Bathybius Haeckelii and a 'Reign of Terror'
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
States of Origin: Influences on Research Into the Origins of Life
COPYRIGHT AND USE OF THIS THESIS This thesis must be used in accordance with the provisions of the Copyright Act 1968. Reproduction of material protected by copyright may be an infringement of copyright and copyright owners may be entitled to take legal action against persons who infringe their copyright. Section 51 (2) of the Copyright Act permits an authorized officer of a university library or archives to provide a copy (by communication or otherwise) of an unpublished thesis kept in the library or archives, to a person who satisfies the authorized officer that he or she requires the reproduction for the purposes of research or study. The Copyright Act grants the creator of a work a number of moral rights, specifically the right of attribution, the right against false attribution and the right of integrity. You may infringe the author’s moral rights if you: - fail to acknowledge the author of this thesis if you quote sections from the work - attribute this thesis to another author - subject this thesis to derogatory treatment which may prejudice the author’s reputation For further information contact the University’s Director of Copyright Services sydney.edu.au/copyright Influences on Research into the Origins of Life. Idan Ben-Barak Unit for the History and Philosophy of Science Faculty of Science The University of Sydney A thesis submitted to the University of Sydney as fulfilment of the requirements for the degree of Doctor of Philosophy 2014 Declaration I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma of a University or other institute of higher learning. -
Darwinism and the Origin of Life: the Role of H.C. Bastian in the British Spontaneous Generation Debates, 1868--1873
Journal of the History of Biology 32: 51–92, 1999. 51 © 1999 Kluwer Academic Publishers. Printed in the Netherlands. Darwinism and the Origin of Life: The Role of H.C. Bastian in the British Spontaneous Generation Debates, 1868–1873 JAMES STRICK Biology Department PO Box 871501 Arizona State University Tempe, AZ 85287-1501, U.S.A. Abstract. Henry Charlton Bastian’s support for spontaneous generation is shown to have developed from his commitment to the new evolutionary science of Darwin, Spencer, Huxley and Tyndall. Tracing Bastian’s early career development shows that he was one of the most talented rising young stars among the Darwinians in the 1860s. His argument for a logically necessary link between evolution and spontaneous generation was widely believed among those sympathetic to Darwin’s ideas. Spontaneous generation implied materialism to many, however, and it had associations in Britain with radical politics and amateur science. Huxley and the X Club were trying to create a public posture of Darwinism that kept it at arm’s length from those negative associations. Thus, the conflict that developed when Huxley and the X Club opposed Bastian was at least as much about factional in-fighting among the Darwinians as it was about the experiments under dispute. Huxley’s strategy to defeat Bastian and define his position as “non-Darwinian” contributed significantly to the shaping of Huxley’s famous address “Biogenesis and Abiogenesis.” Rhetorically separating Darwinism from Bastian was thus responsible for Huxley’s first clear public statement that a naturalistic origin of life was compatible with Darwin’s ideas, but only in the earth’s distant past. -
Huxley, Haeckel, and the Oceanographers: the Case of Bathybius Haeckelii Author(S): Philip F
Huxley, Haeckel, and the Oceanographers: The Case of Bathybius haeckelii Author(s): Philip F. Rehbock Source: Isis, Vol. 66, No. 4 (Dec., 1975), pp. 504-533 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/228925 . Accessed: 15/05/2013 17:26 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis. http://www.jstor.org This content downloaded from 150.135.114.195 on Wed, 15 May 2013 17:26:47 PM All use subject to JSTOR Terms and Conditions Huxley, Haeckel, and the Oceanographers:The Case of Bat hybius haeckelii By Philip F. Rehbock* INTRODUCTION AT THE NORWICH MEETING of the British Association for the Ad- vancement of Science in August 1868, Thomas Henry Huxley announced the results of his microscopical examination of some specimens of North Atlantic bottom sediment. Among the constituents of these seemingly unexciting speci- mens Huxley had found some curious "granule-heaps," surrounded by extensive masses of viscous matter, which he described variously as "lumps of a transparent, gelatinous substance" and a "colourless, and structureless matrix."' Tests of the substance convinced Huxley that he was dealing with a new type of organism in the form of virtually undifferentiated protoplasm. -
UNIVERSITY of CALIFORNIA, SAN DIEGO Dredging Evolutionary
UNIVERSITY OF CALIFORNIA, SAN DIEGO Dredging Evolutionary Theory: the emergence of the deep sea as a transatlantic site for evolution, 1853-1876 A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in History (Science Studies) by Rodolfo John Alaniz Committee in charge: Cathy Gere, Chair Tal Golan, Co-Chair Luis Alvarez Kelly Gates Mark Hanna Lynn Nyhart Cheryl Peach 2014 Copyright Rodolfo John Alaniz, 2014 All rights reserved. The dissertation of Rodolfo John Alaniz is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2013 iii DEDICATION This dissertation is dedicated to the late Philip F. Rehbock. We never met in person. I started my research after your passing. However, my colleagues speak of you with great fondness and admiration. Your writing has inspired me and convinced me that our words touch the lives of others long after we have passed on. iv EPIGRAPH Organic life beneath the shoreless waves was born and nurs'd in ocean's pearly caves First forms minute, unseen by spheric glass move on the mud, or pierce the watery mass As these successive generations bloom, new powers acquire, and larger limbs assume; whence countless groups of vegetation spring, and breathing realms of fin, and feet, and wing - Erasmus Darwin, The Temple of Nature 18031 1 Erasmus Darwin, The Temple of Nature (1803; reprint, Menston, Yorkshire: The Scholar Press Limited, 1973), 26-27. The original footnote reads, “Beneath the shoreless waves, l. 295. The earth was originally covered with water, as appears from some of its highest mountains, consisting of shells cemented together by a solution of part of them.. -
Annals of the History and Philosophy of Biology
he name DGGTB (Deutsche Gesellschaft für Geschichte und Deutsche Gesellschaft für Theorie der Biologie; German Society for the History and Philosophy of Biology)T reflects recent history as well as German traditi- Geschichte und Theorie der Biologie on. The Society is a relatively late addition to a series of German societies of science and medicine that began with the „Deutsche Gesellschaft für Geschichte der Medizin und der Naturwissenschaften“, Annals of the History foundedin1910byLeipzigUniversity‘sKarlSudhoff(1853-1938),who wrote:„Wewanttoestablisha‚German‘societyinordertogatherGer- and Philosophy of Biology man-speaking historians together in our special disciplines so that they form the core of an international society…“. Yet Sudhoff, at this Volume 14 (2009) time of burgeoning academic internationalism, was „quite willing“ to accommodate the wishes of a number of founding members and formerly Jahrbuch für „drop the word German in the title of the Society and have it merge Geschichte und Theorie der Biologie with an international society“. The founding and naming of the Society at that time derived from a specific set of histori- cal circumstances, and the same was true some 80 years later Rainer Brömer when in 1991, in the wake of German reunification, the „Deutsche Plastidules to Humans Gesellschaft für Geschichte und Theorie der Biologie“ was founded. From the start, the Society has been committed to bringing stu- dies in the history and philosophy of biology to a wide audience, using for this purpose its Jahrbuch für Geschichte und Theorie der Biologie. -
Slime on a Wire Cyclops, Who Was Also Instructed to Take Samples for Scientific Research, Reported a Curious Sludge on the Sounding Device’S Rope
In 1853, the aging brig USS Dolphin, under the command of Otway Henry Berryman, tested the depths of the sea in a region of the North Atlantic. Dragging a partially hollowed cannonball fitted with hooks – a custom device designed by the military engineer John Mercer Brooke – across a great swath of the bottom of 01/12 the ocean in a method called sounding, the crew mapped a massive and (supposedly) flat region previously studied by the American oceanographer Matthew Fontaine Maury. Berryman found the region far more geologically uneven than Maury had believed, much to the latter’s displeasure. In 1857, at Maury’s request, the British HMS Cyclops expanded the search, Ben Woodard and in its soundings supported Maury’s earlier claim of flatness. Thus the region kept its name: Telegraph Plateau. Captain Dayman of the Slime on a Wire Cyclops, who was also instructed to take samples for scientific research, reported a curious sludge on the sounding device’s rope. ÊÊÊÊÊÊÊÊÊÊSoon after, the first of many attempts to construct a transatlantic telegraph cable began as a joint venture between the US, Canada, and England, funded largely by Cyrus West Field, an American businessperson who had been consolidating telegraph companies for years. The project had a short-term success lasting just over a month in 1858, followed later by a redesign and many more failures. The construction drama involved the support of elaborate economic syndicates and drew notable physicists such as Lord Kelvin into its service. Differing ideas about the proper design and operation (in terms of power level, construction materials, signal detection) and ever higher costs d r finally led to the completion of a fully functioning a d 1 o cable in 1866. -
EPS—Then and Now
microorganisms Review EPS—Then and Now Hans-Curt Flemming 1,2,3 1 Biofilm Centre, University of Duisburg-Essen, Universitätsstrasse 5, Essen 45141, Germany; hc.fl[email protected] 2 Singapore Center for Life Science Engineering (SCELSE), Nanyang Technological University, Singapore 637551, Singapore 3 Water Academy, Licherstrasse 24, Frankfurt 60389, Germany Academic Editor: Rikke Louise Meyer Received: 8 October 2016; Accepted: 11 November 2016; Published: 18 November 2016 Abstract: “Slime” played a brief and spectacular role in the 19th century founded by the theory of primordial slime by Ernst Haeckel. However, that substance was never found and eventually abandoned. Further scientific attention slowly began in the 1930s referring to slime as a microbial product and then was inspired by “How bacteria stick” by Costerton et al. in 1978, and the matrix material was considered to be polysaccharides. Later, it turned out that proteins, nucleic acids and lipids were major other constituents of the extracellular polymeric substances (EPS), an acronym which was highly discussed. The role of the EPS matrix turns out to be fundamental for biofilms, in terms of keeping cells in proximity and allowing for extended interaction, resource capture, mechanical strength and other properties, which emerge from the life of biofilm organisms, including enhanced tolerance to antimicrobials and other stress. The EPS components are extremely complex and dynamic and fulfil many functional roles, turning biofilms into the most ubiquitous and successful form of life on Earth. Keywords: biofilms; EPS; emergent properties; nutrient acquisition; tolerance; resistance 1. Too Good to Be True? It was such a great idea! In “The History of Creation”, the German biologist Ernst Haeckel hypothesized in 1868 that life originated from primordial slime [1]. -
Molecular Machines: Work
appealed to people's intuitions about how the world should Molecular Machines: work. Those theories also promised to explain much of the universe with a few simple principles. But, by the large, those other theories are now dead. Experimental Support for A good example of this is the replacement of Newton's mechanical view of the universe by Einstein's relativistic the Design Inference universe. Although Newton's model accounted for the Michael J. Behe results of many experiments in his time, it failed to explain aspects of gravitation. Einstein solved that problem and others by completely rethinking the structure of the universe. Originally published in Cosmic Pursuit, March 1, 1998 Similarly, Darwin's theory of evolution prospered by (edited by RJ) explaining much of the data of his time and the first half of the 20th century, but my article will show that Darwinism had been unable to account for phenomena uncovered by the Darwinism’s Prosperity efforts of modern biochemistry during the second half of this century. I will do this by emphasizing the fact that life Within a short time after Charles Darwin published The at its most fundamental level is irreducibly complex and Origin of Species the explanatory power of the theory of that such complexity is incompatible with undirected evolution. evolution was recognized by the great majority of biologists. The hypothesis readily resolved the problems of homologous resemblance, rudimentary organs, species abundance, extinction, and biogeography. The rival theory A Series of Eyes of the time, which posited creation of species by a How do we see? supernatural being, appeared to most reasonable minds to be In the 19th century the anatomy of the eye was known in much less plausible, since it would have a putative Creator great detail and the sophisticated mechanisms it employs attending to details that seemed to be beneath His dignity. -
PDF Hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/129525 Please be advised that this information was generated on 2021-10-03 and may be subject to change. NEWS FROM AN INACCESSIBLE WORLD: THE HISTORY AND PRESENT CHALLENGES OF DEEP-SEA BIOLOGY News from an inaccessible world: The history and present challenges of deep-sea biology Erik Dücker, 2014 ISBN: 9789461087201 Printed by: Gildeprint Drukkerijen, Enschede, the Netherlands Cover: Umbellula encrinus, the first deep-sea species discovered. Drawing by Ernst Haeckel (1834-1919) from Kunstformen der Natur (1904). NEWS FROM AN INACCESSIBLE WORLD: THE HISTORY AND PRESENT CHALLENGES OF DEEP-SEA BIOLOGY Proefschrift ter verkrijging van de graad van doctor aan de Radboud Universiteit Nijmegen op gezag van de rector magnificus prof. mr. S.C.J.J. Kortmann, volgens besluit van het college van decanen in het openbaar te verdedigen op dinsdag 23 september 2014 om 10.30 uur precies door Erik Cornelis Petrus Dücker geboren op 18 mei 1979 te Veldhoven Promotoren Prof. dr. C.H. Lüthy Prof. dr. H.A.E. Zwart Manuscriptcommissie Prof. dr. J.M. van Groenendael (voorzitter) Prof. dr. L.T.G. Theunissen (Universiteit Utrecht) Prof. dr. ir. H.J.W. de Baar (Rijksuniversiteit Groningen) CONTENTS GENERAL INTRODUCTION 11 CHAPTER I THE BIRTH OF DEEP-SEA BIOLOGY 17 CHAPTER II EXPLORING BIODIVERSITY 61 CHAPTER III MAN’S DESCEND 109 CHAPTER IV MODERN BASIC RESEARCH 145 CHAPTER V DEEP-SEA BIOLOGY IN CONTEXT 181 GENERAL CONCLUSIONS 219 SUMMARY 223 SAMENVATTING 227 CURRICULUM VITAE 233 DANKWOORD 235 GENERAL INTRODUCTION HEN we are asked to think about natural life on Earth, the most probable images that emerge are those of the vibrantly coloured life of tropical rainforests and coral reefs, the large iconic mammals that inhabit the African plains, or dolphins swimming through crystal clear oceans near some exotic island.