0. No. 35.—Outstandinglybrightestmemberofacluster,richness 4:.Therearefourothergalaxiesin No. 29.—AmemberoftheVirgoclustergalaxies,richness1.RedshiftfromHumasonetal.(1956). No. 39.—Nearedgeoffaintcluster,richness0.Superposedon scatteredfightfrombrightstaron200- No. 32.—From48-inchplatebyMinkowski,reducedto4 X5-inchpositive.Thedistanceisthat No. 41.—Partiallyobscuredbystarimage.HerAiscentrally locatedinveryfaintclusterofrichness No. 40.—Threesecondarycomponentsinsameenvelope.Outstandingly brightestmemberofcluster NOTES TOTABLE1—Continued [Notes toTable1continuedonpage 39] RADIO SOURCES 39

NOTES TO TABLE 1—Continued 2, visible on 48-inch E plate, and not on 48-inch O plate. All in this cluster are much fainter than Her A. 200-inch plate by Minkowski. by Greenstein (1962). No. 42.—Possibly in very loose, poor clustering, of which it is not the brightest member. Inner, faint clustering on 200-inch plate. 200-inch plate by Minkowski. No. 45.—Brightest member of faint cluster of richness 0. No. 46.—Double nucleus. Outstandingly brightest member of a cluster of richness 2:. 200-inch plate by Baade. Redshift by Minkowski (Baade and Minkowski 1954a). No. 47.—Western of 2 similar galaxies. 200-inch plate by Schmidt. No. 48.—On edge of clustering. There is a smaller EDI galaxy on the northern edge of the envelope. The D4: galaxy is the only one with emission Unes in its spectrum (Schmidt). 200-inch plate by Min- kowski. No. 49.—Dl + D3 in common envelope. Brightest member of an extended cluster of richness 0. Redshift by Greenstein (1962). No. 50.—Eccentric envelope. 200-inch plate by Minkowski. No. 51.—Dl in D5 envelope. Probably located in A2638, richness 2. Very much brighter than any other cluster member. If member of this cluster, type would be cDl in D5 envelope. No. 52.—D2 in asymmetric D4 envelope. Round, bright companion in same envelope. In cluster A- 2634, richness 1. The radio source is discussed in the text. 200-inch plate by Minkowski. redshifts are almost all determinations by Schmidt; some were measured by Minkowski (1961a, Z>), with some corrections (Maltby, Matthews, and Moffet 1963); a few were determined by Greenstein (1961, 1962). The distances of the spiral and irregular galaxies were kindly estimated by Sandage, mostly from his photographs for determining the sizes of H ii regions. If no redshift was available for the more concentrated galaxies a photometric distance was estimated from the and an assumed Afpg = — 20.5 (Maltby et al. 1963). Allowance was made for interstellar absorption where necessary. The photometric distances are inclosed in parentheses. The source of the redshift when not determined by Schmidt is indicated in the notes to Table 1. The radio luminosities,1 Z, are calculated from the equation

2 L=4cTr f Svdv, (ia) Jvi where

•S, = S400 ((1+f) Vlv2- (

The values of and n were taken from the work of Kellermann (1963). The cutoff 7 11 frequencies were chosen to be v! (emitted) = 10 c/s and v2 (emitted) = 10 c/s, except for those sources which show curvature in a (log Sv versus log p) plot. The cutoff fre- quencies were determined for each source from these plots of fluxes, corrected to the scale of Kellermann (1963), from the following sources: Mills, Slee, and Hill (1958, 1960), Heeschen (1961), Heeschen and Meredith (1961), Goldstein (1962), and Conway, Kellermann, and Long (1963). In order to eliminate any false effects with distance, all the calculations were done in terms of emitted frequencies. Cosmological corrections to the luminosity were made on the assumption that = 0 (Sandage 1961a, b). The form of this correction is shown in equation (lb). The main uncertainty in the calculated radio luminosities comes from the uncertainties in the upper cutoff frequencies, which may be much higher for some sources. 1 The limits of integration and the parameters used here are not the same as those used by Maltby, Matthews, and Moffet (1963). In that paper was assumed to be 1010 c/s; thus the luminosities given in Table 1 will be greater for most sources.

© American Astronomical Society • Provided by the NASA Astrophysics Data System 19 64ApJ. . .140. . .35M follows: 40 T.A.MATTHEWS,W.MORGAN,ANDM.SCHMIDTVol.140 ness ofthenuclearregioneachgalaxytototalbrightnessitsmainbody.Since this quantityiswellcorrelatedwiththeintegratedspectrumofnuclearregion, because ofthemultiplecriteriaemployedbyHubbleinclassifyingspirals. given inTable2.However,thereisnosimpletransformationbetweenthetwosystems, types ofsuccessivelybrighternuclearregions.AroughequivalenttotheHubbletypeis “S” notationhasprefixesof“a,”“f,”“g,”or“k,”correspondingtotheaveragespectral of possibleconfusionwiththeHubbletypeSO;anSIspiralonpresentsystemhasa als from1to7,with7usedforanedge-ongalaxy.Theinclination0isnotused,because system; however,theclassSO,asusedbyHubble,appliestogalaxieshavingavariety sources. SomeoftheopticalformsthesesourceswouldbeclassifiedSOonHubble tensive envelope.Theyareofgreatinterestinconnectionwiththeclassificationradio circular cross-section.Thecompletetype,then,foragalaxylikeM31wouldbegkS5. not used;anElellipticalisconsideredtohaveacircularcross-section. be derivedfromtheclassSO.TheSOwassubdividedinHubble-Sandageatlas of superficialappearances;thatis,amentalpictureuniquegalaxyformcouldnot into subgroupswhichweremorenearlyhomogeneous;however,theSOgalaxiesarede- scribed intheHubble-Sandageatlasasbeingflattenedsystems;andnoDgalaxies defined hereareobservedtobehighlyflattened. inspection ofDgalaxiesintherichclustersAbell’scatalogue(1958)showsthattheir prefix “c,”inamannersimilartothenotationforsupergiant starsinstellarspectroscopy. range inopticalluminosityisatleast10-1—andmaybeconsiderablygreater.Inad- lars inthesameclusters.TheseverylargeDgalaxies observedinclustersaregiventhe number ofAbell’srichclustershavediameters3-4timesasgreattheordinarylenticu- dition, theirrangeinsizeisgreat;thesupergiantDgalaxiesobservednearcenterofa approximately equal,nucleiareobservedinacommon envelope.Theymaywellbe related tothegalaxieswhichhaveoneormorefainter companionsintheirenvelopes,the most oftheluminositysystem.Afaint,nebulous envelopeofsmallvisibleextent dumbbells beingtheextremecasesofveryclosemultiple galaxieswhenthereareonly two equalcomponents. is observed. taken withthegreatreflectors; sometimesthestarlikeimagesareaccompanied byfaint (1963a, b). © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The generalclassificationschemedevisedbyMorgan(1958)hasbeenmodifiedas a) Spirals.—Theseareclassifiedfromthesinglepointofviewrelativebright- An inclinationclassfollowstheform(S)onpresentsystem;thesearenumer- c) Dgalaxies.—Thesegalaxieshaveanelliptical-likenucleussurroundedbyex- b) Ellipticals.—TheclassificationissimilartothatofHubble,exceptclassE0 The Dgalaxiesoccuroveragreatrangeinluminosity—bothopticalandradio.An f) Thequasi-stellarsources.—Galaxies inthiscategorylooklikestarsonphotographs d) The“dumbbells.”—Thisisagroupalliedtothe D galaxies,inwhichtwoseparated, e) The“N”galaxies.—Thesearegalaxieshaving brilliant, starlikenucleicontaining These Nsystemsmayberelatedtothe“compact” galaxiesdiscoveredbyZwicky m. DESCRIPTIONOFCLASSIFICATIONTHEOPTICALFORMS Hubble Morgan Sb gS-gkS Sc aS-fgS Sa kS Types ofSpirals TABLE 2 19 64ApJ. . .140. . .35M 41 41 40 41 40 4 45 No. 1,1964RADIOSOURCES41 nebulous wisps.Inthecaseofquasi-stellarsources,severalcriteriaareneededto listed inTable1.Certaingeneralfeaturesareapparent: segregate thetype.Inadditiontostarlikeappearance,theyhavealargeultraviolet seven categories: grams bySchmidt). strong sourcesbythegreatwidthofemissionlinesintheirspectra(200-inchspectro- excess andalargeredshift.Theycanbedistinguishedspectroscopicallyfromtheother vii) Thequasi-stellarsources(Qs). of D,db,N,andQssourcesbelowL—10erg/sec.Fromtheaboveconsiderations sources belowafuzzylimitoccurringinthisneighborhood.However,sincesmall-diame- selection effect(seebelow),whichmakesitdifficulttoobservelarge-diameterradio sec. ThesharpcutoffatL=2X10erg/secisnotreal,beingcausedmainlybyaradio L =10erg/sec.Welabelthesources“strong”and“weak”astheyaregreaterorless galaxy NGC1068,areinthe“weak”group.Whenmorespiralsinvestigated, there isprobablyarealminimuminthefrequencyofoccurrenceradiosourcesnear ter objectscanbeobservedbelowL=10erg/sec,theremustadeclineinnumber than thisvalue. latter group. form amuchmorecompactgroupinluminositythantheD-typeradiogalaxies,but sources. tail oftheirdistributionmaywellextendaboveL=10erg/sec. sources ofthistypelistedinTable1haveradioluminositiesrangingfrom2X10to optical appearanceondirectplates,areofconsiderably lowerradioluminositythanthe there maybedifferentselectioneffectsindiscovery formembersofthetwogroups. lower thanthegroupillustrated. Thismayalsobetrueinthecaseof Nsources. radio sources.Thisisquitedifferentfromtheweak sources,wherethemajorityareprob- 2 X10erg/sec.Themostluminousofthese,andalsothedistantobjectknown are intrinsicallydifferentfromtheweaksources. ably ordinaryflattenedspirals;thisfactsuggeststhe conclusionthatthestrongsources However, theupperlimit inradioluminosityforthespiralsisprobably moretrust- quite possiblethatsomenewquasi-stellarsources will bediscoveredhavingluminosities different groupsinFigure1almostcertainlyresult indifferingselectioneffects.Itseems (3C 147),isrivaledinitsradioluminosityonlyby3C295.Thequasi-steÛarsources iii) GalaxieshavingformtypesintermediatebetweenEandD(EDDE,withthe iv) TheDgalaxies(D) vi) TheNgalaxies(N) ii) Ellipticals(E) v) Thedumbbells(db) 41 i) SpiralsandIrregulars(S,I) 4 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem The opticalformtypesinthelastcolumnofTable1are,therefore,following Selection effectsinFigure1.—Theverydifferentfactors indiscoveryconditionsforthe /) TheNradiogalaxies,whichmostcloselyresemble thequasi-stellargroupintheir a) ThereisanapparentminimuminthefrequencyofoccurrencenearL=10erg/ c) AllidentifiedradiogalaxiesofthetypesD,db,N,andQslieamong“strong” b) Allspiralgalaxiesidentifiedasradiosources,withtheexceptionofSeyfert Figure 1showstherelationshipbetweenradioluminosityandopticalformtypes d) TherangeinradioluminosityoftheD-typesourcesisorder10to1. g) FromTable1itisseenthattherearenogreatly flattened galaxiesamongthestrong e) Thequasi-stellarobjectsarefoundamongthemostluminoussources.four preceding letterdescribingthedominantcharacteristic) IV. THEOPTICALPORMGROUPSOFRADIOSOURCES 19 64ApJ. . .140. . .35M 38 40 41 41 42 T.A.MATTHEWS,W.MORGAN,ANDM.SCHMIDTVol.140 worthy, sincetheidentifiedradiospiralsareamongbrightestopticalmembersoftheir ferently andwillbeabletodetectsourcesoflowersurfacebrightness;buttheytoo interferometer. Single-dishmeasurementsandpencil-beamarrayswillbeaffecteddif- not. TheeffectisroughlythesameforCambridge3CinstrumentandCaltech sources, sincesourcesof50kpcdiameterarestilleasilyseenatZ,=10erg/sec. mean thatidentificationscannotbemadeforL<10erg/secthestrongradio instabilities. Thislimitationmeansthatlarge-diametersourceswhichwouldhavevalues the plottedpointshasnosignificance; theformclasseshavebeenseparatedverticallyfor clarity. of theirradioluminositylessthanabout10erg/sechavenotbeenseen.Thisdoes be limitedeventuallybybackgroundirregularities,confusionandinstrumentalbaseline although small-diameter,apparentlyweaksourceswillbeseen,large-diameterones element interferometerswhichdonotrespondtosourcesoflowsurfacebrightness.Thus, effect. Thisarisesbecausemostoftheradioobservationshavebeenmadewithtwo- class. 41 The distributionofsourcesnearL=10erg/secisinfluencedbyaradioselection Fig. 1.—Therelationshipbetween opticalformclassandradioluminosity.Thevertical locationof © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem O “BrightNucleiandextendedenvelopes(ClassD) X ?x ©-Intermediate betweenclassesDandE • -Ellipticals(ClassE) ro in sow — CO X “SpiralsandIrregulars 0 -Brilliant,-likenucleiandlessextensiveenvelopes(Class N) 8 -Dumbbells(RelatedtoDsystems) XX —Quasi-stellar sources 39 X X CM 00 I 40 414243 O CO 00 e Q X log ergs/secradiatedpower 0 CO ro £ ts m TV Q o£o°o o°» I 45 a if) 0) CM rO ó ro I 19 64ApJ. . .140. . .35M 39 2 No. 1,1964RADIOSOURCES43 values for¿'400andnindisagreementwiththeonesusedhere.Ifhisareused,L feels thatalltheirspectralindicesarenear^0.5.OnlyinthecaseofNGC4490his for NGC4490becomes3.9X10erg/sec,reducingthespreadofLthisclass category. Hisresultsemphasizethattheseradiosourcesbelongtogetherasagroup.He with backgroundirregularities.Theradiostructureofthesesourcesisinvariablyasingle NGC 253)thesourceismuchsmallerthangalaxy,andcorffinedtonuclear are apparentlyveryweaksourcesandtendtobeconfusedwithothernearby sources. Thesegalaxiesaredifficulttoobservewithsmallradiotelescopesbecausethey region inNGC1068.Inothercases(M31,IC342),theradiosourcehasahalocomponent source centeredonthegalaxy.AsHazardhaspointedout,insomecases(NGC1068, remaining fluxisinasmallsourcecenteredthenuclearregion.Noneofthisclass comparable insizetothegalaxy,andwhichcontainsup90percentofflux.The NGC 1068hastheradioluminosityofweakeststrongsources. relationship betweentheradiostructureandnuclearregionofgalaxiessuggests sources showsthecharacteristicdoubleradiostructureofstrongsources.The strong andweaksourcesintheiropticalappearanceradiostructure.Only that activityinthisregionisresponsiblefortheradiosource,asseemstobecase range from<1to500kpc.Incontrasttheweaksources,theirradiostructureis the strongradiosources.However,thereseemstobeclearseparationbetween halo-core objects(asmall,brightsourcenearthecenter,superimposedonafaintex- Moffet (1962)showedthatforallresolvedsources,about73percentaredouble,17 usually beingsymmetricallyplacedabouttheparentgalaxy.ThestudyofMaltbyand generally double,themajorityofradioradiationcomingfromtwoseparateregions will fittheobservations.Asinglesourcehavingadiameter ofapproximately5',andelongatedinthe radio sourceshavecomponentswhicharenolargerthantheassociatedgalaxy,remaining direction ofthemajoraxis thegalaxy,isentirelyconsistentwithMaltby’s(1962)observations (see objects. Thesepercentagesalsoholdfortheresolvedidentifiedsources.However,atleast resolved radiosources;about5-10percentaresimple,and10halo-core tended source).Thispercentageofsimplesourcesistoolarge,sinceabout15percent cent aresimple(welldescribedbyasinglesymmetricalGaussian),and10per also MathewsonandRome1963). 40 percentofthesourcesbeingsometimesverymuch largerthanthegalaxy.Thesizes Three ofthefivesources(60percent)haveasimple radiostructure.Thisshouldbe cluded inthisstudyareconsidered. structure. Thistendencyisfurtherstrengthened when otheridentifiedsourcesnotin- sources (Z^40erg/sec)tendstobesimple;only 3C270hasthecharacteristicdouble of thegalaxiesarediscussedinSectionVII. diameter—less thanthesizeofparentgalaxy.Infact,about60percentidentified cent ofthedoubleswhichareseenend-on,comprise80-85perall the doubleswouldbeseenend-on,thusresemblingsingles.Correctingfor15-20per their radiostructureseemstodiffersignificantlyfrom therestofstrongradiosources. 28 percentoftheidentifiedsourcesaresmallerthan1'.Thesehaveasmalllinear 5 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Hazard (1963)hasrecentlypublishedastudyoftensourceswhichbelongtothis These radiosourcescoverarangeof2X10inluminosity,andtheirdiameters * ThedoublestructurefoundbyMaltbyandMoffet(1962) forNGC253isnottheonlymodelthat a) D,DE,andEgalaxies.—Theradiostructure of theweakeststrongradio b) Dumbbellgalaxies.—Althoughthereareonlyfive oftheseobjectslistedinTable1, 40 1. WeakSources,L10*erg/sec 19 64ApJ. . .140. . .35M 4 3 radio sources—suggestingthatthedifferenceinopticalappearancemayonlybeoneof of theradiostructuresotherstrongsourcesarefoundinquasi-stellar and Matthews1964]3C286[MatthewsSandage1963]).Thusmost,ifnotall, 3C 273[Hazard,Mackey,andShimmins1963]),halo-coreobjects(3C47[Schmidt ponents ofverysmallradiodiameter.Inaddition,mostthemhavealow-frequency 44 T.A.MATTHEWS,W.MORGAN,ANDM.SCHMIDT flattening atthelow-frequencyend;andopticalfluxfallsonoraboveanextrapola- of havingamorecomplexstructurethanthesimpledouble-sourcemodel;oftensmall- when comparedtotheotherstrongradiosources.Inaddition,theyshowdefinitesigns compared tothe17percentofallunidentifiedradiosourceswhichhavethatstruc- or nosignofanyverysmall-scalestructure,andasteepradiospectrumwith of theotherquasi-stellarsources.Ithasalargeradiodiameterabout200kpcwithlittle diameter componentsaresuggestedbytheobservations. ture. time orperhapssomeotherparameter. already statethattheradiostructureoftheseobjectsincludesunresolvedpointsources stellar sourceswillnotbeknownuntilmoreobjectshavebeenstudied.However,wecan tion ofthe(logSversuslogv)relation.Thefullrangecharacteristicsquasi- turnover intheirradiospectrum(MatthewsandSandage1963).SchmidtMatthews fields inadirectionwhichisapproximatelythatofthemajoraxisouterenvelope nuclear regionofNGC5128,whichhaveejectedhigh-energyelectronsandmagnetic ponents isseenmuchmoreclearlyintheAustralian210-footdishresults(Kerr1962), latter turnsandrunsabout12'tothenorthwest(16 kpc).Theseextensionshavealready where atleastthreecomponentsareseenineachoftheoutersources.Ifweinclude (3C 48and3C196[MatthewsSandage1963]),doubles147[Rowson1963] from theobservationsatParkeswith210-foot dish(seealsoJohnson1963)shows been notedandareillustratedfromdifferentplate materialbyH.M.Johnson(1963). about 33'tothenortheast(45kpc),and28'southwest(38kpc);afterwhichthis perpendicular totheabsorbinglane;thatis,aboutanaxisparallelmajorof of thegalaxy. central source,itwouldseemthatatleastfourseparateeventshaveoccurredinthe elongation inthenorth-southdirection.Oncloserexamination,Figure2suggeststhat each oftheoutersourcesiscomposedtwosources.Thissplittingintoseveralcom- looks likeasecondaryradiomaximum.Thesouthwest extensionalmostreachesthe reaches the5-unitcontourlinebeforeitturnsto northwest.Thecontourmapmade extensions reachoutintothenearbypartof outerradiosources.Thenortheast He foundagreaterextensiontothenortheastby afactorof1.2,andinadditionsome 4), thereareextensionsoftheenvelopealongthissameaxiswhichcanbefollowedfor structural detailswhicharetoofainttobeconfirmed bythe48-inchplate.Thesefaint the outerenvelope.Inaddition,faintlyvisibleonhigh-contrastprint(seeFigs.3and radio minimum,thenturnsandfollowsapproximately alineofconstantflux. extension reachesthe20-unitcontourlineinFigure 2,whilethesouthwestextension (1964) showthatinmanyrespects3C47hascharacteristicswhichdonotresemblethose that thenortheastextensionrunsoutalongaridge ofmaximumradiointensitytowhat v 8 4 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem d) Quasi-stellarobjects.—Mostofthequasi-stellarradiosourceshaveoneormorecom- c) Ngalaxies.—Theradiostructureofalltheseobjectsisunusuallylongandnarrow This galaxyisknowntorotate(BurbidgeandBurbidge1959,1962)aboutanaxis The outerradiocontoursofCentaurusAshowthelargeextentthissourceandits Theeffectsofthecentraldouble sourcehavebeeneliminatedinthisplot. Thecentraldoublesourceis includedinthecontoursofthisplot. VI. DISCUSSIONOFTHERELATIONSHIPOPTICALANDRADIOFEATURES 1. CentaurusA,NGC5128 1964ApJ. . .140 . . .35M 191, 793,1961). Fig. 2.—TheradiosourceCentaurusA.TheoutercontoursaretakenfromBoltonand Clark(P.A.S.P.,72,29.1960).ThemodeloftheinnerdoublesourcewasdeterminedbyMaltby{Nature, © AmericanAstronomicalSociety•ProvidedbytheNASAAstrophysicsDataSystem 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Note outer extensions in directions normal to equatorial absorbing b; 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Fig. 4.—The radio source Centaurus A = NGÇ 5128, Same data as Fig. 3 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

5.—The radio source Fornax A = NGC 1316. Low-contrast print from 48-inch 103a-D plate + yellow Plexiglass filter by 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Fig. 6.—The radio source Fornax A = NGC 1316. High-contrast print from three superposed 48-inch 103a-J plates + Wratten 4 filter, by Arp (1964). Half-intensity radio contours are plotted; crosses locate positions of peak radio intensity. 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Fig. 7.—The radio source 3C 465 = NGC 7720. Print from 200-inch 103a-O plate by Minkowski. The dashed curve is the half- intensity radio contour; the cross represents the mean error in the radio position. 19 64ApJ. . .140. . .35M © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem

Fig. 8.—The radio source 3C 465 = NGC 7720. Print from 48-inch 103a-E plate + red Plexiglass filter from National Geographic Society-Palomar Observatory Sky Survey. 19 64ApJ. . .140. . .35M unusual, andareprobablyimpossibletoexplainasanequilibriumconfigurationofthe produced andejectedtheradiosources. might beexplainedbyejectionofgastheactivityinnuclearregionwhichhas gas inarotatinggalaxy—anddifficulttoexplainiftheyarecomposedofstars.They hooklike featurereachesadistanceof30kpcfromthecentergalaxy;itthen a spiralpatternbytherotationofgalaxy. perpendicular totheabsorbinglaneasinNGC5128;however,1316nuclear some dustclouds,ofmuchlessimportancethaninNGC5128,butwhichcrossthenu- correction fortheeffectsofantennabeamwidth.Incentergalaxythereare strongest radiosourceandbecominginvisiblejustbeforereachingthepeakof tensions. TheyareillustratedverywellinArp’sphotograph(Fig.6;seeArp1964).The plane ofthesky.Norotationhasbeenmeasuredforgalaxy.Theextensionsstartout cleus ofthegalaxyinasimilarmanner.However,theirstructureawayfromnucleus emission. TheradiocontoursaretakenfromtheworkofWade(1961)andincludea turns andcontinuesforanother34kpc,penetratingthehalf-intensitycontourof region isalsoelongatedinthissamedirection.Ifthematterhasbeenejectedalong suggesting thattheaxisofrotationgalaxyisinclinedatafairlylargeangleto perpendicular totherunofendhooklikefeature.Inaddition,hookis pendicular tothesharpboundaryoffainterextensiononthatside,whichreachesa intrinsic polarizationangleoftheweakersource(eastern)is103°,whichroughlyper- strongest oftheopticalextensions,thussuggestingeffectsamagneticfield.The and Whiteoak1963).Itsintrinsicpolarizationangleof66°fortheelectricvectoris is intimatelyrelatedtotheradiosources. distance of49kpcfromthegalaxy.Itappearsthatstructureopticalextensions axis ofrotationandsubsequentlymovesawayfromtheaxis,itwouldbedrawnoutinto over-all sizeof5';butthereismorethanonesmallercomponent,havingadiameter<1', (see Burbidge,andSandage1963)isreminiscentofabarredspiral,thus weak radiosources;however,noneofthemgivesanyindicationbeingpeculiar.Ifone if notall,oftheradioemission.Thereareotherellipticalgalaxiesnearbywhichcouldbe within thisregion.ThegalaxyNGC7720(Figs.7and8)seemstoberesponsibleformost, of themwerelike3C270(NGC4261),whichisanEDgalaxy,thenitwouldonlycon- and itseemssignificantthatthecentroidofradioemission fallsonthestrong,asymmetri- cal, southernextensionofNGC7720asshownin Figure7. tribute about3^ofthetotalflux.Theobject3C465 isveryprobablyadisplacedsource, main bodyofthegalaxy.Thereisafaintouterenvelope, whichcanbeseentoadiameter ture (3.3"X8.4"),whoseminoraxisisinposition angle163°.Thislatterconstitutesthe have beentakenbyM.Schmidt.Aspectrogram orientatedeast-westshowsinclined of 9.4"X22",andwhichisextendedalongthissame “minor”axis.Spectraofthegalaxy inclination oftheemission lines.Theshapeofthemainbodygalaxy, and thespec- emission lines,whileaspectrogramwiththeslit orientatednorth-southshowsno Again wehavetheanomalous extensionoftheouterenvelopealongaxis ofrotation. tral evidence,suggestthat thegalaxyisrotatingaboutanaxisinposition angle163°. © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Such opticalextensionsandelongationsalongtheaxisofrotationagalaxyarevery Fornax A(Figs.5and6)istheradiosourcewithstrongestknownopticalex- The westernsourceisthestrongestandhashighestpolarizationat10cm(Gardner This radiosourcehasacomplexstructure(MaltbyandMoffet1962).Itan The galaxyhasacircularnucleus(2.5"indiameter) imbeddedinanelongatedstruc- 2. FornaxA,NGC1316 3. 3C465,NGC7720 RADIO SOURCES45 4. 3C33 19 64ApJ. . .140. . .35M value thanisfoundformostsources.Theintrinsicpolarizationangleof101°showsthat outer envelope.Thehighdegreeofpolarizationindicatesthatthemagneticfieldisfairly clusters) ;oftheseten,onlyone(A2199)isaknownradiosource.ThetencDclustersare distance-group 4orless,therearetenclustersofthistype(whichweshalllabelcD galaxy oftheDtype;inmostcases,thesearenotradiosources.Inappearance the magneticvectorisintermediatebetweenorientationofradiosourceand fined sincetheirejection,presumablybyamagneticfield.Thesourcehaspolarization listed inTable3. occur. Inaddition,noneoftheseobjectsishighlyflattened. sources; botharelocatedinclustersofgalaxies,anddominatethewhichthey supergiant galaxiesseemtobenodifferentfromthecDidentifiedasstrongradio of anumberclustershavingsingle(ormultiple)dominating,large,centrallylocated in muchthesamedirectionaslinejoiningradiocomponents,angulardiffer- 46 T.A.MATTHEWS,W.MORGAN,ANDM.SCHMIDT well aligned. of 8percentat10.6cm(Seielstad,Morris,andRadhakrishnan1963),whichisahigher in sizetothenuclearregionofgalaxy,eventhoughtheyareeachatadistance Anderson, Conway,Palmer,Reddish,andRowson1962).Thesourcesarecomparable The radiosourceisknowntobedoublewithaseparationof3.8'+0.6'inpositionangle type forcDgalaxies. about 100kpcfromthegalaxy.Thecosmic-rayparticlesmusthavebeentightlycon- certainly lessthan20"(Lequeux1962)andisprobablyabout4"indiameter(Allen, ence being35°.Theradiosourceisunusualsincethediameterofcomponents 10 18° ±3°(MaltbyandMofFet1962;Lequeux1962).Thustheouterenvelopeisextended 9 4 6, 5, 3 8 2 7 1 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Of thetwenty-sixclustersinAbell’scataloguehavingrichness2andgreater, A surveyoftherichestclustersgalaxieslistedbyAbellhasresultedindiscovery No. 9.—A2199.Radiosource3C 338(seeTable1).Severalcondensationsincommonenvelope ofcD4. No. 6.—A1795.Second—andpossiblythird—condensation withinsameenvelope. No. 10.—A2670.Compactcluster. No. 8.—A2029.Elongatednuclearregionofclustersimilar inorientationtoD5envelope.Standard No. 5.—A1775.2equal,circularnucleiincommonenvelope. No. 4.—A787.cD3+companion,incommonD4envelope. No. 2.—A401.Clusterelongation5,insamepositionangle asD5envelope.Richandcompact. No. 2670 2199 2029 Abell 1795 1775 1904 401 389 787 754 VII. THEPROBLEMOEDGALAXIES tance Dis- (Distance <5;Richness>1) cD ClustersofGalaxies NOTES TOTABLE3 Rich- ness TABLE 3 /cDl inD4envelope \D1 +D1incD5envelope cD2 inD5envelope cD3 inD4envelope cD2 inD5envelope cD2 inD5envelope Brightest Galaxy- cD2 cD4 cD3 cD3 cD4 Diameter of Lenticulars in Unitsof cD Galaxy Z Z 4 4 4 3 3 3 3 5 2 2 Diameter Galaxy in kpc of cD 45 45 45 38 45 38 38 60 60 60 75 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

tour; the cross represents the mean error in the radio position. 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Fig. 10.—The radio source Hydra A = 3C 218. Print from 200-inch 103a-O plate + GG 1 filter by Baade 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

position; short lines give positions of radio half-intensity. 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Fig. 12.—The radio source 3C 317. Print from 200-inch 103a-D plate + GG 11 filter by Minkowski 19 64ApJ. . .140. . .35M © American Astronomical Society m Provided bytheNASA Astrophysics DataSystem # ♦

Fig. 13.—The radio source 3C 338 = NGC 6166. Print from 200-inch 103a-O plate by Minkowski. The curve is the half-intensity radio contour; the cross represents the mean error in the radio position. 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Society-Palomar Observatory Sky Survey. 19 64ApJ. . .140. . .35M © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem

Fig. 15.—The radio source Cygnus A = 3C 405. Print from a 200-inch 103a-D plate + GG 11 filter by Baade. The cross repre- sents the mean error in the radio position. The curves are half-intensity radio contours. 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Fig. 16.—The radio source Cygnus A = 3C 405. High-contrast print from same plate as Fig. 15 19 64ApJ. . .140. . .35M © American Astronomical Society Provided bytheNASA Astrophysics DataSystem

Fig. 17.—The cluster Abell 2029. This cluster is dominated by the great D galaxy located at its center. It is not known to be a radio source; however, its appearance is similar to that of some strong radio sources. 48-inch 103a-E plate + red Plexiglass filter from National Geographic Society-Palomar Observatory Sky Survey. 19 64ApJ. . .140. . .35M © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Fig. 18.—TheclusterAbell2670.Seelegendanddatafor Fig. 17 RADIO SOURCES 47

Using a round figure of 15 kpc for the diameter of the main body of the larger lentic- ulars in clusters, we derive the approximate linear diameters of the optical envelopes of the cD galaxies, listed in the last column of Table 3. They are only intended to be rough approximations; more accurate diameters should be derivable from the redshift distances. It can be seen that the cD galaxies as defined in Table 3 are objects of considerable interest because of their size. The explanation as to why some are strong radio sources and others are not known to be radio sources at all is an interesting problem for the future. About one-fourth of the strong radio sources plotted in Figure 1 are cD galaxies in clusters. The diameters of the cD galaxies in Table 3 can be compared to the diameters of the galaxies associated with radio sources. Table 4 gives the results of some measurements on 48-inch and 200-inch plates for six galaxies. The major axes are visible out to diameters of 38-66 kpc and average around 50 kpc. The galaxies must have significant densities

TABLE 4 Optical Diameters of Galaxies Associated with Radio Sources

Visible Size of Source Galaxy (kpc) Notes For A. 51 X 37 Omitting extensions (see text) Cen A. 38 X 31 Omitting extensions (see text) 3C317. 60 X 34 3C 338. 53 X 32 Cyg A. 48 X 32 3C 465. 66 X 29

♦Minkowski (1961a) has photoelectrically measured a diameter of the major axis of 68 kpc to an isophote of 25 mag/sq. sec of arc. even farther out, perhaps as far as 100 kpc. Thus a large percentage of radio sources are actually still imbedded in the parent galaxy, while only the very large halo and double sources are well outside the galaxy.

VIII. ARE RADIO SOURCES COLLIDING GALAXIES? The evidence now seems to be conclusive that extragalactic radio sources are not, as a class, colliding galaxies. The optical form families described, and illustrated in Figure 1, seem to refer to individual—rather than to colliding—galaxies.

DC. RADIO SOURCES AND CLUSTERS OF GALAXIES Figures 7-16 illustrate radio galaxies which are located in clusters. In each case, the radio galaxy dominates the cluster in which it is located, and is of the D form-class (elliptical-like nucleus, surrounded by an extensive envelope). Figures 17 and 18 show clusters Abell 2029 and 2670, both of which are dominated by centrally located D galaxies of supergiant dimensions. In these respects they resemble the radio sources illustrated in Figures 7-16; however, the supergiant D galaxies illustrated in Figures 17 and 18 are not known to be radio sources. The galaxies which obviously occur in clusters are indicated in the notes to Table 1. Some of the clusters are not included in AbelFs catalogue (Abell 1958) for one of several reasons: they fall outside the region of the sky he considers; they are of richness 0 (for

© American Astronomical Society • Provided by the NASA Astrophysics Data System 19 64ApJ. . .140. . .35M B rence ofthevariousrichnessgroupsiscalculated,basedonclustersinAbellscatalogue. least inverysmallgroupsofgalaxies.InthelastcolumnTable5expectedoccur- which hislistisincomplete);ortheyaretoofainttobeincludedincatalogue.For richness >1.Ontheotherhandabout20percentoccureitherassingleobjectsorat occur inclustersofrichnessabout2.Theyprobablywithequalprobability expected inthefirstthreecategoriesisverymuchhigherthanthatrichness2.The omitted, sincefor3C47and147noplatematerialexistsonwhichanyclusterof richness oftheVirgoclusterwasdeterminedfrommaterialdeVaucouleurs(1961), 48 T.A.MATTHEWS,W.MORGAN,ANDM.SCHMIDTVol.140 greater thanorequalto0.Further,one-thirdofthegalaxiesareinclustershavinga galaxies couldbeseen.3C48and273arenotlocatedinclustersofgalaxies. are knowntobeinsmallgroupsofaboutsixgalaxies.Thequasi-stellarsourceshavebeen the clusterinwhichtheyarelocated.Atleasttwoofthose“nocluster”category communication). Table5givesthenumberofidentificationsasafunctionrichness and thatoftheFornaxIclusterwasderivedfrommaterialsuppliedbyZwicky(private these clusterstherichnessgrouphasbeenestimatedinmannerusedbyAbell.The The expectedfrequencyisnormalizedtoagreeatrichness2.numberofgalaxies clusters ofrichnessgreaterthan2,butthenumberidentificationsisnotsufficientto comparison betweenthesecondandthirdcolumnsshowsthatradiosourcestendto make anystatement. of ExtragalacticResearch,ed. G. C.McVittie[NewYork:MacmillanCo.,1962],p.201, andotherref- several spiralgalaxies;wearealsoindebtedtoDrs. Sandage,Minkowski,Zwicky,E.M. Technology issupportedbytheUnitedStatesOffice ofNavalResearchundercontract Burbidge, andW.Tifftfortheuseofplatematerial. WewishtothankalsoDr.Arpfor erences giventhere). Wilson-Palomar Observatories,andtoDr.J.L.Greenstein, fortheprivilegesextended also wishestoexpresshisdeepestthanksDr. I.S.Bowen,directoroftheMount the reproductionofhisremarkablemulti-negative printofForA. Nonr 220(19). Office ofNavalResearchforhisprojectontheclassification oftheformsgalaxies.He to himasguestinvestigator.Theworkinradioastronomy attheCaliforniaInstituteof 5 © American Astronomical Society •Provided bytheNASA Astrophysics DataSystem Table 5showsthatabout50percentoftheparentgalaxiesareinclustersrichness Theassociationofradiosources andclustersofgalaxiesisnotanewidea(seeMinkowski, Problems We areindebtedtoDr.AllanSandageforthedeterminations ofthedistancesfor One ofus(W.W.M.)wishestoacknowledgecontinued financialsupportfromthe Poor cluster table, butwouldbefoundinthiscategory. No cluster Richness 4 Richness 5 Richness 3 Richness 2 Richness 1 Richness 0 * Thequasi-stellarobjectshavebeenexcludedfromthis Occurrence ofRadioSourcesasa Function ofRichnessCluster Richness TABLE 5 Cluster Rich- Frequency of ness (Abell) Normalized 22.4 0.11 0.02 7 1.2 No. 1, 1964 RADIO SOURCES 49

REFERENCES AbeU, G. O. 1958, Ap. /. Supply 3, 211. Allen, L. R., Anderson, B., Conway, R. G., Palmer, H. P., Reddish, V. C., and Rowson, B. 1962, M.N., 124, 477. Arp, H. 1964, Ap. J., 139, 1378. Baade, W., and Minkowski, R. 1954a, Ap. J., 119, 206. . I954:b, ibid., p. 215. Bolton, J. G., and Clark, B. G. 1960, Pub. A.S.P., *72, 29. Burbidge, E. M., and Burbidge, G. R. 1959, Ap. J., 129, 271. . 1962, Nature, 194, 367. Burbidge, G. R., Burbidge, E. M., and Sandage, A. R. 1963, Rev. Mod. Phys., 35, 947. Conway, R. G., Kellermann, K. I., and Long, R. J. 1963, M.N., 125, 261. Gardner, F. F., and Whiteoak, J. B. 1963, Nature, 197, 1162. Goldstein, S. 1962, A.J., 67, 171. Greenstein, J. L. 1961, Ap. J., 133, 335. . 1962, ibid., 135, 679. Greenstein, J. L., and Matthews, T. A. 1963, Nature, 197, 1041. Hazard, C. 1963, M.N., 126, 489. Hazard, C., Mackey, M. B., and Shimmins, A. J. 1963, Nature, 197, 1037. Heeschen, D. S. 1961, Ap. J., 133, 322. Heeschen, D. S., and Meredith, B. 1961, Pub. N.R.A.O., 1, 121. Humason, M. L., Mayall, N. U., and Sandage, A. R. 1956, A.J., 61, 97. Johnson, H. M. 1963, Pub. N.R.A.O., 1, 251. Kellermann, K. I. 1963, Thesis, California Institute of Technology. Kerr, F. J. 1962, Sky and Telescope, 24, 254. Lequeux, J. 1962, Ann. d'ap., 25, 221. Maltby, P. 1961, Nature, 191, 793. . 1962, Ap. J. Suppl, 7, 124. Maltby, P., Matthews, T. A., and Moffet, A. T. 1963, Ap. J., 137, 153. Maltby, P., and Moffet, A. T. 1962, Ap. J., Suppl. 7, 141. Mathewson, D. S., and Rome, J. M. 1963, Observatory, 83, 20. Matthews, T. A., and Sandage, A. R. 1963, Ap. J., 138, 30. Mills, B. Y., Slee, O. B., and Hill, E. R. 1958, Australian J. Phys., 11, 360. . 1960, ibid., 13, 676. Minkowski, R. 1958, Pub. A.S.P., 70, 143. . 1960, Ap. J., 132, 908. . 1961a, A.J., 66, 558. . 1961&, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, ed. J. Neyman (Berkeley: University of California Press), 4, 245. Morgan, W. W. 1958, Pub. A.S.P., 70, 364. Rowson, B. 1963, M.N., 125, 177. Sandage, A. R. 1961a, Ap. J., 133, 355. . 19616, ibid., 134, 916. Schmidt, M. 1963, Nature, 197, 1040. Schmidt, M., and Matthews, T. A. 1964, Ap. J., 139, 781. Seielstad, G. A., Morris, D., and Radhakrishnan, V. 1963, Ap. J., 138, 602. Sersic, J. L. 1960, Zs. f. Ap., 51, 64. Vaucouleurs, G. de. 1961, Ap. J. Suppl, 6, 213. Wade, C. M. 1960, Observatory, 80, 235. . 1961, Pub. N.R.A.O., 1, 99. Zwicky, F. 1959, Hdb. d. Phys., ed. S. Flügge (Berlin: Springer-Verlag), 53, 390. . 1963a, C.R., 257, 2240. . 19636, Reported in Carnegie Inst. Washington Yearbook, No. 62, p. 32.

© American Astronomical Society • Provided by the NASA Astrophysics Data System