8 Heart Murmurs Part II

Total Page:16

File Type:pdf, Size:1020Kb

8 Heart Murmurs Part II Chapter 8 / Heart Murmurs: Part II 275 8 Heart Murmurs Part II CONTENTS DIASTOLIC MURMURS DIASTOLIC MURMURS OF MITRAL ORIGIN DIASTOLIC MURMURS OF TRICUSPID ORIGIN SEMILUNAR VALVE REGURGITATION AORTIC REGURGITATION PULMONARY REGURGITATION CLINICAL ASSESSMENT OF DIASTOLIC MURMURS CONTINUOUS MURMURS PERSISTENT DUCTUS ARTERIOSUS AORTO-PULMONARY WINDOW SINUS OF VALSALVA ANEURYSM CORONARY ARTERIOVENOUS FISTULAE VENOUS HUM MAMMARY SOUFFLE CLINICAL ASSESSMENT OF CONTINUOUS MURMURS PERICARDIAL FRICTION RUB INNOCENT MURMURS REFERENCES DIASTOLIC MURMURS Diastolic murmurs can be caused by turbulent flow through the atrioventricular valves (the mitral and tricuspid valves) or turbulence caused by regurgitation of blood through the semilunar valves (the aortic and pulmonary valves). We will first discuss diastolic murmurs arising from turbulent flow through the atrioventricular valves. DIASTOLIC MURMURS OF MITRAL ORIGIN Turbulent flow across the mitral valve capable of producing a diastolic murmur can occur under the following conditions: • When there is increased pressure in the left atrium because of obstruction at the valve • When there is excessive volume of flow during diastole through the mitral valve with or without elevated left atrial pressure • Normal or increased mitral inflow velocity through a somewhat abnormal mitral valve • Normal mitral inflow through a functionally stenotic mitral orifice in the absence of organic valvular disease 275 276 Cardiac Physical Examination Fig. 1. Simultaneous recording of the left ventricular (LV) and the left atrial (LA) pressure curves obtained at cardiac catheterization from a patient with significant mitral stenosis. The rhythm is atrial fibrillation with varying diastolic intervals. A significant and persistent gradient through- out diastole is noted between the LA and the LV pressures even when the diastole is relatively long (e.g., following the fifth beat). Mitral Obstruction Secondary to Mitral Valvular Stenosis Mitral valvular obstruction may result from a congenitally stenosed valve or acquired stenosis such as caused by rheumatic heart disease where the leaflets are tethered and the commissures become fused because of the rheumatic process (1–4). Congenital mitral stenosis is rare, and when it occurs in combination with an atrial septal defect, the condition goes by the name of Lutembacher syndrome (5–7). Rarely, the obstruction may be caused by a left atrial tumor such as an atrial myxoma (8,9). An atrial myxoma is a benign tumor with a myxoid matrix of gelatinous consistency. It may be associated with constitutional symptoms, such as fever, and systemic inflammatory signs, such as elevated sedimentation rate. The myxoma is usually attached by a stalk to the interatrial septum and may prolapse into the ventricle in early diastole when the valve opens and cause obstruction to the mitral inflow. In the normal heart, the v wave pressure that is built up in the left atrium at the end of systole provides the gradient in early diastole for the diastolic flow to occur through the mitral valve. At this time the left ventricular pressure is close to zero. During the rapid filling phase of diastole, there is a fall in the left atrial pressure and a rise in the left ventricular diastolic pressure because of emptying of the left atrium and filling of the left ventricle, respectively. When there is any significant obstruction to flow at the mitral valve, the left atrial pressure will be elevated due to the obstruction, and the flow through the valve in diastole will occur under a higher v wave pressure gradient. The more severe the obstruction or the stenosis, the more persistent will be the elevation in the left atrial pressure. The pressure gradient between the left atrium and the left ven- tricle will tend to persist throughout diastole. The diastolic flow occurring under a higher and persistent pressure gradient will contribute to a turbulent flow, which may persist throughout diastole. The normal left atrial v wave pressure is usually about 12–15 mmHg. When there is significant mitral stenosis, the v wave pressure may be elevated up to 25–30 mmHg (Fig. 1). However, the pressure gradient noted even with severe mitral stenosis is still fairly low in terms of the absolute mmHg elevation. Chapter 8 / Heart Murmurs: Part II 277 On the other hand, the volume of flow through the mitral valve is always significant since the entire stroke volume of the heart will have to go through the mitral valve in diastole. Thus, a large volume going through the mitral valve under relatively low levels of pressure will be expected to give rise to turbulence, which will produce predominantly low-frequency murmur. In fact, the low pitch of the mitral stenosis murmur gives its characteristic rumbling quality on auscultation. The loudness of the murmur produced by the turbulence will depend to a certain extent on the adequacy of the cardiac output, whereas the length will depend more on the length of time the pressure gradient persists in diastole. The latter will tend to last throughout diastole when the stenosis is severe (1,3,10–13). CHARACTERISTICS OF MITRAL STENOSIS MURMURS The diastolic murmur of mitral stenosis will be expected to begin in diastole after the mitral valve opens and the rapid filling phase of diastole begins. The murmur is low pitched and often very well localized to the apex. The murmur may be so localized that unless one auscultates at the apex it may be missed. The best way to hear the murmur is to have the patient turn to the left lateral decubitus position and locate the left ventricular apex and use the bell to listen. The murmur has a rumbling quality and sounds like a distant roar of a thunder. The loud S1 and the opening snap following the S2, which are invariably present in classical mitral stenosis, give the background for auscultation. Together they make a cadence: One …..Two …ta r r r r r r r r The loudness of the murmur has no relationship to the severity of the stenosis. The loudness of the murmur may be related to the adequacy of the cardiac output. In severe pulmonary hypertension secondary to the mitral stenosis, the high pulmo- nary vascular resistance is usually associated with decreased cardiac output. In such patients with severe mitral stenosis and low-output symptoms the murmur may be soft and may even be inaudible. Occasionally in overdiuresed patients and decreased intra- vascular volume, the murmur may be soft despite significant stenosis. When the cardiac output is increased by slight exercise, such as walking for a few minutes, the murmur may be brought out more clearly. The length of the murmur has an important relationship to the severity of the mitral stenosis. If the stenosis is severe and is associated with a persistent diastolic gradient, the murmur will last throughout diastole until the beginning of next systole (Fig. 2). In atrial fibrillation the varying diastolic pauses provide a good opportunity to assess the length of the murmur in relation to the long pauses of diastole. The diastolic murmur of mitral stenosis will often have a presystolic crescendo to the loud M1 (Fig. 2) (14,15) . Occasionally one may hear only the presystolic murmur (Fig. 3). If this is the case, it usually means that the mitral stenosis is mild. The presystolic murmur tends to have some higher frequencies in that one can easily hear this with the chest piece of the stethoscope, unlike the diastolic rumble. Generally the presystolic murmur is not heard when the valve is heavily calcified and rigid. The left ventricle begins to contract at the end of diastole. When the left ventricular pressure exceeds the left atrial pressure, the mitral valve will close. The column of blood contained in the left ventricle, being moved by the contracting left ventricle, will be suddenly decelerated against the closed mitral valve, causing the loud M1. The loud- ness of M1 stems from the high dP/dt of the left ventricle at the time of closure of the 278 Cardiac Physical Examination Fig. 2. Simultaneous recording of eclectrocardiogram (ECG), carotid pulse (CP), apexcardiogram (Apex), and phonocardiogram (Phono) taken at the apex area from a patient with severe mitral stenosis. The Phono recording shows the full-length diastolic murmur, which begins immedi- ately following the opening snap (OS). The low-frequency murmur is initially loud and dimin- ishes slightly later to become accentuated with a crescendo shape ending with a loud intensity first heart sound (S1). The systole is free of murmur. Fig. 3. Simultaneous recording of electrocardiogram (ECG), carotid pulse (CP), apexcardiogram (Apex), and phonocardiogram (Phono) taken at the apex area from a patient with mild mitral stenosis. The Phono shows predominantly a presystolic murmur increasing in intensity ending with a large-amplitude first heart sound (S1). Note that the murmur has predominantly high frequency. mitral valve as a result of the elevated left atrial pressure. This has been discussed previously in relation to the S1. Although with sinus rhythm and preserved atrial contraction and relaxation one should expect a crescendo–decrescendo murmur with the increasing flow velocity associated with atrial contraction and decreasing flow velocity during atrial relaxation, Chapter 8 / Heart Murmurs: Part II 279 only the crescendo presystolic murmur is characteristic of mitral stenosis. Very rarely, when the PR interval is prolonged, one may observe and record a crescendo–decre- scendo murmur. Simultaneous recording of the left ventricular and left atrial pressures will show that the presystolic crescendo effect actually occurs at a time when the gradient is diminishing with the rising left ventricular pressure because of its contraction just before the crossover point of the pressures (4). In addition, the presystolic crescendo of the diastolic murmur can be recognized in shorter diastoles during atrial fibrillation (15). This would suggest that the increased volume and velocity of flow during the a wave rise in the left atrial pressure because of atrial systole in sinus rhythm alone is not adequate to explain its mechanism.
Recommended publications
  • 4.17-Kronzon-M-Mode-Echo.Pdf
    M-Mode Echocardiography Is it still Alive? Itzhak Kronzon, MD,FASE Honoraria: Philips Classical M-mode Echocardiography M-Mode offers better time and image resolution. Sampling Rate M-Mode: 1800 / sec 2D: 30 / sec Disadvantages 1. Single Dimension (depth only) 2. Nonperpendicular orientation (always use 2D guidance). Normal MV MS M-Mode of RA & LA Myxomas Back cover of ECHOCARDIOGRAPHY Feigenbaum, 3rd edition MV Prolapse M-Mode in HOCM ASH / SAM Mid-systolic AV Closure Markers of LV Dysfunction A-C Shoulder (“B-Bump”) EPSS Feigenbaum, ECHOCARDIOGRAPHY What does the m-mode show? 1. MS 2. AI 3. Flail MV 4. Myxoma Answer: 3. Posterior Leaflet Motion in Flail MV Note that the posterior leaflet moves anteriorly in early diastole, before it moves posteriorly. ASD with Large L to R Shunt Note markedly dilated RV and “paradoxical” septal motion Dyssynchrony by M-Mode -LBBB 138msec Dyssynchrony of >130msec is associated with good CRT response (sensitivity 100%, specificity 63%) This M mode finding is not associated with increased risk of A. Coarctation B. Pulmonic Stenosis C. Subaortic Stenosis D. Aortic insufficiency Echo of pt with Endocarditis and Shock Best Rx is: 1. AVR 2. MVR 3. IABP 4. Can not tell Echo of pt with Endocarditis and Shock Answer: 1. AVR Note premature closure of MV & echogenic mass in LVOT (Ao veg. Vs. flail Ao cusp) Differential Dx of Premature MV Closure A. AR B. First Degree AV Block C. High Degree AV Block D. Blocked APC E. Atrial Flutter The most likely physical finding in this pt is 1. Absent left subclavian pulse 2.
    [Show full text]
  • Rheumatic Heart Disease in Children: from Clinical Assessment to Therapeutical Management
    European Review for Medical and Pharmacological Sciences 2006; 10: 107-110 Rheumatic heart disease in children: from clinical assessment to therapeutical management G. DE ROSA, M. PARDEO, A. STABILE*, D. RIGANTE* Section of Pediatric Cardiology, *Department of Pediatric Sciences, Catholic University “Sacro Cuore” – Rome (Italy) Abstract. – Rheumatic heart disease is presence of valve disease or carditis can be still a relevant problem in children, adolescents easily recognized through echocardiographic and young adults. Molecular mimicry between examinations, but the combination of clinical streptococcal and human proteins has been pro- posed as the triggering factor leading to autoim- tools and echocardiography consents the munity and tissue damage in rheumatic heart most accurate assessment of heart involve- disease. Despite the widespread application of ment2. It is well known however that minimal Jones’ criteria, carditis is either underdiagnosed physiological mitral regurgitation can be or overdiagnosed. Endocarditis leading to mitral identified in normal people and might over- and/or aortic regurgitation influences morbidity diagnose the possibility of carditis. Only in and mortality of rheumatic heart disease, whilst myocarditis and pericarditis are less significant 30% patients serial electrocardiogram studies in determining adverse outcomes in the long- are helpful in the diagnosis of acute RF with term. Strategy available for disease control re- non-specific findings including prolonged PR mains mainly secondary prophylaxis with the interval, atrio-ventricular block, diffuse ST-T long-acting penicillin G-benzathine. changes with widening of the QRS-T angle and inversion of T waves. Carditis as an ini- Key Words: tial sign might be mild or even remain unrec- Rheumatic heart disease, Pediatrics.
    [Show full text]
  • Heart Murmurs
    HEART MURMURS PART I BY WILLIAM EVANS From the Cardiac Department of the London Hospital Received November 5, 1946 Auscultation of the heart, depending as it does on the acuity of the auditory sense and providing information commensurate with the observer's experience, cannot always determine unequivocally the various sound effects that may take place during systole and diastole. It is not surprising, therefore, that auscultation tied to traditional theories may sometimes lead to a wrong interpretation of the condition, although a judgment born of ripe experience in clinical medicine and pathology will avoid serious mistakes. It is more than fortuitous that modern auscultation has grown on such a secure foundation, but it is imperative that for the solution of outstanding problems there should be precise means of registering heart sounds. This is why a phonocardiogram was included in the examination of a series of patients pre- senting murmurs. As each patient attended for the test, the signs elicited on clinical auscultation were first noted and an opinion was formed on their significance. Cardioscopy was invariably carried out, and, when necessary, teleradiograms were taken. Limb and chest lead electrocardiograms were frequently recorded in addition to the lead selected as a control for the phonocardiogram. Many cases came to necropsy. The simultaneous electrocardiogram and sound record was taken by a double string galvanometer supplied by the Cambridge Instrument Company, and the length of the connecting tube leading from the chest to the amplifier was 46 cm. Although the amplitude of sounds and murmurs was matched against each other in individual patients, there was no attempt to standardize the intensity of murmurs in terms of amplitude in different patients; in fact it was varied deliberately in order to produce such excursion of the recording fibre as would best show the murmur.
    [Show full text]
  • Does This Patient Have Aortic Regurgitation?
    THE RATIONAL CLINICAL EXAMINATION Does This Patient Have Aortic Regurgitation? Niteesh K. Choudhry, MD Objective To review evidence as to the precision and accuracy of clinical examina- Edward E. Etchells, MD, MSc tion for aortic regurgitation (AR). Methods We conducted a structured MEDLINE search of English-language articles CLINICAL SCENARIO (January 1966-July 1997), manually reviewed all reference lists of potentially relevant You are asked to see a 59-year-old articles, and contacted authors of relevant studies for additional information. Each study woman with liver cirrhosis who will be (n = 16) was independently reviewed by both authors and graded for methodological undergoing sclerotherapy for esopha- quality. geal varices. When she was examined by Results Most studies assessed cardiologists as examiners. Cardiologists’ precision for her primary care physician, she had a detecting diastolic murmurs was moderate using audiotapes (k = 0.51) and was good pulse pressure of 70 mm Hg. The pri- in the clinical setting (simple agreement, 94%). The most useful finding for ruling in mary care physician is concerned about AR is the presence of an early diastolic murmur (positive likelihood ratio [LR], 8.8- the possibility of aortic regurgitation 32.0 [95% confidence interval {CI}, 2.8-32 to 16-63] for detecting mild or greater AR (AR) and asks you whether endocardi- and 4.0-8.3 [95% CI, 2.5-6.9 to 6.2-11] for detecting moderate or greater AR) (2 tis prophylaxis is necessary for sclero- grade A studies). The most useful finding for ruling out AR is the absence of early di- astolic murmur (negative LR, 0.2-0.3 [95% CI, 0.1-0.3 to 0.2-0.4) for mild or greater therapy.
    [Show full text]
  • Case Reports
    Case Reports Quadrivalvular Heart Disease An Autopsied Case with Massive Pulmonary Regurgitation Tsuguya SAKAMOTO, M.D., Zen'ichiro UOZUMI, M.D., Nobuyoshi KAWAI, M.D., Yoshiyuki SAKAMOTO, M.D., Ryoko KATO, M.D., and Hideo UEDA, M.D. SUMMARY An autopsied case of quadrivalvular heart disease was described, in which pulmonary regurgitation due to possible bicuspid valve was pre- dominant and tricuspid stenosis, mitral stenosis, and aortic stenosis with insufficiency coexisted. The patient was 47, and finally 53 years old female with long-term history of cough due to bronchial compression by the enormously dilated pulmonary artery. Clinical examination revealed massive pulmonary regurgitation, which was further substantiated by right heart catheterization and cineangiocardiography. The phono- cardiograms and the reference tracings suggested the co-existence of tricuspid stenosis, aortic stenosis with regurgitation and mitral stenosis. Cardiac catheterization, intracardiac phonocardiography and angio- cardiography also favored to the diagnosis of organic tricuspid stenosis. However, the ignorance of the presence of such an unusual combination misled to the precise antemortem diagnosis. Discussion was made on the rarity of quadrivalvular heart disease, and the pathogenesis of this unusual pulmonary regurgitation was analyzed based on the autopsy finding and the history as well as the clinical mani- festation. Finally, combination of the murmurs of organic and relative tricuspid stenosis was presented to explain the acoustical findings of the present case. Additional Indexing Words: Phonocardiography Mechanocardiography Bronchial compression Right-sided Austin Flint murmur UADRIVALVULAR heart disease was first described by Shattuck1) in 1891. However, the involvement of all four valves in a given patient is extremely rare.2) The present paper describes one of such case, in which From the Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Tokyo.
    [Show full text]
  • Viding Diagnostic Insights Into the Pathophysiologic Mechanisms
    viding diagnostic insights into the pathophysiologic mechanisms under- lying the acoustic findings heard in clinical practice.162-165 Contemporary physicians should take advantage of the valuable clinical information that can be obtained by such an inexpensive instrument and expedient and reli- able tool as the stethoscope. The following section reviews the funda- mental technique of cardiac auscultation, emphasizing the diagnostic value and practical clinical applications of this time-honored (but endan- gered) art in this time of need.166 The Art and Technique of Cardiac Auscultation. Auscultation of the heart and vascular system is one of the most challenging and rewarding clinical diagnostic skills that can (and should) be learned and applied by every prac- ticing physician. Proficiency in cardiac auscultation requires experience, repeated practice, and a great deal of patience (and patients). Most impor- tantly, it requires a proper state of mind. (“we hear what we listen for”). Although the most vital component of the auscultatory apparatus lies between the earpieces, the proper use of a well-designed, efficient stetho- scope cannot be overemphasized. To ensure optimal sound transmission, the well-crafted stethoscope should be airtight, with snug but comfortably-fit- ting earpieces, properly aligned metal binaurals, and flexible, double-barrel, 1 thick-walled tubing, ⁄8 inch in internal diameter and no more than 12 to 15 inches in length. A high-quality stethoscope should be equipped with both bell and diaphragm chest pieces. The bell, when applied gently to the skin, will “bring out” low frequency sounds and murmurs (eg, faint S4 or S3 gal- lop or diastolic rumble) and the diaphragm, when pressed firmly against the skin, will accentuate high-pitched acoustic events (eg, diastolic blowing murmur of AR).
    [Show full text]
  • 1. Intermittent Chest Pain: Angina: • Stable: (Caused By
    CVS: 1. Intermittent chest pain: Angina: • Stable: (caused by chronic narrowing in one or more coronary arteries), episodes of pain are precipitated by exertion and may occur more readily when walking in cold or windy weather, after a large meal or while carrying a heavy load; the pain is promptly relieved by rest and/or sublingual glyceryl nitrate (GTN) spray, and typically lasts for less than 10 minutes. • unstable angina (caused by a sudden severe narrowing in a coronary artery), there is usually an abrupt onset or worsening of chest pain episodes that may occur on minimal exertion or at rest. • Retrosternal/ Progressive onset/ increase in intensity over 1–2 minutes/ Constricting, heavy/ Sometimes arm(s), neck, epigastrium/ Associated with breathlessness/ Intermittent, with episodes lasting 2–10 minutes/ Triggered by emotion, exertion, especially if cold, windy/ Relieved by rest, nitrates Mild to moderate. • Aggravated by thyroxine or drug-induced anemia, e.g. aspirin or NSAIDs Esophageal: • Retrosternal or epigastric/ Over 1–2 minutes; can be sudden (spasm)/ C: Gripping, tight or burning/ R: Often to back, sometimes to arms/ A: Heartburn, acid reflux/ T: Intermittent, often at night-time; variable duration/ Lying flat/some foods may trigger/ Not relieved by rest; nitrates sometimes relieve/ Usually mild but esophageal spasm can mimic myocardial infarction. 2. Acute chest pain: MI: • SOCRATES: Retrosternal/ Rapid over a few minutes/ Constricting, heavy/ Often to arm(s), neck, jaw, sometimes epigastrium/ Sweating, nausea, vomiting, breathlessness, feeling of impending death (angor animi)/ Acute presentation; prolonged duration/ ’Stress’ and exercise rare triggers, usually spontaneous/ Not relieved by rest or nitrates/ Usually severe.
    [Show full text]
  • Valvular Heart Disease Acute Rheumatic Fever
    Valvular heart disease Acute rheumatic fever Rheumatic fever • It typically occurs several weeks after streptococcal pharyngitis. • The most common pathogen is group A beta-hemolytic streptococci (GABHS) • Streptococcus cross-react with proteins in cardiac valves. • Time from acute streptococcal infection to onset of symptomatic rheumatic fever (RF) is usually 3–4 weeks. • RF is thought to complicate up to 3% of untreated streptococcal sore throats. • Previous episodes of RF predispose to recurrences. Diagnostic criteria for rheumatic fever (Jones criteria) • Evidence of group A streptococcal pharyngitis • Either a positive throat culture or rapid streptococcal antigen test, or an elevated or rising streptococcal antibody titer (samples taken 2 weeks apart). • Plus two major or one major and two minor Jones criteria: Major criteria Minor criteria • Polyarthritis • Fever • Carditis • Arthralgia • Chorea • Prolonged PR interval • Erythema marginatum • Elevated ESR and CRP • Subcutaneous nodules Joints • Migratory large-joint polyarthritis starting in the lower limbs in 75% of cases. Duration is <4 weeks at each site. There is severe pain and tenderness in contrast to a mild degree of joint swelling. Heart • Pancarditis occurs in 50% of cases with features of acute heart failure, mitral and aortic regurgitation, and pericarditis. • Endocarditis • affects the mitral valve (65%–70%), aortic valve (25%), and tricuspid valve (10%, never in isolation), causing acute regurgitation and heart failure but chronic stenosis. • Pericarditis • Pain • Friction rub • rarely causes hemodynamic instability/tamponade or constriction. Heart Myocarditis • Acute heart failure • Arrhythmias • Most common reason of death Skin • Erythema marginatum is an evanescent rash with serpiginous outlines and central clearings on the trunk and proximal limbs.
    [Show full text]
  • ACC/AAP/AHA/ASE/HRS/SCAI/SCCT/SCMR/SOPE 2014 Appropriate Use Criteria for Initial Transthoracic Echocardiography in Outpatient P
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY VOL. - ,NO.- ,2014 ª 2014 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION ISSN 0735-1097/$36.00 PUBLISHED BY ELSEVIER INC. http://dx.doi.org/10.1016/j.jacc.2014.08.003 1 APPROPRIATE USE CRITERIA 55 2 56 3 57 4 ACC/AAP/AHA/ASE/HRS/ 58 5 59 6 SCAI/SCCT/SCMR/SOPE 60 7 61 8 2014 Appropriate Use Criteria for 62 9 63 10 Initial Transthoracic Echocardiography 64 11 65 12 in Outpatient Pediatric Cardiology 66 13 67 14 A Report of the American College of Cardiology Appropriate Use Criteria Task Force, 68 15 American Academy of Pediatrics, American Heart Association, American Society of 69 16 Echocardiography, Heart Rhythm Society, Society for Cardiovascular Angiography and 70 17 Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular 71 18 Magnetic Resonance, and Society of Pediatric Echocardiography 72 19 73 20 74 21 75 22 76 Q1 Writing Group for Robert M. Campbell, MD, FACC, FAHA, FAAP, FHRS, Wyman W. Lai, MD, MPH, FACC, FASE 23 77 Echocardiography Chair Leo Lopez, MD, FACC, FAAP, FASE 24 78 in Outpatient Ritu Sachdeva, MD, FACC, FAAP, FASE 25 79 Pediatric Pamela S. Douglas, MD, MACC, FAHA, FASE 26 80 Cardiology Benjamin W. Eidem, MD, FACC, FASE 27 81 28 82 29 83 30 Rating Panel Robert M. Campbell, MD, FACC, FAHA, FAAP, FHRS, Richard Lockwood, MD** 84 yy 31 Chair* G. Paul Matherne, MD, MBA, FACC, FAHA 85 zz 32 Pamela S. Douglas, MD, MACC, FAHA, FASE, Moderator* David Nykanen, MD, FACC 86 yy 33 Catherine L.
    [Show full text]
  • Kuban State Medical University" of the Ministry of Healthcare of the Russian Federation
    Federal State Budgetary Educational Institution of Higher Education «Kuban State Medical University" of the Ministry of Healthcare of the Russian Federation. ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ (ФГБОУ ВО КубГМУ Минздрава России) Кафедра пропедевтики внутренних болезней Department of Propaedeutics of Internal Diseases BASIC CLINICAL SYNDROMES Guidelines for students of foreign (English) students of the 3rd year of medical university Krasnodar 2020 2 УДК 616-07:616-072 ББК 53.4 Compiled by the staff of the department of propaedeutics of internal diseases Federal State Budgetary Educational Institution of Higher Education «Kuban State Medical University" of the Ministry of Healthcare of the Russian Federation: assistant, candidate of medical sciences M.I. Bocharnikova; docent, c.m.s. I.V. Kryuchkova; assistent E.A. Kuznetsova; assistent, c.m.s. A.T. Nepso; assistent YU.A. Solodova; assistent D.I. Panchenko; docent, c.m.s. O.A. Shevchenko. Edited by the head of the department of propaedeutics of internal diseases FSBEI HE KubSMU of the Ministry of Healthcare of the Russian Federation docent A.Yu. Ionov. Guidelines "The main clinical syndromes." - Krasnodar, FSBEI HE KubSMU of the Ministry of Healthcare of the Russian Federation, 2019. – 120 p. Reviewers: Head of the Department of Faculty Therapy, FSBEI HE KubSMU of the Ministry of Health of Russia Professor L.N. Eliseeva Head of the Department
    [Show full text]
  • CARDIOLOGY Section Editors: Dr
    2 CARDIOLOGY Section Editors: Dr. Mustafa Toma and Dr. Jason Andrade Aortic Dissection DIFFERENTIAL DIAGNOSIS PATHOPHYSIOLOGY (CONT’D) CARDIAC DEBAKEY—I ¼ ascending and at least aortic arch, MYOCARDIAL—myocardial infarction, angina II ¼ ascending only, III ¼ originates in descending VALVULAR—aortic stenosis, aortic regurgitation and extends proximally or distally PERICARDIAL—pericarditis RISK FACTORS VASCULAR—aortic dissection COMMON—hypertension, age, male RESPIRATORY VASCULITIS—Takayasu arteritis, giant cell arteritis, PARENCHYMAL—pneumonia, cancer rheumatoid arthritis, syphilitic aortitis PLEURAL—pneumothorax, pneumomediasti- COLLAGEN DISORDERS—Marfan syndrome, Ehlers– num, pleural effusion, pleuritis Danlos syndrome, cystic medial necrosis VASCULAR—pulmonary embolism, pulmonary VALVULAR—bicuspid aortic valve, aortic coarcta- hypertension tion, Turner syndrome, aortic valve replacement GI—esophagitis, esophageal cancer, GERD, peptic OTHERS—cocaine, trauma ulcer disease, Boerhaave’s, cholecystitis, pancreatitis CLINICAL FEATURES OTHERS—musculoskeletal, shingles, anxiety RATIONAL CLINICAL EXAMINATION SERIES: DOES THIS PATIENT HAVE AN ACUTE THORACIC PATHOPHYSIOLOGY AORTIC DISSECTION? ANATOMY—layers of aorta include intima, media, LR+ LRÀ and adventitia. Majority of tears found in ascending History aorta right lateral wall where the greatest shear force Hypertension 1.6 0.5 upon the artery wall is produced Sudden chest pain 1.6 0.3 AORTIC TEAR AND EXTENSION—aortic tear may Tearing or ripping pain 1.2–10.8 0.4–0.99 produce
    [Show full text]
  • Cardiology 2
    Ch02.qxd 7/5/04 3:06 PM Page 13 Cardiology 2 FETAL CARDIOVASCULAR PHYSIOLOGY The ‘basic science’ nature of this topic – as well as the potential pathological implications in paediatric cardiology – makes it a likely viva question. Oxygenated blood from the placenta returns to the fetus via the umbilical vein (of which there is only one). Fifty per cent traverses the liver and the remaining 50% bypasses the liver via the ductus venosus into the inferior vena cava. In the right atrium blood arriving from the upper body from the superior vena cava (low oxygen saturation) preferentially crosses the tricus- pid valve into the right ventricle and then via the ductus flows into the descending aorta and back to the placenta via the umbilical arteries (two) to reoxygenate. The relatively oxygenated blood from the inferior vena cava, however, preferentially crosses the foramen ovale into the left atrium and left ventricle to be distributed to the upper body (including the brain and coro- nary circulation). Because of this pattern of flow in the right atrium we have highly oxygenated blood reaching the brain and deoxygenated blood reach- ing the placenta. High pulmonary arteriolar pressure ensures that most blood traverses the pulmonary artery via the ductus. Changes at birth 1. Occlusion of the umbilical cord removes the low-resistance capillary bed from the circulation. 2. Breathing results in a marked decrease in pulmonary vascular resistance. 3. In consequence, there is increased pulmonary blood flow returning to the left atrium causing the foramen ovale to close. 4. Well-oxygenated blood from the lungs and the loss of endogenous prostaglandins from the placenta result in closure of the ductus arteriosus.
    [Show full text]