SPOM5 Jinni Nationa

Total Page:16

File Type:pdf, Size:1020Kb

SPOM5 Jinni Nationa D00052MT 225012 10 175 690 SE 029 6713 AOT101 Schaaf, Villias L., Ed. TITLE Reprint Series: What is Contemporary Mathematics. RS-3. IMSTITOTIOM Stanford Univ., Calif. School Mathematics Study Group. SPOM5 Jinni Nationa. :Lance Foundation, Washington, D.C. P08 DATE 66 lorE 41p.: For related documents, see SE 029 676-690 EDRS PRICE EF01/PCO2 Plus Postage. DESCRIPTORS Curriculum: *Enrichment: *Instruction: *Logic: *Mathematical Applications: Mathematics Education: *Modern Mathematics: Secondary Education: *Secondary School Mathematics: Supplementary Reading Materials IDENTIFIERS *School Mathematics Study Group ABSTRACT This is one in a series of SHSG supplementary and enrichment pamphlets for high school students. This seriesmakes gvailatle espcsitory articles which appeared ina variety of thematical periodicals. Topics covered includg: (1) thenature of hematics:(2) mathematical inutility and the advance of science: had (3) logic. (59) *********************************************************************** Reproductions supplied by EDRS are the best thatcan be made from the original document. *********************************************************************** U S DEPARTMENTOF NEAL TN "PERMISSION TO REPRODUCE THIS EDUCATION II INELFAIIIE MATERIAL HAS BEEN GRANTED BY NATIONAL INSTITUTE Of EDUCATION 'tt {,L ttM 444 FPI 644 PRO I C 4 PA' °, A W 4 ,.4 I MONA HI pi 1,4 :ttlA ,(N r)W Al t",,04". Y,4 " nk DPIPoOP4S 'OA PP (P4,PIC Y LiEppf ,4 t11 1 4. N441,4)4441 PYST.tt,TE TO THE EDUCATIONAL RESOURCES A! ")41 O% .0,441 INFORMATION CENTER (ERIC)." 1 C 1,6 by The Beard al Trustees al lb. laland &milordAuthor UsiverilitY All rights swerved Natal in the Maud %ass J Anowica Financial support for the School MathematicsStudy Group has been provided by the Notional Science Foundation. Mathematics is such a vast and rapidly expanding field of study that there are inevitably many important and fascinating aspects of the subject which do not find a place in the curriculum simply because of iack of time, even though they are well within the grasp of secondary school students. Some classes and many individual students, however, may find time to pursue mathematical topics of special interesto them. The School Mathematics Study Group is preparing pamphlets designed to make material for such study readily .accessible. Some of the pamphlets deal with material found in the regular curric- ulum but in a more extended manner or from a novel point of view. Others deal with topics not usually found at all in the standard curriculum. This particular series of pamphlets, the Reprint Series, makes available ex- pository articles which appeared in a variety of mathematical periodicals. Even if the periodicals were available to all schools, there is convenience in having articles on one topic collected and reprinted as is done here. This series was prepared for the Panel on Supplementary Publications by Professor William L Schaaf. His judgment, background, bibliographic skills, and editorial efficiency were major factors in the design and successful completion of the pamphlets. Panel on Supplementary Publications R. D. Anderson (1942-66) Louisiana State University, Baton Rouge M. Philbrick Bridges (1962-64)Roxbury Latin School, Westwood, Mass. Jean M. Calloway (1962-64) Kalamazoo College, Kalamazoo, Michigan Ronald J. Clark (1962-66) St. Paul's School, Concord, N. H. Roy Dubisch (1962-64) University of Washington, Seattle W. Engene Ferguson (1964-67) Newton High School, Newtonville, Mass. Thomas J. Hill (1962-65) Montclair State College, Upper Montclair, N. J. L. Edwin Hirschi (196548) University of Utah, Salt Lake City Karl S. Kalman (1962-65) School District of Philadelphia Isabelle P Rucker (1965-68) State Board of Education, Richmond, Va. Augusta Schurrer (1962-65) State College of Iowa, Cedar Falls Merrill E. Shanks (1965-68) Purdue University, Lafayette, Indiana Henry W. Syer (1962-66) Kent School, Kent, Conn. Frank L. Wolf (1964-67) Carleton College, Northfield, Minn. John E. Yarnelle (1964-67) Hanover College, Hanover, Indiana PREFACE Mathematics is a magnificent cultural heritage. Although its origins are obscure, it is presumably one of the oldest concerns of man, reaching back into time by some six thou.sand years. Next to the invention of language itself, the creation of mathematics is without doubt the most subtle, powerful, and significant achievement of the human-mind. Just what is mathematics? This is more easily asked than answered, at least in any brief sort of way. Mathematics has been described as the "science of self-evident truths"; it has been called the "science which draws necessary conclusions"; it has been defined as the "universal art apodeictic." Bertrand Russell's celebrated characterization of mathematics as the "subject in which we do not know what we are talking about or whether what we say is true" is illuminating if it is not misinterpreted. The late Edward Kasner, in his whim- sical way, called mathematics the science "that uses easy words for hard ideas." A sophisticated observer might say that mathematics is what a mathema- tician does. But what does a mathematician do? Or we might ask: How does he go about doing whatever it is that he does? Why does he do these things? Who really cares what a mathematician does? You will find some answers to these questions in the essays that follow. But we should like to give you a bit of perspective first. You must realize that mathematics has had a long history and that it is a far cry from pre-Babylonian mathematics to the mathematics of today. Further- more, during this long span there were many "ups and downs." There were barren gaps and intervals of stagnation, as well as brilliant break-throughs and lucid periods of creativity. In this connection, there are several ways of regard- ing the development of mathematics. The conventional interpretation suggests that this development has been an evolutionary process in which successive generations of mathematicians built upon the contributions of their predecessors without tearing down what had gone before (Hankel ). A less conventional viewpoint, suggested by Spengler in his Decline of the W est. holds that there never was a "continuous growth" of a single discipline called mather,. :ics; what seems to be the development of a single broad subject actually is a p;..ral- ity of independent mathematicts ). Each new and independent mathematic follows another, not by building upon its predecessor, but by repudiating it and reflecting a subsequent alien culture. Perhaps a more realistic approach than either of these is that suggested by E. T. Bell, namely, a series of rather distinct epochs, each of which grew by expansion or extension out of the "residue" of the previous epoch. Professor Bell has indicated seven such major epochs, together with newer concepts or more powerful tools which survived from the earlier period and heralded the beginning of the next epoch. Be that as it may, we are here concerned with the nature of mathematics as we know it today. Stared very briefly and by no means completely, contem- porary mathematics is characterized by its sweeping generalizations; its pure Ill abstractions; its succinct symbolism; its precisicm of language; its ideals of rigorous thinking; and above all, its prime concern with patterns of ideas, with the structure of forms, and with the qualities of relationships. Theessence of mathematics is that, unlike the physical sciencep, it is wholly "man-made", being essentially independent of the external world. In thissense, it is an art atuot a science. What is described in these essays is the mathematics of today. What of the mathematics of tomorrow? It has been suggested by Bell thatwe may find it necessary to give up the idea of "one all-inclusive kind of mathematics." We may have to abandon the concept of the continuous and embrace the discrete in mathematics. What such mathematics will be like, nobody can foretell: "the mathematics of the twenty-first century may be so different from that of the twentieth century that it will scarcely be recognized as mathematics." William L. Schaaf 6 iv Contents THE NATI/RE OF MATHEMATICS MATHEMATICAL INUTILITY AND THE ADVANCE OF SCIENCE . 13 ARE LOGIC AND MATHEMATICS IDENTICAL? BIBLIOGRAPHY . 35 FOR FURTHER READING AND STUDY . 36 V ACKNOWLEDGMENTS The SCHOOL MATHEMATICS STUDY GROUP MI= this opportunity to express its gratitude to the authors of thesearticles for their generosity in allow- ing their material to be reproduced in this manner: Mina Rees, who, atthe time that her paper was first published, was dean of graduate studies at the City University of New York; Carl Boyer, who, when his article first appeared, was a member of the Department of Mathematicsof Brooklyn College of the City University of New York; and Leon Henkin, who, at the time that his paper was written, was associated withthe Mathematics Department of the University of California at Berkeley and the Association for Symbolic Logic. The SCHOOL MATHEMATICS STUDY GROUP is also pleased to express its sincere appreciation to the several editors and publishers who have been kind enough to allow these articles to be reprinted, namely: THE MATHEMATICS TEACHER MINA REES, "The Nature of Mathematics",* vol. 55 (October 1962 ), pp. 434-140. SCIENCE CARL B. BOYER, "Mathematical Inutility and the Advance of Science", vol. 130 ( July 3, 1959), pp. 22-25. LEON HENKIN, "Are Mathematics and Logic Identical?", vol. 138 (Nov. 16, 1962 ), pp. 788-794. Dean Ree s paper also appeared hi Scielffs, vol. 138 (Oct. 5, 1962), pp. 9.12. VII 0 Li FOREWORD If one may be allowed a slight oversimplification, modernmathematics is characerized largely by its concern for abtract structures, whilemathematics prior to the nineteenth century leaned somewhat more heavily onintuition. Yet, as pointed out in the present essay,the interplay of intuitive consklerations and abstract formulations has proved exceedingly fruitfuL In this discussion of the nature of mathematics, the authorappropriately comments upon the relation of mathematics toscience (a matter which is again discussed in the second essay).
Recommended publications
  • Journal Symbolic Logic
    THT, E JOURNAL : OF SYMBOLIC LOGIC •' . X , , ' V. ;'••*• • EDITED B\Y \ ' ALONZO CHURCH S. C. KLEENE ALICE A. LAZEROWITZ Managing Editor'. ALFONS BOROERS Consulting Editors'. i W. ACKERMANN ROBERT FEYS ANDRZEJ MOSTOWSKJ G. A. BAYLIS FREDERIC B. FITCH R6ZSA PETER PAUL BERNAYS CARL G. HEMPEL BARKLEY ROSSER G. D. W. BERRY LEON HENKIN THORALF SKOLEM MARTIN DAVIS JOHN G. KEMENY A. R. TURQUETTE VOLUME 19 NUMBER 4 DECEMBER 1954 1 s PUBLISHED QUARTERLY BY THE ASSOCIATION FOR SYMBOLIC LOGIC, INC. WITH THE AID OF SUBVENTIONS FROM EDWARD C. HEGELER TRUST FUND HARVARD UNIVERSITY RUTGERS UNIVERSITY INSTITUTE FOR ADVANCED STUDY SMITH COLLEGE UNIVERSITY OF MICHIGAN 1_—; , Copyright igss by the Association for Symbolic Logic, Inc. Reproduction by photostat, photo-print, microfilm, or like process by permission only r • A Downloaded from https://www.cambridge.org/core. IP address: 170.106.51.11, on 05 Oct 2021 at 08:48:31, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022481200086618 TABLE OF CONTENTS The formalization of mathematics. By HAO WANG 24.1 The recursive irrationality of n. By R. L. GOODSTEIN 267 Distributivity and an axiom of choice. By GEORGE E. COLLINS . 275 Reviews . ! t 278 List of officers and members of the Association for Symbolic Logic . 305 The JOURNAL OF SYMBOLIC LOCIC is the official organ of the Association for Symbolic Logic, Inc., published quarterly, in the months of March, June, September, and December. The JOURNAL is published for the Association by N.V. Erven P. Noordhoff, Publishers, Gronin- gen, The Netherlands.
    [Show full text]
  • Alfred Tarski and a Watershed Meeting in Logic: Cornell, 1957 Solomon Feferman1
    Alfred Tarski and a watershed meeting in logic: Cornell, 1957 Solomon Feferman1 For Jan Wolenski, on the occasion of his 60th birthday2 In the summer of 1957 at Cornell University the first of a cavalcade of large-scale meetings partially or completely devoted to logic took place--the five-week long Summer Institute for Symbolic Logic. That meeting turned out to be a watershed event in the development of logic: it was unique in bringing together for such an extended period researchers at every level in all parts of the subject, and the synergetic connections established there would thenceforth change the face of mathematical logic both qualitatively and quantitatively. Prior to the Cornell meeting there had been nothing remotely like it for logicians. Previously, with the growing importance in the twentieth century of their subject both in mathematics and philosophy, it had been natural for many of the broadly representative meetings of mathematicians and of philosophers to include lectures by logicians or even have special sections devoted to logic. Only with the establishment of the Association for Symbolic Logic in 1936 did logicians begin to meet regularly by themselves, but until the 1950s these occasions were usually relatively short in duration, never more than a day or two. Alfred Tarski was one of the principal organizers of the Cornell institute and of some of the major meetings to follow on its heels. Before the outbreak of World War II, outside of Poland Tarski had primarily been involved in several Unity of Science Congresses, including the first, in Paris in 1935, and the fifth, at Harvard in September, 1939.
    [Show full text]
  • A Bibliography of Publications in American Mathematical Monthly: 1990–1999
    A Bibliography of Publications in American Mathematical Monthly: 1990{1999 Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 14 October 2017 Version 1.19 Title word cross-reference NF [737]. !(n) [82]. p [619, 149, 694, 412]. P2 [357]. p ≡ 1 (mod 4) [34]. φ [674]. φ(30n + 1) [947]. Φpq(X) [618]. π 0 y − z 2 [105]. 1 [21]. (logx N) [333]. (x +1) x = 1 [845]. 0 [740, 684, 693, 950, 489]. π 2 3 [495, 1]. 1 [495, 1]. 1=p [511]. 10 [140]. 168 Qc(x)=x + c [399]. R [35, 226].p R [357].p n n R [62, 588]. S6 [315]. σ [19]. −1 [995]. 2 [538]. 2 [335]. $29.50 [792]. 2 :n! [1003]. p p p P1 n × 2 × 2 [26]. 3 [828, 583]. 4 − 2 [748]. A [435]. [473]. 2 3= 6 [257]. n=0 1=n! [619]. A∗A = B∗B [607]. AB [620]. BA [620]. 2n tan(k) z [160]. } [512]. x [859]. x=(sin x) n 0 [260]. mod5 [982]. C1 [832]. cos(2π/n) [322]. [755]. x = f(x ) [832]. x2 + ym = z2n [7]. d [844]. dy=dx [449]. ex [859]. f(x; y) [469]. x2 + ym = z2n [65]. x5 + ax + b [465]. xn =1 − [235]. Z3 [975].
    [Show full text]
  • The Legacy of Norbert Wiener: a Centennial Symposium
    http://dx.doi.org/10.1090/pspum/060 Selected Titles in This Series 60 David Jerison, I. M. Singer, and Daniel W. Stroock, Editors, The legacy of Norbert Wiener: A centennial symposium (Massachusetts Institute of Technology, Cambridge, October 1994) 59 William Arveson, Thomas Branson, and Irving Segal, Editors, Quantization, nonlinear partial differential equations, and operator algebra (Massachusetts Institute of Technology, Cambridge, June 1994) 58 Bill Jacob and Alex Rosenberg, Editors, K-theory and algebraic geometry: Connections with quadratic forms and division algebras (University of California, Santa Barbara, July 1992) 57 Michael C. Cranston and Mark A. Pinsky, Editors, Stochastic analysis (Cornell University, Ithaca, July 1993) 56 William J. Haboush and Brian J. Parshall, Editors, Algebraic groups and their generalizations (Pennsylvania State University, University Park, July 1991) 55 Uwe Jannsen, Steven L. Kleiman, and Jean-Pierre Serre, Editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, Editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, Editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert E. Greene, and Steven G. Krantz, Editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, Editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, Editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, Editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R.
    [Show full text]
  • Report for the Academic Year 1999
    l'gEgasag^a3;•*a^oggMaBgaBK>ry^vg^.g^._--r^J3^JBgig^^gqt«a»J^:^^^^^ Institute /or ADVANCED STUDY REPORT FOR THE ACADEMIC YEAR 1998-99 PRINCETON • NEW JERSEY HISTORICAL STUDIES^SOCIAl SC^JCE LIBRARY INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY 08540 Institute /or ADVANCED STUDY REPORT FOR THE ACADEMIC YEAR 1 998 - 99 OLDEN LANE PRINCETON • NEW JERSEY • 08540-0631 609-734-8000 609-924-8399 (Fax) http://www.ias.edu Extract from the letter addressed by the Institute's Founders, Louis Bamberger and Mrs. FeUx Fuld, to the Board of Trustees, dated June 4, 1930. Newark, New Jersey. It is fundamental m our purpose, and our express desire, that in the appointments to the staff and faculty, as well as in the admission of workers and students, no account shall be taken, directly or indirectly, of race, religion, or sex. We feel strongly that the spirit characteristic of America at its noblest, above all the pursuit of higher learning, cannot admit of any conditions as to personnel other than those designed to promote the objects for which this institution is established, and particularly with no regard whatever to accidents of race, creed, or sex. ni' TABLE OF CONTENTS 4 • BACKGROUND AND PURPOSE 7 • FOUNDERS, TRUSTEES AND OFFICERS OF THE BOARD AND OF THE CORPORATION 10 • ADMINISTRATION 12 • PRESENT AND PAST DIRECTORS AND FACULTY 15 REPORT OF THE CHAIRMAN 18 • REPORT OF THE DIRECTOR 22 • OFFICE OF THE DIRECTOR - RECORD OF EVENTS 27 ACKNOWLEDGMENTS 41 • REPORT OF THE SCHOOL OF HISTORICAL STUDIES FACULTY ACADEMIC ACTIVITIES MEMBERS, VISITORS,
    [Show full text]
  • Theorem Proving in Higher Order Logics
    NASA/CP-2002-211736 Theorem Proving in Higher Order Logics Edited by Victor A. Carre_o Langley Research Center, Hampton, Virginia Cksar A. Mugoz Institute[or Computer- Applications in Science and Engineering Langley Research Center, Hampton, Virginia So/lOne Tahar Concordia UniversiO; Montreal, Canada August 2002 The NASA STI Program Office... in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and NASA Scientific and Technical Information (STI) technical conferences, symposia, Program Office plays a key part in helping NASA seminars, or other meetings sponsored or maintain this important role. co-sponsored by NASA. The NASA STI Prograrn Office is operated by SPECIAL PUBLICATION. Scientific, Langley Research Center, the lead center for NASA's technical, or historical information from scientific and technical information. The NASA STI NASA programs, projects, and missions, Program Office provides access to the NASA STI often concerned with subjects having Database, the largest collection of aeronautical and substantial public interest. space science STI in the world. The Program Office is also NASA's institutional mechanism for TECHNICAL TRANSLATION. English- disseminating the results of its research and language translations of foreign scientific development activities. These results are and technical material pertinent to published by NASA in the NASA STI Report NASA's mission. Series, which includes the following report types: Specialized services that complement the STI Program Office's diverse offerings include TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing phase of research that present the results research results.., even providing videos.
    [Show full text]
  • Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux
    Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux To cite this version: Pierre Boutry, Gabriel Braun, Julien Narboux. Formalization of the Arithmetization of Euclidean Plane Geometry and Applications. Journal of Symbolic Computation, Elsevier, 2019, Special Issue on Symbolic Computation in Software Science, 90, pp.149-168. 10.1016/j.jsc.2018.04.007. hal-01483457 HAL Id: hal-01483457 https://hal.inria.fr/hal-01483457 Submitted on 5 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Formalization of the Arithmetization of Euclidean Plane Geometry and Applications Pierre Boutry, Gabriel Braun, Julien Narboux ICube, UMR 7357 CNRS, University of Strasbourg Poleˆ API, Bd Sebastien´ Brant, BP 10413, 67412 Illkirch, France Abstract This paper describes the formalization of the arithmetization of Euclidean plane geometry in the Coq proof assistant. As a basis for this work, Tarski’s system of geometry was chosen for its well-known metamath- ematical properties. This work completes our formalization of the two-dimensional results contained in part one of the book by Schwabhauser¨ Szmielew and Tarski Metamathematische Methoden in der Geome- trie.
    [Show full text]
  • RM Calendar 2019
    Rudi Mathematici x3 – 6’141 x2 + 12’569’843 x – 8’575’752’975 = 0 www.rudimathematici.com 1 T (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 2 W (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 F (1643) Isaac Newton RM071 5 S (1723) Nicole-Reine Étable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2004, A1 (1871) Federigo Enriques RM084 Basketball star Shanille O’Keal’s team statistician (1871) Gino Fano keeps track of the number, S( N), of successful free 6 S (1807) Jozeph Mitza Petzval throws she has made in her first N attempts of the (1841) Rudolf Sturm season. Early in the season, S( N) was less than 80% of 2 7 M (1871) Felix Edouard Justin Émile Borel N, but by the end of the season, S( N) was more than (1907) Raymond Edward Alan Christopher Paley 80% of N. Was there necessarily a moment in between 8 T (1888) Richard Courant RM156 when S( N) was exactly 80% of N? (1924) Paul Moritz Cohn (1942) Stephen William Hawking Vintage computer definitions 9 W (1864) Vladimir Adreievich Steklov Advanced User : A person who has managed to remove a (1915) Mollie Orshansky computer from its packing materials. 10 T (1875) Issai Schur (1905) Ruth Moufang Mathematical Jokes 11 F (1545) Guidobaldo del Monte RM120 In modern mathematics, algebra has become so (1707) Vincenzo Riccati important that numbers will soon only have symbolic (1734) Achille Pierre Dionis du Sejour meaning.
    [Show full text]
  • An Interview with Martin Davis
    Notices of the American Mathematical Society ISSN 0002-9920 ABCD springer.com New and Noteworthy from Springer Geometry Ramanujan‘s Lost Notebook An Introduction to Mathematical of the American Mathematical Society Selected Topics in Plane and Solid Part II Cryptography May 2008 Volume 55, Number 5 Geometry G. E. Andrews, Penn State University, University J. Hoffstein, J. Pipher, J. Silverman, Brown J. Aarts, Delft University of Technology, Park, PA, USA; B. C. Berndt, University of Illinois University, Providence, RI, USA Mediamatics, The Netherlands at Urbana, IL, USA This self-contained introduction to modern This is a book on Euclidean geometry that covers The “lost notebook” contains considerable cryptography emphasizes the mathematics the standard material in a completely new way, material on mock theta functions—undoubtedly behind the theory of public key cryptosystems while also introducing a number of new topics emanating from the last year of Ramanujan’s life. and digital signature schemes. The book focuses Interview with Martin Davis that would be suitable as a junior-senior level It should be emphasized that the material on on these key topics while developing the undergraduate textbook. The author does not mock theta functions is perhaps Ramanujan’s mathematical tools needed for the construction page 560 begin in the traditional manner with abstract deepest work more than half of the material in and security analysis of diverse cryptosystems. geometric axioms. Instead, he assumes the real the book is on q- series, including mock theta Only basic linear algebra is required of the numbers, and begins his treatment by functions; the remaining part deals with theta reader; techniques from algebra, number theory, introducing such modern concepts as a metric function identities, modular equations, and probability are introduced and developed as space, vector space notation, and groups, and incomplete elliptic integrals of the first kind and required.
    [Show full text]
  • AMERICAN MATHEMATICAL SOCIETY Notices
    AMERICAN MATHEMATICAL SOCIETY Notices Edited by J. H. CURTISS ....... ,........................................................................................................................................................ ISSUE NO. 27 NOVEMBER, 1957 .................................................................................................................................................................. CONTENTS MEETINGS Calendar of Meetings ...................................................... 2 Program of the November Meeting in Los Angeles ....•.•.•.•.... 3 Program of the November Meeting in Coral Gables ............. 9 Program of the November Meeting in Columbia ................. 13 PRELIMINARY ANNOUNCEMENT OF MEETING ...................... l6 NEWS ITEMS AND ANNOUNCEMENTS ................................... J7 PERSONAL ITEMS .............................................................. 23 NEW PUBLICATIONS .......................................................... 27 MEMORANDA TO MEMBERS ................................................ 29 Published by the Society ANN ARBOR MICHIGAN and PROVIDENCE. RHODE ISLAND Printed in the United States of America MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date at which this issue of the NO­ TICES was sent to press. The meeting dates which fall rather far in the future are subject to change. This is particularly true of the meet­ ings to which no numbers have yet been assigned. Meet- Deadline ing Date Place
    [Show full text]
  • The Explanatory Power of a New Proof: Henkin's Completeness Proof
    The explanatory power of a new proof: Henkin’s completeness proof John Baldwin February 25, 2017 Mancosu writes But explanations in mathematics do not only come in the form of proofs. In some cases expla- nations are sought in a major recasting of an entire discipline. ([Mancosu, 2008], 142) This paper takes up both halves of that statement. On the one hand we provide a case study of the explanatory value of a particular milestone proof. In the process we examine how it began the recasting of a discipline. Hafner and Mancosu take a broad view towards the nature of mathematical explanation. They ar- gue that before attempting to establish a model of explanation, one should develop a ‘taxonomy of re- current types of mathematical explanation’ ([Hafner and Mancosu, 2005], 221) and preparatory to such a taxonomy propose to examine in depth various examples of proofs. In [Hafner and Mancosu, 2005] and [Hafner and Mancosu, 2008], they study deep arguments in real algebraic geometry and analysis to test the models of explanation of Kitcher and Steiner. In their discussion of Steiner’s model they challenge1 the as- sertion [Resnik and Kushner, 1987] that Henkin’s proof of the completeness theorem is explanatory, asking ‘what the explanatory features of this proof are supposed to consist of?’ As a model theorist the challenge to ‘explain’ the explanatory value of this fundamental argument is irresistible. In contrasting the proofs of Henkin and Godel,¨ we seek for the elements of Henkin’s proofs that permit its numerous generalizations. In Section 2 we try to make this analysis more precise through Steiner’s notion of characterizing property.
    [Show full text]
  • The Origin of the Group in Logic and the Methodology of Science
    Journal of Humanistic Mathematics Volume 8 | Issue 1 January 2018 The Origin of the Group in Logic and the Methodology of Science Paolo Mancosu UC Berkeley Follow this and additional works at: https://scholarship.claremont.edu/jhm Part of the Arts and Humanities Commons, and the Mathematics Commons Recommended Citation Mancosu, P. "The Origin of the Group in Logic and the Methodology of Science," Journal of Humanistic Mathematics, Volume 8 Issue 1 (January 2018), pages 371-413. DOI: 10.5642/jhummath.201801.19 . Available at: https://scholarship.claremont.edu/jhm/vol8/iss1/19 ©2018 by the authors. This work is licensed under a Creative Commons License. JHM is an open access bi-annual journal sponsored by the Claremont Center for the Mathematical Sciences and published by the Claremont Colleges Library | ISSN 2159-8118 | http://scholarship.claremont.edu/jhm/ The editorial staff of JHM works hard to make sure the scholarship disseminated in JHM is accurate and upholds professional ethical guidelines. However the views and opinions expressed in each published manuscript belong exclusively to the individual contributor(s). The publisher and the editors do not endorse or accept responsibility for them. See https://scholarship.claremont.edu/jhm/policies.html for more information. The Origin of the Group in Logic and the Methodology of Science Cover Page Footnote This paper was written on the occasion of the conference celebrating 60 years of the Group in Logic and the Methodology of Science that took place at UC Berkeley on May 5-6, 2017. I am very grateful to Doug Blue, Nicholas Currie, and James Walsh for the help they provided in assisting me with the archival work.
    [Show full text]