The Holomorphic Σ-Model and Its Symmetries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The IUM Report to the Simons Foundation, 2016
The IUM report to the Simons foundation, 2016 Contents 1 Introduction: list of awardees 4 2 Program: Simons stipends for students and graduate students 6 2.1 Research . 6 2.1.1 Elena Egorova . 6 2.1.2 Yakov Kononov . 7 2.1.3 Konstantin Loginov . 9 2.1.4 Maria Matushko . 9 2.1.5 Dmitry Oganesyan . 9 2.1.6 Vardan Oganesyan . 10 2.1.7 Pavel Sechin . 10 2.1.8 Danila Zaev . 11 2.1.9 Dmitry Zubov . 11 2.2 Scientific conferences and seminar talks . 12 2.2.1 Elena Egorova . 12 2.2.2 Yakov Kononov . 13 2.2.3 Konstantin Loginov . 13 2.2.4 Maria Matushko . 13 2.2.5 Dmitry Oganesyan . 14 2.2.6 Vardan Oganesyan . 14 2.2.7 Pavel Sechin . 14 2.2.8 Danila Zaev . 15 2.2.9 Dmitry Zubov . 15 3 Program: Simons IUM fellowships 16 3.1 Research . 16 3.1.1 Anton Aizenberg . 16 3.1.2 Alexander Belavin . 18 3.1.3 Alexei Elagin . 18 3.1.4 Alexei Gorodentsev . 19 1 3.1.5 Maxim Kazarian . 19 3.1.6 Anton Khoroshkin . 19 3.1.7 Iosif Krasilshchik . 20 3.1.8 Alexander Kuznetsov . 21 3.1.9 Maxim Leyenson . 24 3.1.10 Grigory Olshanski . 24 3.1.11 Alexei Penskoi . 25 3.1.12 Petr Pushkar' . 26 3.1.13 Sergey Rybakov . 26 3.1.14 George Shabat . 26 3.1.15 Arkady Skopenkov . 27 3.1.16 Mikhail Skopenkov . 31 3.1.17 Evgeni Smirnov . 32 3.1.18 Mikhail Verbitsky . -
Complex Geometry of Moment-Angle Manifolds
COMPLEX GEOMETRY OF MOMENT-ANGLE MANIFOLDS TARAS PANOV, YURY USTINOVSKIY, AND MISHA VERBITSKY Abstract. Moment-angle manifolds provide a wide class of examples of non- K¨ahler compact complex manifolds. A complex moment-angle manifold Z is constructed via certain combinatorial data, called a complete simplicial fan. In the case of rational fans, the manifold Z is the total space of a holomorphic bundle over a toric variety with fibres compact complex tori. In general, a complex moment-angle manifold Z is equipped with a canonical holomorphic foliation F which is equivariant with respect to the (C×)m-action. Examples of moment-angle manifolds include Hopf manifolds of Vaisman type, Calabi– Eckmann manifolds, and their deformations. We construct transversely K¨ahler metrics on moment-angle manifolds, un- der some restriction on the combinatorial data. We prove that any K¨ahler submanifold (or, more generally, a Fujiki class C subvariety) in such a moment- angle manifold is contained in a leaf of the foliation F. For a generic moment- angle manifold Z in its combinatorial class, we prove that all subvarieties are moment-angle manifolds of smaller dimension and there are only finitely many of them. This implies, in particular, that the algebraic dimension of Z is zero. Contents 1. Introduction 2 1.1. Non-K¨ahler geometry 2 1.2. Positive (1,1)-forms and currents on non-K¨ahler manifolds 3 1.3. Hopf manifolds and Vaisman manifolds 3 1.4. Moment-angle manifolds and their geometry 4 2. Basic constructions 6 3. Complex structures 10 4. Submanifolds, analytic subsets and meromorphic functions 12 4.1. -
The Holomorphic Σ-Model and Its Symmetries
The holomorphic s-model and its symmetries Brian R. Williams Contents 1 Introduction 3 1.1 Summary of the results...................................5 1.2 Overview...........................................5 2 Holomorphic quantum field theory7 2.1 The definition of a quantum field theory.........................9 2.1.1 Classical field theory................................9 2.1.2 Quantum field theory............................... 17 2.2 Holomorphic field theories................................ 21 2.2.1 The definition of a holomorphic theory..................... 22 2.2.2 Holomorphically translation invariant theories................. 29 2.3 Renormalization of holomorphic theories........................ 33 2.3.1 Holomorphic gauge fixing............................. 34 2.3.2 One-loop weights.................................. 36 2.3.3 A general result about chiral anomalies..................... 41 2.4 Equivariant BV quantization................................ 46 2.4.1 Classical equivariance............................... 48 2.4.2 Quantum equivariance............................... 48 2.4.3 The case of a local Lie algebra........................... 49 3 The holomorphic s-model 52 3.1 Gelfand-Kazhdan formal geometry............................ 55 3.1.1 A Harish-Chandra pair for the formal disk................... 55 3.1.2 Formal coordinates................................. 57 3.1.3 The category of formal vector bundles...................... 61 3.1.4 Gelfand-Kazhdan descent............................. 63 3.1.5 Formal characteristic classes........................... -
Topics in Complex & Hypercomplex Geometry
Topics in Complex & Hypercomplex Geometry Christopher Stover September 24, 2014 Contents List of Figures iii List of Tables iii 1 Introduction 1 2 Almost-Hypercomplex & Hypercomplex Geometry 1 2.1 Preliminaries and Basic Results . .1 2.2 Hyperk¨ahler& Locally Conformally Hyperk¨ahlerManifolds . .3 2.3 3-Sasakian Spaces . .5 2.4 Stiefel Manifolds . .8 2.4.1 Background, Preliminaries, and Some Geometry . .9 2.4.2 A Brief Detour for the Sake of Clifford . 11 2.4.3 Hypercomplex Structures on Stiefel Manifolds . 13 2.4.4 Hypercomplex Quotients and Structures on Circle Bundles . 16 2.5 Lie Groups & Lie Algebras . 23 2.5.1 Some Results on Lie Groups . 23 2.5.2 Some Results on Lie Algebras . 29 2.5.3 Lie Theory: Some Closing Remarks . 35 2.6 Conclusion and General Closing Remarks .................... 36 3 Some Stuff on Cliffordian Structures 37 3.1 Preliminaries, Definitions, and Notation . 37 3.2 \Flat" Cliffordian Structures and Related Topics . 38 3.2.1 Clifford Structures on Some Lie Groups . 40 3.2.2 Clifford Structures on Compact Flat Manifolds . 41 3.3 Clifford Structures on Riemannian Manifolds . 44 3.4 Miscellaneous Notions . 52 3.4.1 Clifford-K¨ahler . 52 3.4.2 Para-Hypercomplex Structures . 54 3.4.3 (Almost) Split Quaternion & Split Quaternion K¨ahlerStructures . 54 Appendix 1: Complex Geometry 55 1.1 General Preliminaries . 55 1.2 Algebraic Preliminaries . 56 1.3 Some Results . 58 Appendix 2: Various Other Preliminaries 61 2.1 Some Differential Geometry . 61 2.1.1 G-Structures . 61 2.1.2 Einstein Manifolds . -
Complex Geometry (Pdf)
Complex Geometry George Torres Fall 2020 Prof. Bernd Siebert 1 Introduction 3 2 Local Theory 4 2.1 Holomorphic functions of several variables . .4 2.2 Complex Vector Spaces . .9 n 2.3 The local ring OC ;0 .............................................9 2.4 Inverse and Implicit Function Theorems . 11 2.5 Analytic Sets: Local Finite Mappings and Dimension . 12 3 Complex Manifolds 15 3.1 Projective Space . 15 3.2 Non Algebraic Manifolds . 16 3.3 Complex Tori . 18 3.4 Holomorphic Group Actions . 20 3.5 Calculus on Complex Manifolds . 23 4 Vector Bundles and Sheaves 24 4.1 Holomorphic Vector Bundles . 24 4.2 Sheaves . 26 4.3 Sheaf Cohomology . 28 4.4 Divisors and Line Bundles . 29 4.5 Linear Systems and Maps to Pn ...................................... 30 5 Kähler Geometry 31 5.1 Hermitian Manifolds . 31 5.2 Kähler Manifolds . 33 5.3 The Kähler Identities . 35 5.4 Hodge Theory . 36 5.5 The @@¯-Lemma . 39 5.6 The Hard Lefschetz Theorem . 39 5.7 Formality of Kähler Manifolds . 41 6 Chern-Weil Theory 43 6.1 Connections and Curvature . 43 6.2 Chern Classes . 45 6.3 Interpretations of c1 on line bundles . 45 6.4 The Hirzebruch-Riemann-Roch Formula . 45 Last updated December 13, 2020 1 These are lecture notes from the Fall 2020 course M392C Complex Geometry at the University of Texas at Austin taught by Prof. Bernd Seibert. The prerequisites for following these notes is single variable complex analysis, manifold theory, (e.g. from Guillemin and Pollack), and some familiarity with commutative alge- bra, algebraic geometry, and sheaf theory.