Predictive Analytics Using R

Total Page:16

File Type:pdf, Size:1020Kb

Predictive Analytics Using R Predictive Analytics using R Dr. Jeffrey Strickland is a Senior Predictive Analytics Consultant with over 20 years of Predictive Analytics expereince in multiple industiries including financial, insurance, defense and NASA. He is a subject matter expert on mathematical and statistical modeling, as well as machine using R learning. He has published numerous books on modeling and simulation. Dr. Strickland resides in Colorado. This book is about predictive analytics. Yet, each chapter could easily be handled by an entire volume of its own. So one might think of this a survey of predictive modeling, both statistical (parametric and nonparametric), as well as machine learning. We define predictive model as a statistical model or machine learning model used to predict future behavior based on past behavior. In order to use this book, one should have a basic understanding of mathematical statistics (statistical inference, models, tests, etc.) — this is an advanced book. Some theoretical foundations are laid out (perhaps subtlety) but not proven, but references are provided for additional coverage. Every chapter culminates in an example using R. R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To download R, please choose your preferred CRAN mirror at http://www.r-project.org/. An introduction to R is also available at http://cran.r-project.org /doc/manuals/r-release/R-intro.html. The book is organized so that statistical models are presented first (hopefully in a logical order), followed by machine learning models, and then applications: uplift modeling and time series. One could use this a textbook with problem solving in R—but there are no “by-hand” exercises. Jeffrey Strickland Jeffrey Strickland ISBN 978-1-312-84101-7 90000 ID: 16206475 www.lulu.com 7813129 841017 Predictive Analytics using R By Jeffrey S. Strickland Simulation Educators Colorado Springs, CO Predictive Analytics using R Copyright 2014 by Jeffrey S. Strickland. All rights Reserved ISBN 978-1-312-84101-7 Published by Lulu, Inc. All Rights Reserved Acknowledgements The author would like to thank colleagues Adam Wright, Adam Miller, Matt Santoni. Working with them over the past two years has validated the concepts presented herein. A special thanks to Dr. Bob Simmonds, who mentored me as a senior operations research analyst. v vi Contents Acknowledgements ................................................................................. v Contents ................................................................................................. vii Preface ................................................................................................. xxv More Books by the Author .................................................................xxvii 1. Predictive analytics ............................................................................ 1 Business Analytics ............................................................................. 1 Types ................................................................................................. 2 Descriptive analytics ................................................................... 2 Predictive analytics ..................................................................... 2 Prescriptive analytics .................................................................. 3 Applications ................................................................................ 3 Definition ........................................................................................... 3 Not Statistics...................................................................................... 4 Types ................................................................................................. 4 Predictive models ....................................................................... 5 Descriptive models ..................................................................... 6 Decision models .......................................................................... 6 Applications ....................................................................................... 6 Analytical customer relationship management (CRM) ............... 6 Clinical decision support systems ............................................... 7 Collection analytics ..................................................................... 7 Cross-sell ..................................................................................... 8 Customer retention .................................................................... 8 vii Direct marketing ......................................................................... 8 Fraud detection .......................................................................... 9 Portfolio, product or economy-level prediction ....................... 10 Risk management ..................................................................... 10 Underwriting ............................................................................. 10 Technology and big data influences ................................................ 11 Analytical Techniques ...................................................................... 11 Regression techniques .............................................................. 12 Machine learning techniques ................................................... 19 Tools ................................................................................................ 22 Notable open source predictive analytic tools include: ........... 22 Notable commercial predictive analytic tools include: ............ 23 PMML ........................................................................................ 23 Criticism ........................................................................................... 24 2. Predictive modeling......................................................................... 25 Propensity Models .......................................................................... 25 Cluster Models ................................................................................ 28 Conclusion ....................................................................................... 30 Presenting and Using the Results of a Predictive Model ................ 31 Applications ..................................................................................... 32 Uplift Modeling ......................................................................... 32 Archaeology .............................................................................. 32 Customer relationship management ........................................ 33 Auto insurance .......................................................................... 33 Health care ................................................................................ 34 viii Notable failures of predictive modeling .......................................... 34 Possible fundamental limitations of predictive model based on data fitting ............................................................................................... 35 Software .......................................................................................... 35 Open Source.............................................................................. 36 Commercial ............................................................................... 37 Introduction to R ............................................................................. 38 3. Modeling Techniques ...................................................................... 41 Statistical Modeling ......................................................................... 41 Formal definition ...................................................................... 42 Model comparison .................................................................... 42 An example ............................................................................... 43 Classification ............................................................................. 43 Machine Learning ............................................................................ 44 Types of problems/tasks ........................................................... 44 Approaches ............................................................................... 46 Applications .............................................................................. 50 4. Empirical Bayes method .................................................................. 53 Introduction ..................................................................................... 53 Point estimation .............................................................................. 55 Robbins method: non-parametric empirical Bayes (NPEB) ...... 55 Example - Accident rates .......................................................... 56 Parametric empirical Bayes ...................................................... 57 Poisson–gamma model ............................................................. 57 Bayesian Linear Regression ....................................................... 58 Software .......................................................................................... 60 ix Example Using R .............................................................................. 60 Model Selection in Bayesian Linear Regression ....................... 60 Model Evaluation .....................................................................
Recommended publications
  • Tarjan Transcript Final with Timestamps
    A.M. Turing Award Oral History Interview with Robert (Bob) Endre Tarjan by Roy Levin San Mateo, California July 12, 2017 Levin: My name is Roy Levin. Today is July 12th, 2017, and I’m in San Mateo, California at the home of Robert Tarjan, where I’ll be interviewing him for the ACM Turing Award Winners project. Good afternoon, Bob, and thanks for spending the time to talk to me today. Tarjan: You’re welcome. Levin: I’d like to start by talking about your early technical interests and where they came from. When do you first recall being interested in what we might call technical things? Tarjan: Well, the first thing I would say in that direction is my mom took me to the public library in Pomona, where I grew up, which opened up a huge world to me. I started reading science fiction books and stories. Originally, I wanted to be the first person on Mars, that was what I was thinking, and I got interested in astronomy, started reading a lot of science stuff. I got to junior high school and I had an amazing math teacher. His name was Mr. Wall. I had him two years, in the eighth and ninth grade. He was teaching the New Math to us before there was such a thing as “New Math.” He taught us Peano’s axioms and things like that. It was a wonderful thing for a kid like me who was really excited about science and mathematics and so on. The other thing that happened was I discovered Scientific American in the public library and started reading Martin Gardner’s columns on mathematical games and was completely fascinated.
    [Show full text]
  • Ethical Considerations Concerning Predictive Analytics, AI, Machine Learning, and Consumer Data
    Ethical considerations concerning predictive analytics, AI, machine learning, and consumer data Presented at the 2019 RESO Fall Conference by: David Gumpper, Head of Technology Consulting at WAV Group & Founder/CEO at Gumpper Group, LLC and Eric Bryn, Broker at Baird & Warner And here's the latest from the WSJ...a Chinese insurance firm using facial recognition tech to help determine insurance rates...could this happen in the U.S.? Would we even know? What if this happened in the U.S.? It's really no different than interrogation techniques and insights that are taught by the FBI to local and state and federal investigators? It's just simple neurolinguistic analysis...what's the problem with this? Interesting thoughts to ponder as we explore the outer edges of this issue... What does your face reveal about how big of a financial risk you are? One of the world’s largest insurers thinks the answer is quite a bit. It is using facial-recognition technology on potential customers as part of its efforts to assess risk when it sells them financial products Ping An Insurance Group Co., China’s largest insurer and one of the country’s largest financial conglomerates, routinely scans the faces of customers and its own agents to verify their identities or examine their expressions for clues about their truthfulness. Since 2016, the company has used its proprietary technology to screen individuals applying for loans at its consumer-finance arm. “Micro expressions,” or brief, small and often involuntary movements on people’s faces, are one area of focus the company has been analyzing.
    [Show full text]
  • Qualitative and Quantitative Security Analyses for Zigbee Wireless Sensor Networks
    Downloaded from orbit.dtu.dk on: Sep 27, 2018 Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Yuksel, E., Nielson, H. R., & Nielson, F. (2011). Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks. Kgs. Lyngby, Denmark: Technical University of Denmark (DTU). (IMM-PHD-2011; No. 247). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Qualitative and Quantitative Security Analyses for ZigBee Wireless Sensor Networks Ender Y¨uksel Kongens Lyngby 2011 IMM-PHD-2011-247 Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk IMM-PHD: ISSN 0909-3192 Summary Wireless sensor networking is a challenging and emerging technology that will soon become an inevitable part of our modern society.
    [Show full text]
  • Applying Regression Techniques for Predictive Analytics Paviya George Chemparathy 1
    Applying Regression Techniques For Predictive Analytics Paviya George Chemparathy 1. Introduction AGENDA 2. Use Cases 3. Popular Algorithms 4. Typical Approach 5. Case Study © 2016 SAPIENT GLOBAL MARKETS | CONFIDENTIAL 2 Introduction “Predictive Analytics is an area of data mining that deals with extracting information from data and using it to predict trends and behavior patterns.” © 2016 SAPIENT GLOBAL MARKETS | CONFIDENTIAL 3 Predictive Analytics Use Cases Popular use cases Use Case Analytics Examples Types Technique Predict a • What is the likely reason for a customer support call? Classification category • Which transactions are likely to be fraud? Predict a • Energy demand forecasting Regression value • Predict next day stock price Identify • Customer Segmentation Clustering similar • News Clustering groups Co- Association • What items are commonly purchased together? occurrence analysis (Cross-selling opportunities) Grouping © 2016 SAPIENT GLOBAL MARKETS | CONFIDENTIAL 4 Popular Algorithms Algorithms for Predictive Analytics Supervised Unsupervised Regression • Linear Regression Clustering • Polynomial Regression • K-Means • Ridge, LASSO • DBScan • ARIMA • SVR Continuous • Regression Trees Classification Association Analysis • KNN • Apriori • Decision Tree • FP-Growth • Logistic Regression • Naïve Bayes • SVM Categorical • RandomForest • XGBoost © 2016 SAPIENT GLOBAL MARKETS | CONFIDENTIAL 5 Typical Approach Modelling & Data Understanding Data Preparation Evaluation Analyze and Construct a dataset Build and evaluate document available
    [Show full text]
  • Artificial Intelligence and Machine Learning
    ISSUE 1 · 2018 TECHNOLOGY TODAY Highlighting Raytheon’s Engineering & Technology Innovations SPOTLIGHT EYE ON TECHNOLOGY SPECIAL INTEREST Artificial Intelligence Mechanical the invention engine Raytheon receives the 10 millionth and Machine Learning Modular Open Systems U.S. Patent in history at raytheon Architectures Discussing industry shifts toward open standards designs A MESSAGE FROM Welcome to the newly formatted Technology Today magazine. MARK E. While the layout has been updated, the content remains focused on critical Raytheon engineering and technology developments. This edition features Raytheon’s advances in Artificial Intelligence RUSSELL and Machine Learning. Commercial applications of AI and ML — including facial recognition technology for mobile phones and social applications, virtual personal assistants, and mapping service applications that predict traffic congestion Technology Today is published by the Office of — are becoming ubiquitous in today’s society. Furthermore, ML design Engineering, Technology and Mission Assurance. tools provide developers the ability to create and test their own ML-based applications without requiring expertise in the underlying complex VICE PRESIDENT mathematics and computer science. Additionally, in its 2018 National Mark E. Russell Defense Strategy, the United States Department of Defense has recognized the importance of AI and ML as an enabler for maintaining CHIEF TECHNOLOGY OFFICER Bill Kiczuk competitive military advantage. MANAGING EDITORS Raytheon understands the importance of these technologies and Tony Pandiscio is applying AI and ML to solutions where they provide benefit to our Tony Curreri customers, such as in areas of predictive equipment maintenance, SENIOR EDITORS language classification of handwriting, and automatic target recognition. Corey Daniels Not only does ML improve Raytheon products, it also can enhance Eve Hofert our business operations and manufacturing efficiencies by identifying DESIGN, PHOTOGRAPHY AND WEB complex patterns in historical data that result in process improvements.
    [Show full text]
  • Predictive Analytics in Forecasting
    PREDICTIVE ANALYTICS IN FORECASTING A Senior Project submitted to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Industrial Engineering by Matthew Suarez March 2017 PREDICTIVE ANALYTICS IN FORECASTING Matthew Suarez ______________________________________________________________________ ABSTRACT ______________________________________________________________________ Predicting future demand can be of tremendous help to businesses in scheduling and allocating appropriate amounts of material and labor. The more accurate these predictions are, the more the business will save money by matching supply with demand as closely as possible. The approach for an accurate forecast, and the goal of this project, involves using data analytics techniques on past historical sales data. Working with Campus Dining, a year's worth of their daily sales data will be analyzed and ultimately used for the end result of both an accurate forecasting technique and a way to display the results in a user friendly manner. The feasibility and effectiveness of doing so will be determined at the end of this project. 2 ACKNOWLEDGMENTS Special acknowledgments to all of my teachers of whom have helped me, guided me, and aspired me to reach higher And to my family for their boundless love and support 3 TABLE OF CONTENTS LIST OF FIGURES---------------------------------------------------------------------------------------5 I. Introduction----------------------------------------------------------------------------------------6
    [Show full text]
  • Predictive Analytics Tools and Techniques
    Global Journal of Finance and Management. ISSN 0975-6477 Volume 6, Number 1 (2014), pp. 59-66 © Research India Publications http://www.ripublication.com Predictive Analytics Tools and Techniques 1 2 3 Mr. Chandrashekar G , Dr. N V R Naidu and Dr. G S Prakash 1Student, M. Tech, Department of Industrial Engineering & Management, M S Ramaiah Institute of Technology, Bangalore, Karnataka 2Professor & Head of Department, Department of Mechanical Engineering, M S Ramaiah Institute of Technology, Bangalore, Karnataka 3Professor & Head of Department, Department of Industrial Engineering & Management, M S Ramaiah Institute of Technology, Bangalore, Karnataka E-mail: [email protected], [email protected] , [email protected] Abstract Predictive Analytics is the decision science that eliminates guesswork out of the decision making process and applies proven scientific guidelines to find right solutions. The central element of Predictive Analytics is the predictor, a variable that can be measured and used to predict future behaviour. The Predictive Analytics generally incorporates the steps of Project definition, Data collection and Data understanding, Data preparation, model building, Deployment and Model Management. Predictive Analytics is the form of data mining concerned with the prediction of future probabilities and trends. In manufacturing sector, Predictive Analytics is an essential strategy to improve customer satisfaction by minimizing downtime while reducing service and repair cost. The data itself is getting smarter, instantly knowing which users it needs to reach and what actions need to be taken with the aid of Predictive Analytics. The technique through the collection, ingestion and persistence helps to uncover and pinpoint the failure patterns and build causal relationship over a large population of equipments leading to unit level failure prediction.
    [Show full text]
  • Predictive Analytics in Health Care Emerging Value and Risks Abstract
    101010 010110010 1010101001100 101010100 11001100 010 010 11001 11 11 011001 10 010 1000 10 01 0110 10 01 0110 10 01 01 0 1 01 1 10 00 10 0 11 0 1 0000 1 00 11 0 1 00 0 0 11 1 1 00 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 0 1 Predictive analytics in health care Emerging value and risks Abstract Technology is playing an integral role in health care worldwide as predictive analytics has become increasingly useful in operational management, personal medicine, and epidemiology.
    [Show full text]
  • Finding Rising Stars in Co-Author Networks Via Weighted Mutual Influence
    Finding Rising Stars in Co-Author Networks via Weighted Mutual Influence Ali Daud a,b Naif Radi Aljohani a Rabeeh Ayaz Abbasi a,c a Faculty of Computing and a Faculty of Computing and c Department of Computer Science, Information Technology, King Information Technology, King Quaid-i-Azam University, Islamabad, Abdulaziz University, Jeddah, Saudi Abdulaziz University, Jeddah, Saudi Pakistan Arabia Arabia [email protected] [email protected] [email protected] b b d Zahid Rafique Tehmina Amjad Hussain Dawood b Department of Computer Science b Department of Computer Science d Faculty of Computing and and Software Engineering, and Software Engineering, Information Technology, University International Islamic University, International Islamic University, of Jeddah, Jeddah, Saudi Arabia Islamabad, Pakistan Islamabad, Pakistan [email protected] [email protected] [email protected] a Khaled H. Alyoubi a Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia [email protected] ABSTRACT KEYWORDS Finding rising stars is a challenging and interesting task which is Bibliographic databases; Citations; Author Order; Rising Stars; Mutual being investigated recently in co-author networks. Rising stars are Influence; Co-Author Networks authors who have a low research profile in the start of their career but may become experts in the future. This paper introduces a new method Weighted Mutual Influence Rank (WMIRank) for finding 1. INTRODUCTION rising stars. WMIRank exploits influence of co-authors’ citations, The rapid evolution of scientific research has created large order of appearance and publication venues. Comprehensive volumes of publications every year, and is expected to continue in experiments are performed to analyze the performance of near future [21].
    [Show full text]
  • Moshe Y. Vardi
    MOSHE Y. VARDI Address Office Home Department of Computer Science 4515 Merrie Lane Rice University Bellaire, TX 77401 P.O.Box 1892 Houston, TX 77251-1892 Tel: (713) 348-5977 Tel: (713) 665-5900 Fax: (713) 348-5930 Fax: (713) 665-5900 E-mail: [email protected] URL: http://www.cs.rice.edu/∼vardi Research Interests Applications of logic to computer science: • database systems • complexity theory • multi-agent systems • specification and verification of hardware and software Education Sept. 1974 B.Sc. in Physics and Computer Science (Summa cum Laude), Bar-Ilan University, Ramat Gan, Israel May 1980 M.Sc. in Computer Science, The Feinberg Graduate School, The Weizmann Insti- tute of Science, Rehovoth, Israel Thesis: Axiomatization of Functional and Join Dependencies in the Relational Model. Advisors: Prof. C. Beeri (Hebrew University) Prof. P. Rabinowitz Sept 1981 Ph.D. in Computer Science, Hebrew University, Jerusalem, Israel Thesis: The Implication Problem for Data Dependencies in the Relational Model. Advisor: Prof. C. Beeri Professional Experience Nov. 1972 – June 1973 Teaching Assistant, Dept. of Mathematics, Bar-Ilan University. Course: Introduction to computing. 1 Nov. 1978 – June 1979 Programmer, The Weizmann Institute of Science. Assignments: implementing a discrete-event simulation package and writing input-output routines for a database management system. Feb. 1979 – Oct. 1980 Research Assistant, Inst. of Math. and Computer Science, The Hebrew University of Jerusalem. Research subject: Theory of data dependencies. Nov. 1980 – Aug. 1981 Instructor, Inst. of Math. and Computer Science, The Hebrew University of Jerusalem. Course: Advanced topics in database theory. Sep. 1981 – Aug. 1983 Postdoctoral Scholar, Dept. of Computer Science, Stanford Univer- sity.
    [Show full text]
  • Michael Oser Rabin Automata, Logic and Randomness in Computation
    Michael Oser Rabin Automata, Logic and Randomness in Computation Luca Aceto ICE-TCS, School of Computer Science, Reykjavik University Pearls of Computation, 6 November 2015 \One plus one equals zero. We have to get used to this fact of life." (Rabin in a course session dated 30/10/1997) Thanks to Pino Persiano for sharing some anecdotes with me. Luca Aceto The Work of Michael O. Rabin 1 / 16 Michael Rabin's accolades Selected awards and honours Turing Award (1976) Harvey Prize (1980) Israel Prize for Computer Science (1995) Paris Kanellakis Award (2003) Emet Prize for Computer Science (2004) Tel Aviv University Dan David Prize Michael O. Rabin (2010) Dijkstra Prize (2015) \1970 in computer science is not classical; it's sort of ancient. Classical is 1990." (Rabin in a course session dated 17/11/1998) Luca Aceto The Work of Michael O. Rabin 2 / 16 Michael Rabin's work: through the prize citations ACM Turing Award 1976 (joint with Dana Scott) For their joint paper \Finite Automata and Their Decision Problems," which introduced the idea of nondeterministic machines, which has proved to be an enormously valuable concept. ACM Paris Kanellakis Award 2003 (joint with Gary Miller, Robert Solovay, and Volker Strassen) For \their contributions to realizing the practical uses of cryptography and for demonstrating the power of algorithms that make random choices", through work which \led to two probabilistic primality tests, known as the Solovay-Strassen test and the Miller-Rabin test". ACM/EATCS Dijkstra Prize 2015 (joint with Michael Ben-Or) For papers that started the field of fault-tolerant randomized distributed algorithms.
    [Show full text]
  • Uplift Modeling in Retail Marketing Using SAS
    Uplift Modeling in Retail Marketing using SAS Aashish Arjun Bugalia, Oklahoma State University, Stillwater, OK Agastya Komarraju, Oklahoma State University, Stillwater, OK Abstract Direct marketing campaigns are often targeted to randomly selected customers which results in huge costs for the company. Also, such campaigns result in customer frustration and makes them less likely to react to further communications in future. Companies involved in direct marketing campaigns often use a random response model to target customers for the campaigns. An alternative approach can be through uplift modeling - precise targeting of the beneficial customers resulting in greater return on invested money and resources by the company. Based on the marketing and finance literature, this article looks at high prediction accuracy for the probability of purchase based on a sample of customers, to whom a pilot campaign has been sent. Uplift modeling analyzes the causal effect of an action such as a marketing campaign on a given individual by considering difference in response rate between a treated group and a randomized control group. The resulting model can then be used to select individuals for whom the action will be most profitable. This article aims at predicting beneficial customers to an online retailer with the implementation of several statistical, machine learning and deep learning methods in SAS. Through above-mentioned methods this paper will also help to know effectiveness of the campaign by determining incremental gains, thus resulting in greater return on invested money and resources by the company. Keywords: Direct marketing, Uplift Modeling, Decision Tree, Logistic Regression, Random Forest, Neural network, Decision tree, Ensemble methods 1 Introduction A marketing campaign comprises of a time bound offer sent to a specific set of people to observe a specific behavior and has a specific reward attached to it.
    [Show full text]