California State University, Northridge Depositional Environments of the Eocene Domengine Formation Near Coalinga, Fresno County

Total Page:16

File Type:pdf, Size:1020Kb

California State University, Northridge Depositional Environments of the Eocene Domengine Formation Near Coalinga, Fresno County CALIFORNIA STATE UNIVERSITY, NORTHRIDGE DEPOSITIONAL ENVIRONMENTS OF THE EOCENE DOMENGINE FORMATION NEAR COALINGA, FRESNO COUNTY, CALIFORNIA A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Geology by Kathleen Ann Roush May, 1986 The Thesis of Kathleen Ann Roush is approved: L. Squires California State University, Northridge ii ACKNOWLEDGEMENTS The writer would like to thank Drs. A. Eugene Fritsche, Richard Squires, and Stephan Graham for critically reviewing the manuscript and their constructive advise and guidance in completing this project. Special thanks to the Harris Feeding Company for allowing access to the type area and to Loretta Martin for typing the thesis. The writer would also like to thank Alan Hershey who analyzed the microfossil samples. Special appreciation is directed to James Roush for his help and patience. iii TABLE OF CONTENTS PAGE Acknowledgements iii List of Illustrations ........................................................................ vii Tables ........................................................................................... ix Abstract .. .. .. ... ...... ... .. .. ... ..... .. .. .. ... ............ .. .... ...... ..... ... x Introduction ................................................................................... 1 Purpose ............................................................................... 1 Location and Accessibility 1 Previous Work ...................................................................... 4 Methods ••••••••....•••....•.••.•.•.•..••.•••.•.••••.•••...••.•.••••••.•••.•••••••.••• 4 Geologic Setting 22 Structure ....... ......... ........................................................ 2 2 Stratigraphy................................................................... 25 Lithosomes and Depositional Environments 29 Introduction .... ... .. .. .. ... .. .. .. ......... .. ........ ..... ...... ... .. .. 2 9 Coal 33 Description 33 Interpretation ................................................................. 3 5 Carbonaceous Mudstone ................... .............................. ....... 3 5 D~scription ..................................................................... 3 5 Interpretation 36 Cia ystone ........................................ ················.,.)··················· 3 8 Description ..................................................................... 3 8 iv PAGE Interpretation ................................................................. 3 9 Pebble Conglomerate 40 Description ..................................................................... 4 o Interpretation ................................................................. 4 1 Gray Sandy Mudstone 42 Description ..................................................................... 4 2 Interpretation ................................................................. 4 2 Mudstone-Pod-Bearing Sandstone 43 Description ..................................................................... 4 3 Interpretation ................................................................. 4 4 Ostrea-Bearing Sandstone 45 Description ..................................................................... 4 5 Interpretation 47 Coarse Sandstone 49 Description ..................................................................... 4 9 Interpretation ................................................................. 5o Fossiliferous Sandstone ......................................................... 5 1 Description ... .............................................................. .... s 1 Interpretation ................................................................. 55 Fine Structureless Sandstone 58 Description ·····································••••••o•••••···················· 58 Interpretation ................................................................. 59 Con glomera tic Sandstone ····················································~· 6 0 v PAGE Description ..................................................................... 6 o Interpretation ................................................................. 63 Fine Sandstone ..................................................................... 6 4 Description ..................................................................... 6 4 Interpretation ................................................................. 6 5 Sandy Mudstone ................................................................... 66 Description ..................................................................... 66 Interpretation ................................................................. 6 7 Glauconitic Sandstone 68 Description..................................................................... 68 Interpretation ................................................................. 7 0 Diagenesis of the Formation 70 Paleogeography .............................................................................. 7 2 Age and Correlation ............................................................. 7 2 Domengine-Kreyenhagen Unconformity 74 Provenance ·········································································· 76 Paleogeography 79 Climate . ................ ....... ..... ........ .. ... .. .. .. .... ..... ... ... 7 9 Paleogeography .:............................................................. 8 0 Domengine-A venal Equivalence ............................................. 8 4 References .......•....•............•.•...............••...•..•...•......••.........••..••....• 86 Appendix 1 93 Appendix 2 95 Appendix 3 ...................................................................... .............. 9 7 vi LIST OF ILLUSTRATIONS FIGURE PAGE 1. Index map of the study area. 2 2. General geologic map of the study area along the 3 southern Diablo Range. 3. Location of measured sections. 5 4. Explanation for measured stratigraphic sections. 7 5. Stratigraphic section of the Domengine Formation 8 measured in Coalmine Canyon, east corner section 27 and west corner section 26, T.20S., R.l4E., Alcalde Hills quandrangle, California. 6. Stratigraphic section measured on the west-facing 10 side of the Oil City Peak ridge in the southeast corner of section 17, T.l9S., R.l5E., Joaquin Rocks quadrangle, California. 7. Stratigraphic section measured on the west side of 11 Oil City Peak in the east corner of section 17, T.l9S., R.l5E, Joaquin Rocks quadrangle, California. 8. Stratigraphic section measured on the west-facing 1 2 ridge near the center of section 9, T.l9S., R.l5E., Joaquin Rocks quadrangle, California. 9. Stratigraphic section measured on the east side of 1 3 Domengine Creek, southern corner of section 29, T.l8S., R.15E., Joaquin Rocks quadrangle, California. 10. Stratigraphic section measured on the north side of 14 Salt Creek, central portion of section 1 O, T.l8S., R.l4E., Joaquin Rocks quadrangle, California. 11. Regional structure in the vicinity of the southern 23 portion of the study area. 12. Regional structure in the northern portion of the 24 study area. Outcrops of lower Tertiary sequences are indicated by the blackened areas. vii 13. i'J'Jrth to south stratigraphic cross section along the 26 south limb of the Vallecitos Syncline. Thicknesses south of Oil Canyon are approximated. 14. Nomenclatural history of the names and ages of 30 the formations in the study area. 15. North to south cross section showing the 3 1 distribution of lithosomes in the Domengine Formation plotted versus time. 16. Lowermost coal seam within the Coalmine Canyon 34 section. 17. Coal pods within the carbonaceous mudstone 37 lithosome. Pods do not necessarily follow bedding. 18. Fossiliferous sandstone lithosome in the Oil City 52 section. A fine sandstone lithosome bed is near the top of the photo. 19. Mottled appearance of the fossiliferous sandstone 53 lithosome in the Oil City section. 20. Alpha index plot of the foraminifera of the 56 fossiliferous sandstone and sandy mudstone lithosomes. 21. Conglomeratic sandstone lithosome in the 61 Domengine Creek section. 22. The conglomeratic sandstone lithosome of Salt 61 Creek. The lithosome is interbedded with the fine structureless sandstone lithosome and shows A) channel structure and B) normal parallel-bedded structure. 23. Correlation chart of the Domengine Formation 73 with various authors tor comparison of the age assignment. 24. Ternary diagrams showing the composition of rocks 78 from the Domengine, Panoche, and Yokut Formations. 25. Paleogeography of the study area during the 82 deposition of the Domengine Formation. 26. Paleogeography of the Alcalde Hills and Reef 83 Ridge during the deposition of the Domengine Formation. viii TABLES TABLE PAGE 1. Petrology and field location of rock samples. 1 5 2. Heavy mineral analysis of seven samples from the 16 Domengine Formation. 3. Composition of conglomeratic samples from the 17 Domengine Formation. 4. Macrofossils from the Domengine Formation. 19 5. Microfossils from the Domengine Formation. 20 6. Lithosomes within the Domengine Formation and 32 the associated depositional environments. ix ABSTRACT DEPOSITIONAL ENVIRONMENTS OF THE EOCENE DOMENGINE FORMATION NEAR COALINGA, FRESNO COUNTY, CALIFORNIA by Kathleen Ann Roush Department of Geological Sciences California State University, Northridge Northridge, California The upper lower through lower middle Eocene Domengine Sandstone crops out in the southern Diablo Range in the Alcalde and Big Blue Hills. The formation reaches a maximum thickness of 65 m and is overlain by the deep-
Recommended publications
  • Final Report Implementing Capacity Building in the Mesoamerican Reef MPA Community NOAA Award Number: NA12NOS4820126
    Final Report Implementing Capacity Building in the Mesoamerican Reef MPA Community NOAA Award Number: NA12NOS4820126 October 1, 2012 to September 30, 2014 Submitted by: Robert Glazer, Emma Doyle (Project Manager) Gulf and Caribbean Fisheries Institute, Inc P.O. Box 21655 Charleston, SC 29413 NA12NOS4820126 GCFI Final Report Contents Executive Summary ............................................................................................................................................ 2 Regional Workshop on Alternative Livelihoods and Sustainable Tourism ........................................................ 3 Regional SocMon Workshop .............................................................................................................................. 7 Tasks ................................................................................................................................................................... 9 Port Honduras Marine Reserve.......................................................................................................................... 1 Project 1.Pay-to-Participate Monitoring ‘Ridge to Reef Expeditions’............................................................ 3 Project 2. Seaweed Farming .......................................................................................................................... 7 Project 3. Small Business Microgrants ........................................................................................................... 9 Half Moon Caye and Blue Hole
    [Show full text]
  • Salt-Marsh Restoration: Evaluating the Success of De-Embankments in North-West Europe
    BIOLOGICAL CONSERVATION Biological Conservation 123 (2005) 249–268 www.elsevier.com/locate/biocon Salt-marsh restoration: evaluating the success of de-embankments in north-west Europe Mineke Wolters a,b,*, Angus Garbutt b, Jan P. Bakker a a Community and Conservation Ecology Group, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands b Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon PE28 2LS, UK Received 30 March 2004 Abstract De-embankment of historically reclaimed salt marshes has become a widespread option for re-creating salt marshes, but to date little information exists on the success of de-embankments. One reason is the absence of pre-defined targets, impeding the measurement of success. In this review, success has been measured as a saturation index, where the presence of target plant species in a restoration site is expressed as a percentage of a regional target species pool. This review is intended to evaluate and compare success of many different sites on an idealistic concept where all regional target species have the potential to establish in a site, but may not actually do so because the site is unsuitable or inaccessible. Factors affecting suitability and accessibility and management options to increase regional species diversity are discussed. The results show that many sites contain less than 50% of the regional target species, especially when sites are smaller than 30 ha. Higher species diversity is observed for sites exceeding 100 ha and for sites with the largest elevational range within mean high water neap to mean high water spring tide.
    [Show full text]
  • A Revision of the Classification of the Plesiosauria with a Synopsis of the Stratigraphical and Geographical Distribution Of
    LUNDS UNIVERSITETS ARSSKRIFT. N. F. Avd. 2. Bd 59. Nr l. KUNGL. FYSIOGRAFISKA SÅLLSKAPETS HANDLINGAR, N. F. Bd 74. Nr 1. A REVISION OF THE CLASSIFICATION OF THE PLESIOSAURIA WITH A SYNOPSIS OF THE STRATIGRAPHICAL AND GEOGRAPHICAL DISTRIBUTION OF THE GROUP BY PER OVE PERSSON LUND C. W. K. GLEER UP Read before the Royal Physiographic Society, February 13, 1963. LUND HÅKAN OHLSSONS BOKTRYCKERI l 9 6 3 l. Introduction The sub-order Plesiosauria is one of the best known of the Mesozoic Reptile groups, but, as emphasized by KuHN (1961, p. 75) and other authors, its classification is still not satisfactory, and needs a thorough revision. The present paper is an attempt at such a revision, and includes also a tabular synopsis of the stratigraphical and geo­ graphical distribution of the group. Some of the species are discussed in the text (pp. 17-22). The synopsis is completed with seven maps (figs. 2-8, pp. 10-16), a selective synonym list (pp. 41-42), and a list of rejected species (pp. 42-43). Some forms which have been erroneously referred to the Plesiosauria are also briefly mentioned ("Non-Plesiosaurians", p. 43). - The numerals in braekets after the generic and specific names in the text refer to the tabular synopsis, in which the different forms are numbered in successional order. The author has exaroined all material available from Sweden, Australia and Spitzbergen (PERSSON 1954, 1959, 1960, 1962, 1962a); the major part of the material from the British Isles, France, Belgium and Luxembourg; some of the German spec­ imens; certain specimens from New Zealand, now in the British Museum (see LYDEK­ KER 1889, pp.
    [Show full text]
  • 1 KECK PROPOSAL: Eocene Tectonic Evolution of the Teton-Absaroka
    KECK PROPOSAL: Eocene Tectonic Evolution of the Teton-Absaroka Ranges, Wyoming (Year 2) Project Leaders: John Craddock (Macalester College; [email protected]) and Dave Malone (Illinois State University; [email protected]) Host Institution: Macalester College, St. Paul, MN Project Dates: ~July 15-August 14, 2011 Student Prerequisites: Structural Geology, Sedimentology. Preamble: This project is an expansion of a 2010 Keck project that was funded at a reduced level (Craddock, 3 students); Malone and 4 students participated with separate funding. We completed or are currently working on three 2010 projects: 1. Structure, geochemistry and geochronology (U-Pb zircon) of carbonate pseudotachylite injection, White Mtn. (J. Geary, Macalester; note that this was not part of last year’s proposal but a new discovery in 2010 caused us to redirect our efforts), 2. Calcite twinning strains within the S. Fork detachment allochthon, northwest, WY (K. Kravitz, Smith; note because of a heavy snow pack in the Tetons this past summer, we chose a different structure to study), and 3. Provenance of heavy minerals and detrital zircon geochronology, Eocene Absaroka volcanics, northwest, WY (R. McGaughey, Carleton). We did not sample the footwall folds proposed in the previous proposal (under snow) and will focus on this project and mapping efforts of White Mountain and the 40 x 10 km S. Fork detachment area near Cody, WY, in part depending on the results (calcite strains, detrital zircons) of the 2010-11 effort. All seven students are working on the detrital zircon geochronology project, and two abstracts are accepted at the 2011 Denver GSA meeting. Overview: This proposal requests funding for 2 faculty to engage 6 students researching a variety of outstanding problems in the tectonic evolution of the Sevier-Laramide orogens as exposed in the Teton and Absaroka ranges in northwest Wyoming.
    [Show full text]
  • Chapter 17. Quartzite Gravel Northwest Wyoming
    Chapter 17 Quartzite Gravel of Northwest Wyoming The quartzites of southwest Montana and adjacent Idaho extend eastward into Wyoming1 in a semi-continuous belt, as shown on Figure 16.1 of the previous chapter. This chapter will describe those deposits. Quartzite Gravel Lag John Hergenrather and I have found scattered surficial quartzites from near Interstate 15 in northeastern Idaho, just south of Lima, Montana, eastward to the northern Teton Mountains and over a four-wheel drive pass between Yellowstone and Grand Teton National Parks. These quartzites seem to have mostly formed a thin layer or lag deposit on the surface or were reworked by local mountain glaciation. This lag rep- resents the red hashed area in Figure 16.1. Quartzites on Top of the Northern Teton Mountains Probably the most fascinating quartz- ite location is on top of the northern Teton Mountains! Brent Carter and I took a Figure 17.1. Slightly dipping limestone at the top three day round trip hike to the top of Red of Red Mountain. Mountain in the northern Teton Moun- tains, 10,177 feet (3,102 m) msl!2,3 Red Mountain and Mount Moran (12,605 feet, 3,842 m msl) represent remnants of a flat-topped planation surface.2 Red Mountain is composed of slightly tilted limestones (Figure 17.1), while Mount Moran is composed of granite or gneiss with a 50-foot (15 m) thick cap of Flathead Sandstone on top (see Figure 33.7). The quartzites on top of Red Mountain are mainly a thin lag mixed with angular lime- stone cobbles and boulders (Figure 17.2).
    [Show full text]
  • Source-Rock Geochemistry of the San Joaquin Basin Province, California
    Petroleum Systems and Geologic Assessment of Oil and Gas in the San Joaquin Basin Province, California Chapter 11 Source-Rock Geochemistry of the San Joaquin Basin Province, California By Kenneth E. Peters, Leslie B. Magoon, Zenon C. Valin, and Paul G. Lillis HIO for all source-rock units except the Tumey formation of Contents Atwill (1935). Abstract-----------------------------------------------------------------------------------1 Thick, organic-rich, oil-prone shales of the upper Mio- Introduction------------------------------------------------------------------------------ 1 cene Monterey Formation occur in the Tejon depocenter in Methods----------------------------------------------------------------------------------2 the southern part of the basin with somewhat less favorable Discussion--------------------------------------------------------------------------------3 occurrence in the Southern Buttonwillow depocenter to the Upper Miocene Antelope shale---------------------------------------------------3 north. Shales of the upper Miocene Monterey Formation Eocene Tumey formation-----------------------------------------------------------4 Eocene Kreyenhagen Formation--------------------------------------------------4 generated most of the petroleum in the San Joaquin Basin. Cretaceous-Paleocene Moreno Formation--------------------------------------5 Thick, organic-rich, oil-prone Kreyenhagen Formation source Conclusions----------------------------------------------------------------------------- -5 rock occurs in the Buttonwillow
    [Show full text]
  • Appendices D Through I
    Appendix D Operation & Maintenance Appendix D. Operation and Maintenance Plan Operation and Maintenance Plan This document presents the operation and maintenance (O&M) plan for Western Area Power Administration’s (Western) Sierra Nevada Region (SNR) transmission line systems. 1.0 Inspection/System Management In compliance with Western’s Reliability Centered Maintenance Program, Western would conduct aerial, ground, and climbing inspections of its existing transmission infrastructure since initial construction. The following paragraphs describe Western’s inspection requirements. Aerial Inspections Aerial inspections would be conducted a minimum of every 6 months by helicopter or small plane over the entire transmission system to check for hazard trees1 or encroaching vegetation, as well as to locate damaged or malfunctioning transmission equipment. Typically, aerial patrols would be flown between 50 and 300 feet above Western’s transmission infrastructure depending on the land use, topography, and infrastructure requirements. In general, the aerial inspections would pass over each segment of the transmission line within a one-minute period. Ground Inspections Annual ground inspections would check access to the towers/poles, tree clearances, fences, gates, locks, and tower hardware, and ensure that each structure would be readily accessible in the event of an emergency. They would allow for the inspection of hardware that would not be possible by air, and identify redundant or overgrown access roads that should be permanently closed and returned to their natural state. Ground inspections would typically be conducted by driving a pickup truck along the ROW and access roads. Detailed ground inspections would be performed on 20 percent of all lines and structures annually, for 100 percent inspection every 5 years.
    [Show full text]
  • The River Odra Estuary As a Gateway for Alien Species Immigration to the Baltic Sea Basin Das Oderästuar Als Pfad Für Die Einwanderung Von Alienspezies in Die Ostsee
    Acta hydrochim. hydrobiol. 27 (1999) 5, 374-382 © WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1999 0323 - 4320/99/0509-0374 $ 17.50+.50/0 The River Odra Estuary as a Gateway for Alien Species Immigration to the Baltic Sea Basin Das Oderästuar als Pfad für die Einwanderung von Alienspezies in die Ostsee Dr. Piotr Gruszka Department of Marine Ecology and Environmental Protection, Agricultural University in Szczecin, ul. Kazimierza Królewicza 4/H, PL 71-550 Szczecin, Poland E-mail: [email protected] Summary: The river Odra estuary belongs to those water bodies in the Baltic Sea area which are most exposed to immigration of alien species. Non-indigenous species that have appeared in the Szczecin Lagoon (i.a. Dreissena polymorpha, Potamopvrgus antipodarum, Corophium curvispinum) and in the Pomeranian Bay (Cordylophora caspia, Mya arenaria, Balanus improvisus, Acartia tonsa) in historical time and which now are dominant components of animal communities there as well as other and less abundant (or less common) alien species in the estuary (e.g. Branchiura sowerbyi, Eriocheir sinensis, Orconectes limosus) are presented. In addition, other newcomers - Marenzelleria viridis, Gammarus tigrinus, and Pontogammarus robustoides - found in the estuary in the recent ten years are described. The significance of the sea and inland water transport in the region for introduction of non-indigenous species is discussed against the background of the distribution pattern of these recently introduced polychaete and gammarid species. Keywords: Alien Species, Marenzelleria viridis, Gammarus tigrinus, Pontogammarus robustoides, River Odra Estuary Zusammenfassung: Das Oderästuar gehört zu den Bereichen der Ostsee, die am meisten der Einwanderung von Alienspezies ausgesetzt sind.
    [Show full text]
  • GEOHYDROLOGY of TERTIARY ROCKS in the GREEN RIVER STRUCTURAL BASIN in WYOMING, UTAH, and COLORADO by Lawrence J
    GEOHYDROLOGY OF TERTIARY ROCKS IN THE GREEN RIVER STRUCTURAL BASIN IN WYOMING, UTAH, AND COLORADO by Lawrence J. Martin U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 92-4164 Prepared in cooperation with the WYOMING STATE ENGINEER Cheyenne, Wyoming 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of trade, product, industry, or firm names i$ for descriptive purposes only and does not imply endorsement by thelU.S. Government. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey, WRD Branch of Information Services 2617 E. Lincolnway, Suite B Box 25286, Denver Federal Center Cheyenne, Wyoming 82001-5662 Denver, Colorado 80225 CONTENTS Page Abstract ................................................................................................................................................................................ 1 Introduction .......................................................................................................................................................................... 1 Purpose and scope .................................................................................................................................................... 3 Criteria for data selection ......................................................................................................................................... 3 Previous investigations ............................................................................................................................................
    [Show full text]
  • Mysterious Boring Hidden Withinthe Hinge Plates of Heterodont Bivalves
    Mysterious boring hidden within the hinge plates of heterodont bivalves JORDI MARTINELL, ROSA DOMÈNECH & RICHARD G. BROMLEY Martinell, J., Domènech, R. & Bromley, R. G.: Mysterious boring hidden within the hinge plates of heterodont bivalves. Bulletin of the Geological Society of Denmark, Vol. 45, pp. 161–163. Copenhagen 1999–01–30. Well-hidden beneath the umbo of heterodont bivalves, a sack-like boring is etched into the two hinge plates of the opposed valves. The boring is abundant, occurs in numerous host species, ranges from Eocene to today and appears to have world- wide occurrence. The trace fossil is named Umbichnus inopinatus nov. igen. et isp. The nature of the tracemaker remains unknown. The possibility that the struc- ture is a dissolution pit produced by the bivalve itself is discussed. Key words: Boring, umbo, burrowing bivalves, Umbichnus inopinatus. J. Martinell & R. Domènech, Departament de Geologia dinàmica, Geofísica i Paleontologia, Facultat de Geologia. Universitat de Barcelona, E-08071 Barce- lona, Spain. R. G. Bromley,, Geologisk Institut, Øster Voldgade 10, 1350 Copen- hagen K, Denmark. 17 July 1998. A common boring occurs in an unusual but constant vide a roof over the cavity. Ventrally, large borings position in the shells of bivalves. The boring is sack- may also encroach somewhat into the cardinal hinge shaped, and is emplaced in and between the opposed teeth, but this is unusual. No example has been seen hinge plates of the two valves of the shell, just be- that was so large as to have threatened the functions neath the umbo and dorsal to the hinge teeth.
    [Show full text]
  • Pelecyora Polytropa Nysti
    6 Afzettingen WTKG 19(1), 1998 Pelecyora polytropa nysti Serge van Schooten De opmerkzame schelpenverzamelaar zal waarschijnlijk .al snel tijdens de uitoefening van zijn liefhebberij vertrouwd zijn geraakt met het voorkomen van de cirkelronde gaatjes in sommige van zijn bivalven. Enige tijd geleden had ik de gelegenheid in de toen nog aan de Hooglandse Kerkgracht te Leiden residerende collectie ’Miste’ van het Nationaal Natuurhistorisch Museum een reeks exemplaren van de bivalve Pelecyora (Cordiopsis) polytropa nysti (d’Orbigny, 1852) te ik de bestuderen. Op aanraden van mijn professor inspecteerde bijna vuistgrote schelpen andere zodat niet kon dat deel zorgvuldig op boringen en beschadigingen, mij ontgaan een ervan was voorzien van een gaatje met een doorsnede van 3 a 4 mm. Ik besloot de posities van de gaatjes in te meten. Tot mijn genoegen bleken de gaatjes alleen op een bepaald deel van de schelpen voor te komen en de vraag hierbij was natuurlijk: waarom is dit zo? de Veneridae behorende die P. polytropa nysti is een tot ongeveer 7 cm grote tot bivalve, in de welbekende ontsluitingen in de Miocene Laag van Miste bij Winterswijk algemeen verzameld is. Raadpleging van het Misteboek (Janssen, 1984) en de Scripta 29 (Van den Bosch, Cadée en Janssen, 1975) voorziet de lezer van precieze kennis over locatie, maakt stratigrafie, etc. van deze vindplaats. Volgens de eerste van deze twee werken P. het polytropa nysti deel uit van een evolutiereeks die in het Noordzeebekken aan einde van Het Mioceen uitsterft. De gaatjes die we in onze schelpen vinden zijn de getuigen van kleine paleo-drama’s.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 6
    39. PLANKTONIC MICROFOSSIL BIOSTRATIGRAPHY OF THE NORTHWESTERN PACIFIC OCEAN David Bukry1, U.S. Geological Survey, La Jolla, California, Robert G. Douglas, Case Western Reserve University, Cleveland, Ohio, Stanley A. Kling, Cities Service Oil Company, Tulsa, Oklahoma, and Valeri Krasheninnikov, Academy of Sciences of the U.S.S.R., Moscow CONTENTS Page Page Introduction 1253 Regional Correlation 1281 Zonal Comparison 1254 Calcareous Nannoplankton 1281 Planktonic Foraminifera, Mesozoic 1281 Upper Cretaceous-Paleocene Boundary 1255 California 1281 Paleocene-Eocene Boundary 1259 Japan 1285 Eocene-Oligocene Boundary 1259 West Pacific 1286 Oligocene-Miocene Boundary 1259 Australia 1287 Miocene-Pliocene Boundary 1260 Planktonic Foraminifera, Cenozoic 1288 Pliocene-Pleistocene Boundary 1261 Solomon Islands 1288 Zonal Summary 1261 Mariana Islands 1288 The Philippines 1288 Paleoecology 1261 Taiwan 1289 Calcareous Nannoplankton 1261 Japan 1289 Radiolaria 1267 Kamchatka Penisula 1290 California 1290 Preservation 1267 Radiolaria 1291 Calcareous Nannoplankton 1267 Sedimentation Rates 1291 Foraminifera 1269 Relationship to Acoustostratigraphy 1294 Radiolaria 1279 References 1296 INTRODUCTION A comparison of zonal units of calcareous nannoplank- ton, foraminifera, and radiolarians in the same strata Biostratigraphic evidence obtained from the north- shows only few cases of exact coincidence of zonal western Pacific Ocean as a result of coring carried out limits, especially if coincidences at the top or bottom by the Glomar Challenger during Leg 6 of the Deep of the standard 9-meter coring runs are dismissed as Sea Drilling Project from Hawaii to Guam is considered artificially induced owing to gaps in sediment recovery. here mainly from the standpoint of three dominant Exact coincidence of zonal limits within coring runs marine planktonic microfossil groups—calcareous nan- are most notable for the Upper Paleocene sediment of noplankton, foraminifers, and radiolarians.
    [Show full text]