Dissertation Submitted to the Combined Faculty of Natural

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Submitted to the Combined Faculty of Natural Dissertation submitted to the Combined Faculty of Natural Sciences and Mathematics of the Ruperto Carola University Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by M.Sc. Johanna von Gerichten born in Speyer, Germany Oral examination: 13.11.201 Development of Mass Spectrometric Methods for Tissue Imaging and LC-based Quantification of Glycosphingolipids/Gangliosides including Tay-Sachs disease based Neuraminidase-deficient Mouse Models and Human Gut Microbiota Referees: Prof. Dr. Matthias Mayer Dr. PD Roger Sandhoff List of figures FIGURE 1: STRUCTURE OF CERAMIDE, SIMPLE AND COMPLEX GLYCOSPHINGOLIPIDS (GSL). .......................... 3 FIGURE 2: GLYCOSPHINGOLIPID BIOSYNTHESIS 4 WITH THE FOCUS ON GLUCOSYLCERAMIDE (GLCCER) BASED SYNTHESIS OF GANGLIOSIDES (LIGHT YELLOW). ................................................................................... 4 FIGURE 3: SUBCELLULAR COMPARTMENTALIZATION AND INTRACELLULAR TRAFFICKING OF HEXOSYLCERAMIDE AND GANGLIOSIDE BIOSYNTHESIS AND CATABOLISM 4. .......................................................................... 6 FIGURE 4: LYSOSOMAL GANGLIOSIDE CATABOLISM 4. ................................................................................. 11 FIGURE 5: SCAN MODES IN TANDEM MASS SPECTROMETRY. ....................................................................... 17 FIGURE 6: MASS SPECTROMETRY IMAGING (MSI) TECHNIQUES AND THEIR PRINCIPLE.. ............................... 19 FIGURE 7: TISSUE SAMPLING SCHEME OF MOUSE WT BL6 JEJUNUM, CAECUM AND COLON FOR THE ANALYSIS OF HEXOSYLCERAMIDES. .................................................................................................................. 23 FIGURE 8: IN-SOURCE DECAY (ISD) WITH LOSS OF MONOSACCHARIDES, AMMONIUM ADDUCT ION FORMATION, ISD WITH WATER LOSS, AND INFLUENCE OF SOURCE TEMPERATURE AND CAPILLARY VOLTAGE FOR THE GANGLIOSIDE STANDARDS GM3, GM2 AND GM1.) ............................................................................ 37 FIGURE 9: ADDUCT ION FORMATION IN THE PRESENCE OF 10 MM DIETHYLENETRIAMINE IN TOTAL GANGLIOSIDE PORCINE BRAIN STANDARD ............................................................................................................... 40 FIGURE 10: SEPARATION OF GANGLIOSIDES ON RP18 BASED CHROMATOGRAPHY (LEFT) AND HILIC BASED CHROMATOGRAPHY (RIGHT) OF NATURAL STANDARDS GM3, GM2 AND GM1. ..................................... 41 FIGURE 11: CALCULATED CHROMATOGRAPHIC RESOLUTION OF GGS GM1/GM3 FOR DIFFERENT SOLVENT SYSTEMS AND GRADIENTS USED FOR BEH C18 COLUMN.................................................................... 42 FIGURE 12: OVERLAY OF EXTRACTED ION CHROMATOGRAMS GENERATED BY HSS PFP COLUMN FOR GSL STANDARD MIX. ................................................................................................................................ 44 FIGURE 13: HILIC-MS2 METHOD DEVELOPMENT TESTING POSITIVE (A) AND NEGATIVE (B) ION MODE ........... 46 FIGURE 14: ADDITIVES TEST FOR GANGLIOSIDE DETECTION IN NEGATIVE ION MODE.. ................................... 47 FIGURE 15: SAMPLE PREPARATION TEST FOR THE ANALYSIS OF GANGLIOSIDES WITH HILIC-MS2 ANALYSIS.. 48 FIGURE 16: TLC OF GM2 GANGLIOSIDOSIS MOUSE BRAIN TISSUE AND NEURAMINIDASE 4 DEFICIENCY MOUSE BRAIN TISSUE FROM THE AGE OF 6 MONTH. ........................................................................................ 52 FIGURE 17: GANGLIOSIDE PATTERN IN MOUSE MODELS OF TAY-SACHS DISEASE (TSD) AND NEURAMINIDASE 4. ....................................................................................................................................................... 54 FIGURE 18: GANGLIOSIDE GM2 ACCUMULATION IN A MOUSE MODEL OF TAY-SACHS DISEASE COMBINED WITH NEURAMINIDASE 3 DEFICIENCY. ........................................................................................................ 55 FIGURE 19: DESI GEOMETRY AND DESI PARAMETER FOR OPTIMIZATION AND RHODAMINE SIGNAL. .............. 56 FIGURE 20: DESI PARAMETER OPTIMIZATION BY SPHINGOMYELIN STANDARD. ............................................. 57 FIGURE 21: DESI CHROMATOGRAM AND SPECTRUM FOR BRAIN TISSUE ACQUISITION IN FULL SCAN POSITIVE MODE AND PRECURSOR ION SCAN OF M/Z 184. .................................................................................. 57 I FIGURE 22: SAMPLE PREPARATION TEST FOR DESI-MS/MS SCANNING MOUSE WT CEREBELLUM WITH PRECURSOR ION SCAN FOR M/Z 184 AND DETECTING SPHINGOMYELIN AND PHOSPHATIDYLCHOLINE. .... 59 FIGURE 23: SAMPLE PREPARATION TEST FOR THE ON-TISSUE SAPONIFICATION OF PHOSPHOLIPIDS WITH 0.1 M KOH. .............................................................................................................................................. 60 FIGURE 24: DESI-MS/MS ANALYSIS OF WT MOUSE BRAIN LIPIDS IN NEGATIVE ION MODE WITH FULL SCAN (BOTTOM) AND PRECURSOR ION SCAN OF M/Z 241 FOR PHOSPHATIDYLINOSITOL (PI) AND PHOSPHATIDYLSERINE (PS) (TOP). ................................................................................................... 61 FIGURE 25: WORKFLOW DESI-MS/MS AND MALDI-TOF COMPARISON. ................................................... 62 FIGURE 26: DESI AND MALDI COMPARISON IN POSITIVE ION MODE USING FRESH FROZEN BRAIN SECTIONS IN COMBINATION WITH PRECURSOR ION MODE OF M/Z 184 FOR SPHINGOMYELIN (SM) AND PHOSPHATIDYLCHOLINE (PC) IN COMBINATION WITH WASH STEPS. ..................................................... 63 FIGURE 27: MALDI-TOF MSI OF GM1, GM2 AND GD1 IN SAGITTAL MOUSE BRAIN SLICES OF 3 MONTH OLD GM2 GANGLIOSIDOSIS AND NEU4 MODELS. ....................................................................................... 65 FIGURE 28: MALDI-TOF MSI OF GM1, GM2 AND GD1 IN SAGITTAL MOUSE BRAIN SLICES OF 6 MONTH OLD GM2 GANGLIOSIDOSIS, GD3S-/- AND NEU4-/- MODELS. ....................................................................... 66 FIGURE 29: MALDI-TOF MSI OF GM1, GM2 AND GA2 IN SAGITTAL MOUSE BRAIN SLICES OF 4.5 MONTH OLD GM2 GANGLIOSIDOSIS AND NEU3 MODELS.. ...................................................................................... 67 FIGURE 30: A: STEREOCHEMICAL STRUCTURES OF Β-GLCCER, Β-GALCER, AND Α-GALCER CONTAINING A C18-SPHINGOSINE AND AN N-LINKED PALMITIC ACID [HEXCER(D18:1/16:0)]. ...................................... 68 FIGURE 31: VARIOUS HEXOSYLCERAMIDE STANDARDS WERE SEPARATED ON A BORATE PRE-IMPREGNATED NORMAL PHASE HPTLC-PLATE AND VISUALIZED WITH ORCINOL REAGENT. .......................................... 69 FIGURE 32: A: HILIC SEPARATION OF A SYNTHETIC Α/Β-ANOMERIC MIXTURE OF GLCCER(D18:1/24:1) (DARK CYAN) AND A SYNTHETIC Α/Β-ANOMERIC MIXTURE OF GALCER(D18:1/24:1) (RED), EACH WITH APPROXIMATELY 15% Α-CONTENT. ................................................................................................... 71 FIGURE 33: RELATIVE DISTRIBUTION OF Β-GLCCER AND Β-GALCER IN VARIOUS MOUSE ORGANS. NS-, AS-, NP-, AND AP-HEXCERS WERE DETERMINED, WHICH CONTAINED A C18-SPHINGOID BASE AND N-BOUND FATTY ACIDS WITH THE CHAIN LENGTH C16 UP TO C26 (AS ANNOTATED)............................................. 72 FIGURE 34: HILIC-MS2-BASED QUANTIFICATION OF Β-GLCCERS AND Β- GALCERS IN LIVER OF WT, GBA2-/-, AND UGCGF/FALBCRE MICE .............................................................................................................. 73 FIGURE 35: HILIC-MS2-BASED SEPARATION OF AS-TYPE Β-GALCERS WITH 2R- AND 2S-HYDROXY STEARIC ACID. ............................................................................................................................................... 74 FIGURE 36: HILIC-MS2 BASED SEPARATION OF NS- AND AS-TYPE Β-GLCCER AND Β-GALCER IN MOUSE BRAIN LIPID EXTRACTS ENRICHED IN NEUTRAL GSLS OF WT, GM2 GANGLIOSIDOSIS AND NEURAMINIDASE DEFICIENCY. .................................................................................................................................... 76 FIGURE 37: HILIC-MS2-BASED DETECTION OF Α-GALCERS FROM BACTEROIDES FRAGILIS AND IDENTIFICATION OF EQUIVALENT COMPOUNDS IN BACTEROIDES VULGATUS AND PREVOTELLA COPRI. ........................... 77 FIGURE 38: HILIC-MS2 BASED ANALYSIS OF WT BL6 AND AXENIC NMRI MOUSE INTESTINAL TRACT. ........... 78 II FIGURE 39: HILIC-MS2 BASED ANALYSIS OF WT BL6 MOUSE INTESTINAL TRACT COMPARTMENTS JEJUNUM, CAECUM AND COLON OF Β-GLCCER (A), Β-GALCER (B) AND PREDICTED BDS-Α-GALCER (C). ............. 79 FIGURE 40: HILIC-MS2 BASED ANALYSIS OF HEXOSYLCERAMIDES IN LIPID EXTRACTS FROM CAECUM OF MICE FED FOR 5 DAYS TWICE A DAY WITH EITHER 100 µL PBS, OLIVE OIL, OR MILK FAT (GHEE) IN ADDITION TO CHOW DIET OR HIGH FAT DIET. .......................................................................................................... 80 III List of tables TABLE 1: INSTRUMENTS FOR SAMPLE PREPARATION .................................................................................. 20 TABLE 2: INSTRUMENTS FOR TLC ANALYSIS. ............................................................................................. 20 TABLE 3: LC ANALYTICAL COLUMNS FROM WATERS GMBH (ESCHBORN, GERMANY). .................................. 21 TABLE 4: INSTRUMENTS FOR IMAGING MASS SPECTROMETRY. ................................................................... 21 TABLE 5: MOUSE STRAINS FOR THE ANALYSIS OF TAY-SACHS DISEASE AND THE INVOLVEMENT OF NEURAMINIDASES. ............................................................................................................................ 22 TABLE 6: BACTERIA STRAINS USED FOR HILIC-MS2 ANALYSIS. .................................................................. 23 TABLE 7: SOLVENTS AND ADDITIVES
Recommended publications
  • Investigating the Genetic Basis of Cisplatin-Induced Ototoxicity in Adult South African Patients
    --------------------------------------------------------------------------- Investigating the genetic basis of cisplatin-induced ototoxicity in adult South African patients --------------------------------------------------------------------------- by Timothy Francis Spracklen SPRTIM002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In fulfilment of the requirements for the degree MSc(Med) Faculty of Health Sciences UNIVERSITY OF CAPE TOWN University18 December of Cape 2015 Town Supervisor: Prof. Rajkumar S Ramesar Co-supervisor: Ms A Alvera Vorster Division of Human Genetics, Department of Pathology, University of Cape Town 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town Declaration I, Timothy Spracklen, hereby declare that the work on which this dissertation/thesis is based is my original work (except where acknowledgements indicate otherwise) and that neither the whole work nor any part of it has been, is being, or is to be submitted for another degree in this or any other university. I empower the university to reproduce for the purpose of research either the whole or any portion of the contents in any manner whatsoever. Signature: Date: 18 December 2015 ' 2 Contents Abbreviations ………………………………………………………………………………….. 1 List of figures …………………………………………………………………………………... 6 List of tables ………………………………………………………………………………….... 7 Abstract ………………………………………………………………………………………… 10 1. Introduction …………………………………………………………………………………. 11 1.1 Cancer …………………………………………………………………………….. 11 1.2 Adverse drug reactions ………………………………………………………….. 12 1.3 Cisplatin …………………………………………………………………………… 12 1.3.1 Cisplatin’s mechanism of action ……………………………………………… 13 1.3.2 Adverse reactions to cisplatin therapy ……………………………………….
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Down Regulation of Membrane-Bound Neu3 Constitutes a New
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications of the IAS Fellows IJC International Journal of Cancer Down regulation of membrane-bound Neu3 constitutes a new potential marker for childhood acute lymphoblastic leukemia and induces apoptosis suppression of neoplastic cells Chandan Mandal1, Cristina Tringali2, Susmita Mondal1, Luigi Anastasia2, Sarmila Chandra3, Bruno Venerando2 and Chitra Mandal1 1 Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, A Unit of Council of Scientific and Industrial Research, Govt of India, 4, Raja S. C. Mullick Road, Kolkata 700032, India 2 Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, and IRCCS Policlinico San Donato, San Donato, Milan, Italy 3 Department of Hematology, Kothari Medical Centre, Kolkata 700027, India Membrane-linked sialidase Neu3 is a key enzyme for the extralysosomal catabolism of gangliosides. In this respect, it regulates pivotal cell surface events, including trans-membrane signaling, and plays an essential role in carcinogenesis. In this report, we demonstrated that acute lymphoblastic leukemia (ALL), lymphoblasts (primary cells from patients and cell lines) are characterized by a marked down-regulation of Neu3 in terms of both gene expression (230 to 40%) and enzymatic activity toward ganglioside GD1a (225.6 to 30.6%), when compared with cells from healthy controls. Induced overexpression of Neu3 in the ALL-cell line, MOLT-4, led to a significant increase of ceramide (166%) and to a parallel decrease of lactosylceramide (255%). These events strongly guided lymphoblasts to apoptosis, as we assessed by the decrease in Bcl2/ Bax ratio, the accumulation of Neu3 transfected cells in the sub G0–G1 phase of the cell cycle, the enhanced annexin-V positivity, the higher cleavage of procaspase-3.
    [Show full text]
  • Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling
    UC Davis UC Davis Previously Published Works Title Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling. Permalink https://escholarship.org/uc/item/0nk8n7xb Journal Scientific reports, 6(1) ISSN 2045-2322 Authors Arabyan, Narine Park, Dayoung Foutouhi, Soraya et al. Publication Date 2016-07-08 DOI 10.1038/srep29525 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Salmonella Degrades the Host Glycocalyx Leading to Altered Infection and Glycan Remodeling Received: 09 February 2016 Narine Arabyan1, Dayoung Park2, Soraya Foutouhi1, Allison M. Weis1, Bihua C. Huang1, Accepted: 17 June 2016 Cynthia C. Williams2, Prerak Desai1,†, Jigna Shah1,‡, Richard Jeannotte1,3,§, Nguyet Kong1, Published: 08 July 2016 Carlito B. Lebrilla2,4 & Bart C. Weimer1 Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation.
    [Show full text]
  • Thesis Layout 3
    University of Groningen Gestational diabetes mellitus and fetoplacental vasculature alterations Silva Lagos, Luis DOI: 10.33612/diss.113056657 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Silva Lagos, L. (2020). Gestational diabetes mellitus and fetoplacental vasculature alterations: Exploring the role of adenosine kinase in endothelial (dys)function. University of Groningen. https://doi.org/10.33612/diss.113056657 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Adenosine kinase and cardiovascular fetal programming in gestational diabetes mellitus Luis Silva1,2, Torsten Plösch3, Fernando Toledo1,4, Marijke M. Faas2,3, Luis Sobrevia1,5,6 1 Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
    [Show full text]
  • Characterization of the Human Sialidase Neu4 Gene Promoter
    Turkish Journal of Biology Turk J Biol (2014) 38: 574-580 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1401-63 Characterization of the human sialidase Neu4 gene promoter 1, 2 Volkan SEYRANTEPE *, Murat DELMAN 1 Department of Molecular Biology and Genetics, İzmir Institute of Technology, Urla İzmir, Turkey 2 Biotechnology and Bioengineering Graduate Program, İzmir Institute of Technology, Urla, İzmir, Turkey Received: 21.01.2014 Accepted: 08.05.2014 Published Online: 05.09.2014 Printed: 30.09.2014 Abstract: There are 4 different sialidases that have been described in humans: lysosomal (Neu1), cytoplasmic (Neu2), plasma membrane (Neu3), and lysosomal/mitochondrial (Neu4). Previously, we have shown that Neu4 has a broad substrate specificity and is active against glyco-conjugates, including GM2 ganglioside, at the acidic pH of 3.2. An overexpression of Neu4 in transfected neuroglia cells from a Tay–Sachs patient shows a clearance of accumulated GM2, indicating the biological importance of Neu4. In this paper, we aimed to characterize a minimal promoter region of the human Neu4 gene in order to understand the molecular mechanism regulating its expression. We cloned 7 different DNA fragments from the human Neu4 promoter region into luciferase expression vectors for a reporter assay and also performed an electrophoretic mobility shift assay to demonstrate the binding of transcription factors. We demonstrated that –187 bp upstream of the Neu4 gene is a minimal promoter region for controlling transcription from the human Neu4 gene. The electrophoretic mobility shift assay showed that the minimal promoter region recruits a c-myc transcription factor, which might be responsible for regulation of Neu4 gene transcription.
    [Show full text]
  • Brain Lipid Profiling of Triply Mouse Model with the Deficiencies of Sialidase Neu1, Neu4 and Β-Hexosaminidase a Enzymes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace@IZTECH Institutional Repository BRAIN LIPID PROFILING OF TRIPLY MOUSE MODEL WITH THE DEFICIENCIES OF SIALIDASE NEU1, NEU4 AND β-HEXOSAMINIDASE A ENZYMES A Thesis Submitted to the Graduate School of Engineering and Sciences of İzmir Institute of Technology in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE in Molecular Biology and Genetics by Zehra Kevser PEKMEZCİ December 2011 İZMİR We approve the thesis of Zehra Kevser PEKMEZCİ ____________________________ Assoc. Prof. Dr. Volkan SEYRANTEPE Supervisor _________________________ Assoc. Prof. Dr. Yusuf BARAN Committee Member ______________________________ Assoc. Prof. Dr. Şermin GENÇ Committee Member 20 December 2011 _________________________________ ______________________________ Assoc. Prof. Dr. Ahmet KOÇ Prof. Dr. R. Tuğrul SENGER Head of the Department of Molecular Dean of the Graduate School of Biology and Genetics Engineering and Sciences ACKNOWLEDGMENTS First of all, I would like to indicate my deepest regards and thanks to my supervisor Assoc. Prof. Dr. Volkan SEYRANTEPE for his encouragement, understanding, guidance, and excellent support during my graduate studies. I would like to thank to Assist. Prof. Dr. Alper Arslanoğlu to let me use his laboratory during my thesis studies. And I would also like to thank to Assist. Prof. Dr. Ayten Nalbant, Assist. Prof. Dr. Bünyamin Akgül, Assoc. Prof. Dr. Sami Doğanlar, Assoc. Prof. Dr. Ahmet Koç, Prof. Dr. Serdar Özçelik and Assoc. Prof. Dr. Mehtap Demirağ to let me use their laboratory during my studies. Also I would like to express my grateful thanks to my committee members Assoc.
    [Show full text]
  • Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis
    International Journal of Molecular Sciences Article Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis Bettina Sehnert 1,*, Juliane Mietz 1, Rita Rzepka 1, Stefanie Buchholz 1, Andrea Maul-Pavicic 1, Sandra Schaffer 1, Falk Nimmerjahn 2 and Reinhard E. Voll 1,* 1 Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; [email protected] (J.M.); [email protected] (R.R.); [email protected] (S.B.); [email protected] (A.M.-P.); [email protected] (S.S.) 2 Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany; [email protected] * Correspondence: [email protected] (B.S.); [email protected] (R.E.V.); Tel.: +49-761-270-71021 (B.S.); +49-761-270-34490 (R.E.V.) Abstract: Altered sialylation patterns play a role in chronic autoimmune diseases such as rheumatoid arthritis (RA). Recent studies have shown the pro-inflammatory activities of immunoglobulins (Igs) with desialylated sugar moieties. The role of neuraminidases (NEUs), enzymes which are responsible for the cleavage of terminal sialic acids (SA) from sialoglycoconjugates, is not fully understood in RA. We investigated the impact of zanamivir, an inhibitor of the influenza virus neuraminidase, and mammalian NEU2/3 on clinical outcomes in experimental arthritides studies. The severity of arthritis was monitored and IgG titers were measured by ELISA. (2,6)-linked SA was determined on IgG by ELISA and on cell surfaces by flow cytometry. Zanamivir at a dose of 100 mg/kg (zana- Citation: Sehnert, B.; Mietz, J.; 100) significantly ameliorated collagen-induced arthritis (CIA), whereas zana-100 was ineffective Rzepka, R.; Buchholz, S.; in serum transfer-induced arthritis.
    [Show full text]
  • Mclean, Chelsea.Pdf
    COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Chelsea Marie McLean August 2009 © 2009 Chelsea Marie McLean COMPUTATIONAL PREDICTION AND EXPERIMENTAL VALIDATION OF NOVEL MOUSE IMPRINTED GENES Chelsea Marie McLean, Ph.D. Cornell University 2009 Epigenetic modifications, including DNA methylation and covalent modifications to histone tails, are major contributors to the regulation of gene expression. These changes are reversible, yet can be stably inherited, and may last for multiple generations without change to the underlying DNA sequence. Genomic imprinting results in expression from one of the two parental alleles and is one example of epigenetic control of gene expression. So far, 60 to 100 imprinted genes have been identified in the human and mouse genomes, respectively. Identification of additional imprinted genes has become increasingly important with the realization that imprinting defects are associated with complex disorders ranging from obesity to diabetes and behavioral disorders. Despite the importance imprinted genes play in human health, few studies have undertaken genome-wide searches for new imprinted genes. These have used empirical approaches, with some success. However, computational prediction of novel imprinted genes has recently come to the forefront. I have developed generalized linear models using data on a variety of sequence and epigenetic features within a training set of known imprinted genes. The resulting models were used to predict novel imprinted genes in the mouse genome. After imposing a stringency threshold, I compiled an initial candidate list of 155 genes.
    [Show full text]
  • Maternal Plasma Autoantibodies Screening in Fetal Down Syndrome
    Hindawi Publishing Corporation Journal of Immunology Research Volume 2016, Article ID 9362169, 11 pages http://dx.doi.org/10.1155/2016/9362169 Research Article Brief Communication: Maternal Plasma Autoantibodies Screening in Fetal Down Syndrome Karol Charkiewicz,1 Monika Zbucka-Kretowska,2 Joanna Goscik,3 Slawomir Wolczynski,2 Adam Lemancewicz,1 and Piotr Laudanski1 1 Department of Perinatology and Obstetrics, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland 2Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland 3Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland Correspondence should be addressed to Piotr Laudanski; [email protected] Received 21 July 2015; Revised 14 January 2016; Accepted 27 January 2016 Academic Editor: Mario Clerici Copyright © 2016 Karol Charkiewicz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Imbalance in the metabolites levels which can potentially be related to certain fetal chromosomal abnormalities can stimulate mother’s immune response to produce autoantibodies directed against proteins. The aim of the study was to determine the concentration of 9000 autoantibodies in maternal plasma to detect fetal Down syndrome. Method. Weperformed 190 amniocenteses and found 10 patients with confirmed fetal Down syndrome (15th–18th weeks of gestation). For the purpose of our control we chose 11 women without confirmed chromosomal aberration. To assess the expression of autoantibodies in the blood plasma, we used a protein microarray, which allows for simultaneous determination of 9000 proteins per sample.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]