From Sustainable Biomass to Competitive Bioenergy

Total Page:16

File Type:pdf, Size:1020Kb

From Sustainable Biomass to Competitive Bioenergy White papers for a green transition FROM SUSTAINABLE BIOMASS TO COMPETITIVE BIOENERGY Insights into Danish bioenergy solutions INSIDE THIS WHITE PAPER Technical and regulatory approaches to encourage bioenergy use State-of-the-art bioenergy solutions Biomass challenges and potentials 2 Foreword 3 BIOBASED FOR GROWTH Turning sustainable biomass into competitive bioenergy solutions FROM SUSTAINABLE BIOMASS TO COMPETITIVE BIOENERGY - Insights into Danish bioenergy solutions Front page picture This photo is made by Kollision and illustrates the transformation of biomass into heat, power and fuels. Editor in Chief State of Green Bioenergy is a cornerstone in the Danish renewable energy mix. Today, approximately 70% of renewable energy consumption in Technical Editor DI Bioenergy - Danish Bioenergy Association Denmark is bioenergy-based, mostly in the form of straw, wood and renewable wastes. Contributors Aikan / Solum Gruppen: Bjørn Kassoe Andersen, [email protected] Babcock & Wilcox Vølund: Anne-Marie Reinhardt, [email protected] Lars Chr. Lilleholt, Danish Minister of Energy, Utilities and Climate BWE: Susanne Miceli, [email protected] BWSC: Kasper Fröhlich, [email protected] Danish Agriculture and Food Council: Anne Sofie Munk Kruse, [email protected] Due to the extensive use of bioenergy, bioenergy production, biomass handling Ministry of Energy, Utilities and Climate, Daka: Marie Cecilie Suignard Fønss, [email protected] there is an abundance of expertise avail- and exploitation. the Danish Energy Industries Federation Danish Bioenergy Association: Michael Persson, [email protected] able in this field. In addition to hosting and the Danish Energy Association, Danish Danish Energy Agency: Lars Martin Jensen [email protected] / Jan Bünger, [email protected] several top-efficient, full-scale biomass State-of-the art bioenergy solutions businesses producing energy technology Danish Energy Association: Kristine van het Erve Grunnet, [email protected] plants, Denmark is an industry hub and Specifically, Danish companies rank among exported more than ever before in 2014. DONG Energy: Anne-Marie Avirett Rawlins, [email protected] testing ground for modern energy tech- the world’s leading developers of biomass Exports of green energy technologies have Focus Bioenergy: Jeanett Aagaard Jensen, [email protected] nologies based on biofuels and biogas, and boilers as well as developers of enzymes experienced rapid growth for the past Haldor Topsoe: Svend Ravn, [email protected] Danish companies and universities cooper- for production of second-generation three years, standing at DKK 43.6 billion in Maabjerg Energy Concept: Jørgen Udby, [email protected] ate closely to offer world-class bioenergy bioethanol. With regard to biomass and 2014, which exceeds the level before the State of Green: Dan Howis Lauritsen, [email protected] solutions globally. biofuels, increased use in combined heat financial crisis in 2008. Xergi: Lene Stavad, [email protected] and power production and transport con- Bioenergy developments in Denmark tinues to improve Danish companies’ op- In this white paper, we have gathered a For more information Denmark has utilised biomass to produce portunities for development, innovation selection of knowledge-driven and solu- The order copies of this white paper or receive information about other related bioenergy for decades, in fact, the con- and exports. Within agriculture, Denmark tions-based cases, each demonstrating publications, please contact State of Green at [email protected] sumption of biomass for energy production is spearheading new technologies to turn opportunities and lessons-learned from in Denmark more than quadrupled between biogas and liquid biomass into energy, and the Danish bioenergy sector. The content is 1980 and 2009, and towards 2020, bioen- dozens of plants, private and public alike, meant to inform and inspire by facilitating Copyright State of Green 2015 ergy will continue to make up the majority are already in operation today. Danish developments and framework con- of total renewable energy consumption ditions for bioenergy, as well as state-of- in Denmark. From a global perspective, Unleashing the potential the-art case examples, which are sustain- Denmark has one of the most efficient bio- of bioenergy solutions able, not only in terms of the environment energy clusters in the world. This is possi- According to 2014 export figures for but in terms of economics as well. I hope ble due to well-developed technologies for energy technology released by the Danish you will be inspired. 250 Other Wind Biogas Biofuel Biomass 200 150 100 50 PJ 0 2000 2005 2010 2015 2020 With a significant increase in solid biomass, biogas as well as biofuels, bioenergy will continue to make up the majority of total Danish renewable energy consumption in 2020. 4 ABOUT INDEX 5 ABOUT THIS WHITE PAPER INDEX The aim of this White Paper is to share some of Denmark’s solutions and experiences in transforming Biobased for Growth ................................................................................................................................................... 3 sustainable biomass resources into competitive bioenergy solutions. The Danish story of bioenergy development .......................................................................................................6-7 We have gathered a selection of knowledge-cases and technological examples, each demonstrating How regulatory development has encouraged the use of bioenergy opportunities and lessons learned from different stakeholders across the Danish bioenergy land- Biogas and straw-to-energy .................................................................................................................................. 8-9 scape. The content provides insights into the development of bioenergy solutions in Denmark, and Utilising agricultural residues for energy production the frameworks needed to further enable these developments. Woody biomass for energy .................................................................................................................................10-11 We hope that you will be inspired. Replacing coal and gas with woody biomass for electricity and heating Bioenergy for the future .....................................................................................................................................12-13 A first mover market for new bioenergy solutions Energy technology exports make Denmark punch beyond its weight in global climate action ....................14-15 Strong pipeline of bioenergy projects Solutions that fuel the energy needs of tomorrow..........................................................................................16-17 Explore Danish bioenergy technologies Case studies Moving towards biobased societies..................................................................................................................18-09 Value from agricultural residues and household waste Simple does it ...................................................................................................................................................... 20-21 Transforming biowaste into valuable resources using standard technology 2G biodiesel from animal fat ...............................................................................................................................22-23 A sustainable substitute for conventional diesel Biogas – the future of agricultural waste recycling ........................................................................................ 24-25 Agriculture holds the key to green energy and sustainable fertilisers Bioenergy in beer production ............................................................................................................................ 26-27 Switching from fossil fuels to primary biofuels at Brewery Vestfyen High efficient biomass energy production ....................................................................................................... 28-29 Best available technological solution for dry agro biomass combustion Helping Europe reach environmental targets on renewable fuels ............................................................... 30-31 Topsoe partners with refiners in the pursuit of a sustainable future Setting new standards for environmental performance, energy production and waste treatment .............32-33 Copenhill, Amager Bakke: Waste fired power plant with multiple purposes Finding synergy between biogas, ethanol, heat and power generation ..................................................... 34-35 An innovative technological approach to energy economics and sustainability 6 The Danish storY OF bioenergY development The Danish storY OF bioenergY development 7 THE DANISH STORY OF BIOENERGY DEVELOPMENT How regulatory development has encouraged the use of bioenergy Since the mid-1980s, parliamentary majorities in Denmark have persisted in a proactive, resource-based and environmentally responsible energy policy. As a result, Denmark has now taken a leading global position within several fields of renewable energy, including various forms of bioenergy. Per Bach Svendsen, Advisor, Danish Energy Agency Before the first oil crisis in 1973, the Danish least 1 million tonnes of straw. The agree- wood chips and wood pellets as well as energy sector had little experience with ment resulted in a significant shift towards straw because these sources are the most centralised political energy regulation. The substituting coal-based CHP plants with bi- price competitive.
Recommended publications
  • Energy Policy 120 (2018) 526–532
    Energy Policy 120 (2018) 526–532 Contents lists available at ScienceDirect Energy Policy journal homepage: www.elsevier.com/locate/enpol The conundrum of combustible clean energy: Sweden's history of siting T district heating smokestacks in residential areas Catherine Brinkley Community and Regional Development, Department of Human Ecology, College of Agriculture and Environmental Sciences, University of California, Davis, United States ARTICLE INFO ABSTRACT Keywords: Communities may wish to source their energy locally to improve resilience in volatile energy markets, reduce Climate change greenhouse gas emissions, and support regional economies. Biomass and waste incineration offer one method Community energy that has been broadly adopted in European and Asian countries, particularly in combination with district heating Heat planning systems. Yet, combustion and the placement of affiliated smokestacks often pose contentious planning obstacles District heating for local communities. Learning from Sweden's example, this research maps where smokestacks are placed in Biomass relation to land uses, finding that residential areas comprise nearly 20% of the surrounding land uses within a quarter mile of district-heating associated smokestacks. The research concludes with policy-oriented re- commendations for planning district heating. 1. Background: community heat and power successes. Sweden provides an example of a country which has reduced GHG There are several reasons for localizing energy production including emissions per capita while re-localizing energy supply and growing the diversifying fuel sources for economic resilience (Kohl, 2008), reducing economy. Sweden became one of 32 countries to agree to cap their greenhouse gas (GHG) emissions (Lovins and Lovins, 1983; Li, 2005), emissions as part of the United Nations Framework Convention on and stimulating regional economies through new technology develop- Climate Change (UNFCCC).
    [Show full text]
  • Kapco/Ceo/2021/423
    ;d dL PC)1/i c rr - ny Lir ci 5 B/3, Gulberg III Lahore 54660, Pakistan UAN +92 42 111152 726 PABX +9242 3577 2912-21 Fax +92 42 3577 2922 June24,2021 — Reference No. KAPCO/CEO/2021/423 , The Registrar National ElectricalPower Regulatory Authority ( c.i NEPRA Tower, Attaturk Avenue (East) — ALA (1c, G-5/1, Islamabad SUBJECT: APPLICATION FOR GENERATION LICENSE EXTENSION PROPOSED FOR GENERATION LICENSE NO. IPGL/020/2004 RELATING To 1600MW (GROSS) KAPCO Complex LOCATED AT KOT ADDU DISTRICT MUZAFFARGRAH, PUNJAB, PAKISTAN Dear Sir, 1. Pursuant to the applicable laws of Pakistan, including the Regulation of Generation, Transmission and Distribution of Electric Power Act, 1997 and the rules and regulations made thereunder (including regulation 10(2) of the National Electric Power Regulatory Authority Licensing (Application -. Modification Procedure) Regulations,...1 and the National Electric Power Regulatory Authority Licensing (Generation) Rules, 2000) we submit before the National Electric Power Regulatory Authority (the Authority) an Application for Generation License Extension (together with the documents annexed thereto) (the Generation License Extension Application) for the extension of the Licensee's Generation License No. lPGL/020/2004 read with its Extension dated June 24, 2021 (the Generation License). 2. The Application for Generation License Extension (including its annexures) are beingsubmitted in triplicate, together with: (a) a Bank Draft No.24765036 dated 22-6-2021 amounting to PKR 1,456,455 (Pakistani Rupees One million four hundred fifty six thousand four hundred Only) drawn in favour of NEPRA, as the application fee for a License Proposed Extension of Generation License (as communicated to us by NEPRA) has been directly sent to NEPRA; (b) Board resolution of the Company dated June 22, 2021; and Kot Addu Power Complex Office No.
    [Show full text]
  • 42 Waste-To-Energy Heating Plant 43 District Heating Boiler, Biomass Fired
    This PDF file contain the Energy technology catalogue chapters for the biomass and waste plant types listed below with related data tables (.xls) has been send in external review from July 14 to August 22 2017. 08 WASTE-TO-ENERGY CHP PLANT 09 BIOMASS CHP, STEAM TURBINE – ORC PLANT, LARGE - MEDIUM – SMALL 42 WASTE-TO-ENERGY HEATING PLANT 43 DISTRICT HEATING BOILER, BIOMASS FIRED The invitation to comment the documents is open, comments should be send to Andreas Moltesen ([email protected]) eller Rune Grandal ([email protected]). 08 WASTE-TO-ENERGY CHP PLANT Qualitative description Contact information Danish Energy Agency: Andreas Moltesen, [email protected] Author: Rambøll: Claus Hindsgaul, Tore Hulgaard (First draft by FORCE Technology/Jesper Cramer) Reviewer: Brief technology description The major components of a Waste-to-Energy (WtE) plant for energy recovery by combined heat and power (CHP) are: A waste reception area, a feeding system, a grate fired furnace interconnected with a steam boiler, a back pressure steam turbine, a generator, an extensive flue gas cleaning sys- tem and systems for handling of combustion and flue gas treatment residues. Process diagram is found in Annex 1. The plant is primarily designed for incineration of municipal solid waste (MSW) and similar non- hazardous wastes from trade and industry. Some types of hazardous wastes may, however, also be incinerated. The waste is delivered by trucks and is normally incinerated in the state in which it arrives. Only bulky items are shredded before being fed into the waste bunker. The design and operation of WtE plants vary depending on the environment of their location.
    [Show full text]
  • Shaping the Future of Energy
    SHAPING THE FUTURE OF ENERGY CONSULTANCY AND DESIGN OF INTEGRATED ENERGY SOLUTIONS WWW.RAMBOLL.COM/ENERGY Securing an integrated energy system 4 About us 6 Our approach 8 How we work 10 World class projects 12 Covering the entire value chain 14 Digital innovation 42 RAMBOLL AT A GLANCE 15,000 EXPERTS 300 OFFICES Ramboll head oce 35 COUNTRIESRamboll oce ENERGY BUILDINGS TRANSPORT PLANNING & URBAN DESIGN With security of supplies, Buildings form a fundamental Mobility fuels economic and Ramboll’s holistic approach climate change, energy part of our lives by shaping social development and with to urban development efficiency and resource our communities and daily 50% of the world’s population encompasses strategy, scarcity as top priorities activities. now living in urban areas, planning and world class efficient and reliable transport technical design services and on the global agenda, For these reasons, Ramboll’s systems are essential. is based on an integrated there is a general push design philosophy is always multidisciplinary skills base. towards renewables, to make room for the To meet this need, Ramboll human experience. As one has been working on some We have an extensive track although conventional of Europe’s top 3 buildings of the world’s largest, most record working with a number energy will continue to designers with decades of innovative infrastructure of the world’s largest cities to play a significant role experience in the global projects and is the leading create liveable, sustainable, in the energy mix in market, we create visionary, consultancy in the Nordic and implementable urban the coming years.
    [Show full text]
  • Technology Data for Energy Plants for Electricity and District Heating Generation August 2016
    Technology Data for Energy Plants for Electricity and District heating generation August 2016 Update 2017 and March 2018 Danish Energy Agency Amaliegade 44 DK-1256 Copenhagen K P: +45 3392 6700 E: [email protected] www.ens.dk Amendment sheet Publication date Publication date for this catalogue “Technology Data for Energy Plants” is august 2016. In June 2017 this amendment sheet has been added and also the possibility to add descriptions of amendments in the individual chapters if required. Hereby the catalogue can be updated continuously as technologies evolve, if the data changes significantly or if errors are found. The newest version of the catalogue will always be available from the Danish Energy Agency’s web site. Amendments after publication date All updates made after the publication date will be listed in the amendment sheet below. Date Ref. Description March 18 99 Introduction, Chapter added that gives a common introduction to the biomas Biomass and Waste and waste sheets ( chapter 08, 09, 42 and 43) sections March 18 08,09,42,43 Waste Datasheet included, chapters will be included soon and Biomass CHP and boilers March 18 11 Solid oxide fuel Chapter added cell CHP (Natural gas/biogas) March 18 12Low temperature Chapter added proton exchange membrane fuel cell CHP (hydrogen) January 05 Combined cycle Additional references have been included 18 gas turbine January 06 Gas engines Reference sheet have been updated 18 January 40 Heat pumps, DH Updated prices for auxiliary electricity consumption in data sheet 18 and 44 gas fired DH boiler
    [Show full text]
  • Cities Aim at Zero Emissions How Carbon Capture, Storage and Utilisation Can Help Cities Go Carbon Neutral Foreword
    Cities Aim at Zero Emissions How carbon capture, storage and utilisation can help cities go carbon neutral Foreword This report is written by the Bellona Foundation and the City of Copenhagen in collaboration with Amsterdam, Helsinki, Oslo and Stockholm. The topic is carbon capture, storage or usage in relation to cities mitigating their climate impact. It explores the whys, ifs and hows associated with the technologies. Discussions will shed lights on the different barriers and drivers for carbon capture from a city perspective, and illustrate the potential and possible actions based on real examples. The publication marks the end of a one-year project collaboration between the five cities mentioned above. All of them have advanced climate plans with ambitious targets, and they perceive carbon capture as a possible solution to ensure these plans succeed. These cities already experience the challenge of becoming carbon neutral without applying this technology on their centralized heating sources. Behind the development of this report there are 10 individual background notes and a screening of the different technologies related to carbon capture. These are written by the Bellona Foundation, the consultancy Niras and the City of Copenhagen. All of these end-products have been conducted on behalf of needs highlighted by the cities to enhance them moving closer to implementation of carbon capture, storage or usage. Over the course of 2019, the cities used the first half for framing their needs related to the subject, and the econd part was used for studying literature and the state of the art with Bellona and Niras. The Carbon Neutral Cities Alliance (CNCA) has made this project possible through its Innovation Fund.
    [Show full text]