Advanced Visualization and Interactive Applications in the Immersive Cabin

Total Page:16

File Type:pdf, Size:1020Kb

Advanced Visualization and Interactive Applications in the Immersive Cabin Advanced Visualization and Interactive Applications in the Immersive Cabin Kaloian Petkov and Arie Kaufman, Fellow, IEEE Department of Computer Science and CEWIT Stony Brook University Stony Brook, NY 11794-4400, USA [kpetkov,ari]@cs.stonybrook.edu Abstract— We present a visualization and interaction framework enclosed CAVEs exist [2], they present a number of for the Immersive Cabin (IC), which is a 5-wall CAVE-like engineering challenges that result in significant cost increases. immersive 3D environment. The back-end rendering is provided by a cluster of 5 workstations with 2 NVIDIA Quadro GPUs We have proposed and constructed the Immersive Cabin each. We utilize a pair of projectors for each wall and an external (IC) [3] as a robust and affordable design for a fully enclosed LCD shutter system that is synchronized with active stereo visualization environment. The IC consists of 4 projection glasses. Each workstation produces a synchronized pair of walls and a floor and the design is compatible with multiple stereoscopic images for a single wall in the IC. If only one GPU is projectors per surface and the new 120Hz stereo projectors. dedicated to rendering, the second one is utilized as a Our design utilizes an automatic door to provide access into the computational device using C/C++ and the NVIDIA CUDA IC, which compares favorably cost-wise with facilities that use extensions. In addition to the depth cues and surround immersion heavy duty machinery to move the back wall. Our facility has from the visualization system, we use wireless optical head and been used for a number of projects and in this paper we present hand tracking to further enhance the data exploration a summary of the advances in terms of the software framework, capabilities. Combined with a range of interaction and navigation the IC instruments and some of the applications. tools, our system can support a variety of interactive applications, including architectural and automotive pre-visualization, urban planning, medical imaging, and simulation and rendering of physical phenomena. II. EQUIPMENT AND CONSTRUCTION A. Immersive Cabin Keywords-Virtual Reality, CAVE, Immersive Cabin, GPU, Virtual Colonoscopy The IC is a compact, fully enclosed visualization environment with 5 projection surfaces and an automatic door I. INTRODUCTION as part of the back wall. Each projection node is equipped with The size of data has grown in recent years to the point the following: where traditional techniques for its visualization and analysis Dual Hitachi SXGA+ projectors are not sufficient. It is not uncommon to be presented with multi-gigabyte volumetric datasets from fluid dynamics Beacon SX+ shutter and synchronization simulations, high resolution CT scans, or data structures so complex that projections onto 2D display are ineffective. A IR emitter number of techniques have been developed for the The layout of the installation is illustrated in Fig. 1 and visualization of large-scale complex data. Facilities such as the additional details about the construction are available in the CAVE [1] and devices such as Head Mounted Displays paper by Qiu et al. [3]. The shutters in front of the projectors (HMDs) provide a much larger field of view into a virtual are connected to the Beacon system and operate at 120Hz. The environment and further improve the perception of spatial IR emitter is also connected to the Beacon system and allows relationships between data by utilizing stereoscopic rendering. for synchronization with the LCD shutter glasses. The 5 Despite their advantages, both solutions present a number of Beacon systems are daisy-chained so that all the shutters in the challenges that ultimately limit their appeal and traction outside IC are synchronized. Each pair of projectors is driven by a the visualization field. HMDs are usually bulky and heavily single workstation with two NVIDIA Quadro FX 4600 boards. wired, and although they present a visually unobstructed view Although perfect synchronization between the GPUs and the into the data, their usage is associated with eye strain, projectors is possible with the use of NVIDIA G-Sync boards, headaches and other medical issues. CAVEs on the other hand our setup can operate with software-based framelocking. The offer a more natural visualization environment that is amenable G-Sync boards are mandatory for installations without an to augmented reality applications. However, building fully external shutter system, e.g. when using native 120Hz enclosed facilities remains a challenge and many installations projectors for stereoscopic rendering. have a limited number of display surfaces. Although fully This work was partially supported by NSF grants CCF-0702699, CCF- 0448399, DMS-0528363, DMS-0626223, NIH grant CA082402, and the Center of Excellence in Wireless and Information Technology (CEWIT). Figure 2. Blue cloud represents the tracking coverage areas seen simultaneously by (left to right) 3, 6 and 8 cameras. The positions near the center of the IC that are seen by 6 cameras are optimal for head and gesture tracking since optical occlusions are minimized. C. Input Devices Our system supports standard input devices such as keyboards and mice, although they are not particularly suitable for the exploration of virtual environments. We primarily rely Figure 1. Diagram for an installation of the Immersive Cabin. on wireless gamepads as the main navigation tool and the framework currently supports the Logitech Rumblepad 2 and the Xbox 360 wireless controllers. In our experiments, the Our cluster contains a single head node which is 3DConnexion Space Navigator has provided superior responsible for managing all the machines and processing all performance for certain medical and architectural applications user interactions. In addition, we have a 32-node cluster with as it combines 6 degrees of freedom in a very intuitive and dual CPUs at each node and an NVIDIA Quadro FX 4500 compact device. However, in practice, the absence of native graphics board. These machines are not used for direct output wireless models greatly complicates the setup. to the projection surfaces in the IC and are instead dedicated to Our IR tracking system is deployed to provide a different off-line rendering and natural phenomena simulations. modality of user interactions. Head tracking is used to interact with the visual system directly by allowing the user unobstructed movement inside the volume of the IC. The B. Tracking System position and orientation of the user are both taken into account The IC utilizes an infrared tracking system from when rendering the virtual world, which allows, for example, NaturalPoint that contains 8 IR cameras with wide-angle peeking around a corner or simulating an object that is inside lenses, 2 synchronization hubs and the ARENA motion capture the IC. In addition, the tracking system allows the development software. The cameras are mounted along the top edge of the of a more intuitive user interface that relies on natural gestures IC walls and provide sufficient coverage for head and gesture instead of tracked devices. tracking throughout most of the interior space. The synchronization hubs are connected to the sync signal of the III. RENDERING FRAMEWORK Beacon shutter system so that the pulsed IR illumination from A. Framework Design the cameras does not interfere with the IR signal for the shutter glasses. We use between 3 and 5 markers to define rigid bodies Designing a flexible framework for distributed GPU for the tracking software and special care has to be taken so rendering is generally a challenging task. Compared to a that the marker arrangements are sufficiently different in the traditional 3D engine, our system needs to support a network of topological sense. For the LCD shutter glasses we use a 5 tape workstations with single or multiple rendering pipes, multiple marker pattern that reduces the occurrence of optical display surfaces per node and stereo rendering. Support for occlusions, while for other objects, 3 markers may be more traditional display layouts, such as multiple angled sufficient. In the case of hand gloves, protruding spherical monitors on a desk, is essential for debugging and application markers are used as occlusions prevent the efficient use of flat development. The Chromium library [4] provides support for tape markers. rendering on a cluster on nodes by directly manipulating the stream of rendering commands issued by a graphics API such Fig. 2 illustrates the coverage areas for tracking that we as OpenGL. A set of stream filters are used at each rendering achieve in the IC. The blue cloud represents the area that is node to create a parallel graphics system in which the seen by a specified number of cameras and we provide the visualization application is not necessarily aware of the results for coverage by 3, 6 and 8 cameras. A point needs to be underlying rendering platform. While this approach greatly seen by at least 3 cameras in order to obtain its position in 3D simplifies the process of creating Virtual Reality applications, space and a rigid body can contain between 3 and 6 points. network bandwidth becomes a major bottleneck with modern Although most of the volume in the IC is covered by at least 3 applications that may utilize hundreds of high resolution cameras, the illustration in Fig. 2 does not account for optical textures, advanced shaders and multiple rendering passes per occlusions which are a significant problem. Rather, we have frame [5]. CGLX [6] follows a similar approach by providing a optimized the camera placement for optimal tracking near the replacement for the OpenGL library that abstracts the center of the IC and towards the front screen. visualization surfaces. VRJuggler [7] and Equalizer [8] on the other hand operate at a higher level using a runtime library to manage multiple instances of the application on the cluster computers. With this approach, only the user input is transmitted over the network which results in significant bandwidth savings.
Recommended publications
  • GPU Developments 2018
    GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR.
    [Show full text]
  • Adding RTX Acceleration to Iray with Optix 7
    Adding RTX acceleration to Iray with OptiX 7 Lutz Kettner Director Advanced Rendering and Materials July 30th, SIGGRAPH 2019 What is Iray? Production Rendering on CUDA In Production since > 10 Years Bring ray tracing based production / simulation quality rendering to GPUs New paradigm: Push Button rendering (open up new markets) Plugins for 3ds Max Maya Rhino SketchUp … 2 SIMULATION QUALITY 3 iray legacy ARTISTIC FREEDOM 4 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good enough hacks to minimum • Brute force (spectral) simulation no intermediate filtering scale over multiple GPUs and hosts even in interactive use GTC 2014 19 VCA * 8 Q6000 GPUs 5 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good enough hacks to minimum • Brute force (spectral) simulation no intermediate filtering scale over multiple GPUs and hosts even in interactive use • Two-way path tracing from camera and (opt.) lights 6 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good enough hacks to minimum • Brute force (spectral) simulation no intermediate filtering scale over multiple GPUs and hosts even in interactive use • Two-way path tracing from camera and (opt.) lights • Use NVIDIA Material Definition Language (MDL) 7 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good
    [Show full text]
  • Conservation Cores: Reducing the Energy of Mature Computations
    Conservation Cores: Reducing the Energy of Mature Computations Ganesh Venkatesh Jack Sampson Nathan Goulding Saturnino Garcia Vladyslav Bryksin Jose Lugo-Martinez Steven Swanson Michael Bedford Taylor Department of Computer Science & Engineering University of California, San Diego fgvenkatesh,jsampson,ngouldin,sat,vbryksin,jlugomar,swanson,[email protected] Abstract power. Consequently, the rate at which we can switch transistors Growing transistor counts, limited power budgets, and the break- is far outpacing our ability to dissipate the heat created by those down of voltage scaling are currently conspiring to create a utiliza- transistors. tion wall that limits the fraction of a chip that can run at full speed The result is a technology-imposed utilization wall that limits at one time. In this regime, specialized, energy-efficient processors the fraction of the chip we can use at full speed at one time. Our experiments with a 45 nm TSMC process show that we can can increase parallelism by reducing the per-computation power re- 2 quirements and allowing more computations to execute under the switch less than 7% of a 300mm die at full frequency within an same power budget. To pursue this goal, this paper introduces con- 80W power budget. ITRS roadmap projections and CMOS scaling servation cores. Conservation cores, or c-cores, are specialized pro- theory suggests that this percentage will decrease to less than 3.5% cessors that focus on reducing energy and energy-delay instead of in 32 nm, and will continue to decrease by almost half with each increasing performance. This focus on energy makes c-cores an ex- process generation—and even further with 3-D integration.
    [Show full text]
  • The Growing Importance of Ray Tracing Due to Gpus
    NVIDIA Application Acceleration Engines advancing interactive realism & development speed July 2010 NVIDIA Application Acceleration Engines A family of highly optimized software modules, enabling software developers to supercharge applications with high performance capabilities that exploit NVIDIA GPUs. Easy to acquire, license and deploy (most being free) Valuable features and superior performance can be quickly added App’s stay pace with GPU advancements (via API abstraction) NVIDIA Application Acceleration Engines PhysX physics & dynamics engine breathing life into real-time 3D; Apex enabling 3D animators CgFX programmable shading engine enhancing realism across platforms and hardware SceniX scene management engine the basis of a real-time 3D system CompleX scene scaling engine giving a broader/faster view on massive data OptiX ray tracing engine making ray tracing ultra fast to execute and develop iray physically correct, photorealistic renderer, from mental images making photorealism easy to add and produce © 2010 Application Acceleration Engines PhysX • Streamlines the adoption of latest GPU capabilities, physics & dynamics getting cutting-edge features into applications ASAP, CgFX exploiting the full power of larger and multiple GPUs programmable shading • Gaining adoption by key ISVs in major markets: SceniX scene • Oil & Gas Statoil, Open Inventor management • Design Autodesk, Dassault Systems CompleX • Styling Autodesk, Bunkspeed, RTT, ICIDO scene scaling • Digital Content Creation Autodesk OptiX ray tracing • Medical Imaging N.I.H iray photoreal rendering © 2010 Accelerating Application Development App Example: Auto Styling App Example: Seismic Interpretation 1. Establish the Scene 1. Establish the Scene = SceniX = SceniX 2. Maximize interactive 2. Maximize data visualization quality + quad buffered stereo + CgFX + OptiX + volume rendering + ambient occlusion 3.
    [Show full text]
  • RTX Beyond Ray Tracing
    RTX Beyond Ray Tracing Exploring the Use of Hardware Ray Tracing Cores for Tet-Mesh Point Location -Now, let’s run a lot of experiments … I Wald (NVIDIA), W Usher, N Morrical, L Lediaev, V Pascucci (University of Utah) Motivation – What this is about - In this paper: We accelerate Unstructured-Data (Tet Mesh) Volume Ray Casting… NVIDIA Confidential Motivation – What this is about - In this paper: We accelerate Unstructured-Data (Tet Mesh) Volume Ray Casting… - But: This is not what this is (primarily) about - Volume rendering is just a “proof of concept”. - Original question: “What else” can you do with RTX? - Remember the early 2000’s (e.g., “register combiners”): Lots of innovation around “using graphics hardware for non- graphics problems”. - Since CUDA: Much of that has been subsumed through CUDA - Today: Now that we have new hardware units (RTX, Tensor Cores), what else could we (ab-)use those for? (“(ab-)use” as in “use for something that it wasn’t intended for”) NVIDIA Confidential Motivation – What this is about - In this paper: We accelerate Unstructured-Data (Tet Mesh) Volume Ray Casting… - But: This is not what this is (primarily) about - Volume rendering is just a “proof of concept”. - Original question: “What else” can you do with RTX? - Remember the early 2000’s (e.g., “register combiners”): Lots of innovation around “using graphics hardware for non- graphics →problems”.Two main goal(s) of this paper: -a)SinceGet CUDA: readers Much ofto that think has beenabout subsumed the “what through else”s CUDA… - Today: Nowb) Showthat
    [Show full text]
  • Nvidia® Gelato™ 1.0 Hardware
    NVIDIA GELATO PRODUCT OVERVIEW APRIL04v01 NVIDIA® GELATO™ 1.0 HARDWARE- Key to this doctrine of no compromises is Gelato’s new shading language incorporates a ACCELERATED FINAL-FRAME RENDERER Gelato’s use of NVIDIA graphics hardware. simple and streamlined syntax based on C, Gelato is breakthrough, rendering software Gelato uses the NVIDIA Quadro FX as a second making it familiar and easy for most from NVIDIA, designed with a new architecture floating-point processor, taking advantage of programmers to learn and allowing for state- that leverages advances in mainstream graphics the 3D engine in ways far beyond gameplay. of-the-art shader-specific types and hardware to accelerate film-quality rendering. Gelato is one of the first in a wave of software functions. Gelato ships with an extensive This software renderer takes advantage of the applications that use the graphics hardware as set of shader libraries and examples. programmability, precision, performance, and an off-line processor, a “floating-point Gelato is available with a world-class quality of NVIDIA Quadro® FX professional supercomputer on a chip,” and not simply to support package, backed by NVIDIA, graphics solutions to render imagery of manage the display. the global leader in 3D graphics. uncompromising quality at unheard-of speeds. FAST AND GETTING FASTER The annual support package includes Gelato offers all the features film and television all product updates and upgrades. customers demand today and is flexible and Gelato unleashes the processing power of the extensible enough to satisfy their future graphics hardware that currently sits idle on LOOKING TO THE FUTURE requirements.
    [Show full text]
  • RTX-Accelerated Hair Brought to Life with NVIDIA Iray (GTC 2020 S22494)
    RTX-accelerated Hair brought to Life with NVIDIA Iray (GTC 2020 S22494) Carsten Waechter, March 2020 What is Iray? Production Rendering on CUDA In Production since > 10 Years Bring ray tracing based production / simulation quality rendering to GPUs New paradigm: Push Button rendering (open up new markets) Plugins for 3ds Max Maya Rhino SketchUp … … … 2 What is Iray? NVIDIA testbed and inspiration for new tech NVIDIA Material Definition Language (MDL) evolved from internal material representation into public SDK NVIDIA OptiX 7 co-development, verification and guinea pig NVIDIA RTX / RT Cores scene- and ray-dumps to drive hardware requirements NVIDIA Maxwell…NVIDIA Turing (& future) enhancements profiling/experiments resulting in new features/improvements Design and test/verify NVIDIA’s new Headquarter (in VR) close cooperation with Gensler 3 Simulation Quality 4 iray legacy Artistic Freedom 5 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good enough hacks to minimum • Brute force (spectral) simulation no intermediate filtering scale over multiple GPUs and hosts even in interactive use • Two-way path tracing from camera and (opt.) lights • Use NVIDIA Material Definition Language (MDL) • NVIDIA AI Denoiser to clean up remaining noise 6 How Does it Work? 99% physically based Path Tracing To guarantee simulation quality and Push Button • Limit shortcuts and good enough hacks to minimum • Brute force (spectral) simulation no intermediate filtering scale over multiple
    [Show full text]
  • FCM 61 Italiano
    Full Circle LA RIVISTA INDIPENDENTE PER LA COMUNITÀ LINUX UBUNTU Numero #61 - Maggio 2012 AUDIO FLUX NUOVA SEZIONE MUSICA GRATIS IN CC foto: downhilldom1984 (Flickr.com) CCOOPPIIAA EE CCOODDIIFFIICCAA DDII DDVVDD QQUUAATTTTRROO SSIISSTTEEMMII CCRROONNOOMMEETTRRAATTII EE PPRROOVVAATTII full circle magazine n.61 1 Full Circle magazine non è affiliata né sostenuta da Canonical Ltd. indice ^ HowTo Full Circle Opinioni LA RIVISTA INDIPENDENTE PER LA COMUNITÀ LINUX UBUNTU Python-Parte33 p.07 Rubriche LaMiaStoria p.38 UsareilcomandoTOP p.10 NotizieLinux p.04 AudioFlux p.52 LaMiaOpinione p.42 VirtualBoxNetworking p.15 Comanda&Conquista p.05 GiochiUbuntu p.53 IoPensoChe... p.43 GIMP-BeanstalkParte 2 p.21 LinuxLabs p.29 D&R p.50 RecensioneLibro p.45 Torna Prossimo Mese Inkscape-Parte1 p.24 DonneUbuntu p.XX Chiuderele«Finestre» p.32 Lettere p.46 Grafica Gli articoli contenuti in questa rivista sono stati rilasciati sotto la licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 3.0. Ciò significa che potete adattare, copiare, distribuire e inviare gli articoli ma solo sotto le seguenti condizioni: dovete attribuire il lavoro all'autore originale in una qualche forma (almeno un nome, un'email o un indirizzo Internet) e a questa rivista col suo nome ("Full Circle Magazine") e con il suo indirizzo Internet www.fullcirclemagazine.org (ma non attribuire il/gli articolo/i in alcun modo che lasci intendere che gli autori e la rivista abbiano esplicitamente autorizzato voi o l'uso che fate dell'opera). Se alterate, trasformate o create un'opera su questo lavoro dovete distribuire il lavoro risultante con la stessa licenza o una simile o compatibile.
    [Show full text]
  • An Advanced Path Tracing Architecture for Movie Rendering
    RenderMan: An Advanced Path Tracing Architecture for Movie Rendering PER CHRISTENSEN, JULIAN FONG, JONATHAN SHADE, WAYNE WOOTEN, BRENDEN SCHUBERT, ANDREW KENSLER, STEPHEN FRIEDMAN, CHARLIE KILPATRICK, CLIFF RAMSHAW, MARC BAN- NISTER, BRENTON RAYNER, JONATHAN BROUILLAT, and MAX LIANI, Pixar Animation Studios Fig. 1. Path-traced images rendered with RenderMan: Dory and Hank from Finding Dory (© 2016 Disney•Pixar). McQueen’s crash in Cars 3 (© 2017 Disney•Pixar). Shere Khan from Disney’s The Jungle Book (© 2016 Disney). A destroyer and the Death Star from Lucasfilm’s Rogue One: A Star Wars Story (© & ™ 2016 Lucasfilm Ltd. All rights reserved. Used under authorization.) Pixar’s RenderMan renderer is used to render all of Pixar’s films, and by many 1 INTRODUCTION film studios to render visual effects for live-action movies. RenderMan started Pixar’s movies and short films are all rendered with RenderMan. as a scanline renderer based on the Reyes algorithm, and was extended over The first computer-generated (CG) animated feature film, Toy Story, the years with ray tracing and several global illumination algorithms. was rendered with an early version of RenderMan in 1995. The most This paper describes the modern version of RenderMan, a new architec- ture for an extensible and programmable path tracer with many features recent Pixar movies – Finding Dory, Cars 3, and Coco – were rendered that are essential to handle the fiercely complex scenes in movie production. using RenderMan’s modern path tracing architecture. The two left Users can write their own materials using a bxdf interface, and their own images in Figure 1 show high-quality rendering of two challenging light transport algorithms using an integrator interface – or they can use the CG movie scenes with many bounces of specular reflections and materials and light transport algorithms provided with RenderMan.
    [Show full text]
  • NVIDIA Ampere GA102 GPU Architecture Whitepaper
    NVIDIA AMPERE GA102 GPU ARCHITECTURE Second-Generation RTX Updated with NVIDIA RTX A6000 and NVIDIA A40 Information V2.0 Table of Contents Introduction 5 GA102 Key Features 7 2x FP32 Processing 7 Second-Generation RT Core 7 Third-Generation Tensor Cores 8 GDDR6X and GDDR6 Memory 8 Third-Generation NVLink® 8 PCIe Gen 4 9 Ampere GPU Architecture In-Depth 10 GPC, TPC, and SM High-Level Architecture 10 ROP Optimizations 11 GA10x SM Architecture 11 2x FP32 Throughput 12 Larger and Faster Unified Shared Memory and L1 Data Cache 13 Performance Per Watt 16 Second-Generation Ray Tracing Engine in GA10x GPUs 17 Ampere Architecture RTX Processors in Action 19 GA10x GPU Hardware Acceleration for Ray-Traced Motion Blur 20 Third-Generation Tensor Cores in GA10x GPUs 24 Comparison of Turing vs GA10x GPU Tensor Cores 24 NVIDIA Ampere Architecture Tensor Cores Support New DL Data Types 26 Fine-Grained Structured Sparsity 26 NVIDIA DLSS 8K 28 GDDR6X Memory 30 RTX IO 32 Introducing NVIDIA RTX IO 33 How NVIDIA RTX IO Works 34 Display and Video Engine 38 DisplayPort 1.4a with DSC 1.2a 38 HDMI 2.1 with DSC 1.2a 38 Fifth Generation NVDEC - Hardware-Accelerated Video Decoding 39 AV1 Hardware Decode 40 Seventh Generation NVENC - Hardware-Accelerated Video Encoding 40 NVIDIA Ampere GA102 GPU Architecture ii Conclusion 42 Appendix A - Additional GeForce GA10x GPU Specifications 44 GeForce RTX 3090 44 GeForce RTX 3070 46 Appendix B - New Memory Error Detection and Replay (EDR) Technology 49 Appendix C - RTX A6000 GPU Perf ormance 50 List of Figures Figure 1.
    [Show full text]
  • Nx Witness User Manual Contents
    User Manual Still need help? Visit us at http://support.networkoptix.com Nx Witness User Manual Contents Table of Contents Working with Nx Witness 1 Opening................................................................................................................................... and Closing Nx Witness Client 1 Connecting................................................................................................................................... to Nx Witness via Web-Client 3 Connecting................................................................................................................................... to Enterprise Controller and Working Offline 4 Launching................................................................................................................................... Nx Witness in Compatibility Mode 7 Introducing................................................................................................................................... User Roles 8 Nx Witness................................................................................................................................... User Interface Overview 9 Main Menu .......................................................................................................................................................... 10 Show ing and ..........................................................................................................................................................Hiding Side Panels 11 Tabs and Layouts.........................................................................................................................................................
    [Show full text]
  • The Utilization Wall
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Configurable energy-efficient co-processors to scale the utilization wall Permalink https://escholarship.org/uc/item/3g99v4qd Author Venkatesh, Ganesh Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Configurable Energy-efficient Co-processors to Scale the Utilization Wall A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Computer Science by Ganesh Venkatesh Committee in charge: Professor Steven Swanson, Co-Chair Professor Michael Taylor, Co-Chair Professor Pamela Cosman Professor Rajesh Gupta Professor Dean Tullsen 2011 Copyright Ganesh Venkatesh, 2011 All rights reserved. The dissertation of Ganesh Venkatesh is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Co-Chair University of California, San Diego 2011 iii DEDICATION To my dear parents and my loving wife. iv EPIGRAPH The lurking suspicion that something could be simplified is the world's richest source of rewarding challenges. |Edsger Dijkstra v TABLE OF CONTENTS Signature Page.................................. iii Dedication..................................... iv Epigraph.....................................v Table of Contents................................. vi List of Figures.................................. ix List of Tables................................... xi Acknowledgements...............................
    [Show full text]