A Comparative Anatomical Study of the Cranial Nerves in Goat, Sheep And

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Anatomical Study of the Cranial Nerves in Goat, Sheep And Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 A comparative anatomical study of the cranial nerves in goat, sheep and bovine (Capra hircus, Ovis aries and Bos taurus): their distribution and related autonomic components Hugo Pereira Godinho Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Structures Commons, and the Veterinary Anatomy Commons Recommended Citation Godinho, Hugo Pereira, "A comparative anatomical study of the cranial nerves in goat, sheep and bovine (Capra hircus, Ovis aries and Bos taurus): their distribution and related autonomic components" (1968). Retrospective Theses and Dissertations. 3241. https://lib.dr.iastate.edu/rtd/3241 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 68-10,461 GODINHO, D. V. M., Hugo Pereira, 1935- A COMPARATIVE ANATOMICAL STUDY OF THE CRANIAL NERVES IN GOAT, SHEEP AND BOVINE (CAPRA HmCUS, OVIS ARIES AND BOS TAURUS); THEIR DISTRIBUTION AND RELATED AUTONOMIC COMPONENTS. Iowa State University, Ph. D., 1968 Anatomy University Microfilms, Inc., Ann Arbor, Michigan A COMPARATIVE ANATOMICAL STUDY OF THE CRANIAL NERVES IN GOAT, SHEEP AND BOVINE (CAPRA HIRCUS, OVIS ARIES AND BOS TAURUS); THEIR DISTRIBUTION AND RELATED AUTONOMIC COMPONENTS by Hugo Pereira Godinho V./M, A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Veterinary Anatomy Approved; Signature was redacted for privacy. In Charge of Mkjor Work Signature was redacted for privacy. Head of Major Dep rtment Signature was redacted for privacy. Dean of Graduate Colleg Iowa State University Ames, Iowa 1968 PLEASE NOTE: Figure pages are not original copy. They tend to "curl". Filmed in the best possible way. University Microfilms. ii TABLE OF CONTENTS Page INTRODUCTION 1 REVIEW OF LITERATURE 4 .MATERIAL AND METHODS 119 RESULTS 126 DISCUSSION 331 SUMMARY AND CONCLUSIONS 371 BIBLIOGRAPHY 378 ACKNOWLEDGMENTS 390 1 INTRODUCTION The present investigation is primarily a macroscopic study of the cranial nerves of the domestic ruminants (goat, sheep and ox) and is intended to give an account of the most frequent pattern of their course and distribution. It is a part of the systematic investigation that the Department of Anatomy, at Iowa State University, is conducting on the peripheral nervous system of our domestic animals. To accomplish the proposed task, gross dissections of embalmed specimens were performed which required, in special cases assistance of a dissecting microscope, examination of decalci­ fied specimens or histological preparations, following the approach used previously for the cranial nerves of the pig (Godinho, 1966). The search of literature revealed that a great deal has been written on this subject which has never ceased to fascinate anatomists. However, only a few and scattered references are concerned with the species under investiga­ tion, particularly the goat. One of the earliest recorded accounts is the work of Galen (ca. A.D. 130-201) who gave a description of the nerves in his book "On Anatomical Procedures". A synopsis of Galen's long treatise is presented by Goss (1966). Another work on historical aspects of the cranial nerves was recently published by Rucker (1966). In the present 2 study, only those publications directly concerned with the cranial nerves of the domestic ruminants are included in the chapter of Review of Literature. However, references are made to other species when discussing areas of discrepancies encountered in the literature consulted. As demonstrated by the number of specimens utilized, emphasis was given to the goat and sheep. The cranial nerves of these animals have been described by standard veterinary anatomical textbooks in a comparative manner in which superficial remarks are made about the actual anatomical disposition (Chauveau and Arloing, 1905; Zimmerl, 1930; Martin and Schauder, 1938; Ellenberger and Baum, 1943; Bruni and Zimmerl, 1951; Sisson and Grossman, 1953; \ Dobberstein and Hoffmann, 1964; Habel, 1964; Koch, 1965 and Schwarze, 1965). Most of these books present the ox as the "basic animal" for ruminant anatomy while the anatomy of the sheep and goat is only partially and comparatively described, if at all. This practice usually leads the readers, especially the veterinary students, to assume that the numerous structures observed in sheep and goat but left without compari­ son are similar to the bovine. Thus, the scarcity of informa­ tion recorded in both the literature and anatomical textbooks indicates the necessity of having a succint and accurate description of the cranial nerves in the domestic ruminants. The study of the vagus nerve in the present investigation was conducted as far as the retropharyngeal region. In the 3 cervical and thoracic regions it has recently been investigated by McKibben (1966) whereas its abdominal distribution was thoroughly studied by several investigators, including Foust (1929) and Habel (1956). With respect to the nomenclature, the author followed, as close as possible, that approved by the 6th Meeting of the World Association of Veterinary Anatomists held in Giessen and Wiesbaden, Germany, during August, 1965. The terms pertaining to the cranial nerves or related structures in the head have been translated into their English equivalent. The Latin form is maintained only when an Anglicized correspondent is not available or currently used. Lastly, it is hoped that the present study may clarify some of those areas of disagreement found within the literature or between this and the present findings, therefore contributing to a better morphological understanding of the cranial nerves in domestic ruminants. 4 REVIEW OF LITERATURE Olfactory Nerves The olfactory nerve of the bovine, according to McLeod (1958), consisted of a large number of fibers which did not form a trunk. The fibers were nonmedullated and were from cells located in the mucosa of the olfactory region of the nasal cavity and from the vomeronasal organ. The fibers were enclosed in extensions of the meninges, entered the cranial cavity through the cribriform foramina and joined the anterior surface of the olfactory bulb. According to Kawata, Okano and Ishizuka (1962) the sensory nerve distribution on the epithelium of the ventral turbinate of the sheep was rather scanty. The sensory nerves terminated in single unbranched fine strands. In the lamina propria and submucosa various kinds of nerve elements were observed among the vessels and the aggregates of the glands. The ventral turbinate, histologically, was roughly homologous to the dorsal turbinate. Countless olfactory cells were/ observed in the epithelium of part III (caudal third) of the ethmoturbinate. The cells decreased in number in part II (middle third); and, in part I (cranial third) the epithelium was composed of ciliated cells and contained almost no olfactory cells. 5 Terminal nerves Johnston (1914) described the nervus terminalis in man and in some animals such as horse, pig, sheep, porpoise, and monkey. He examined three brains of the adult sheep. The nerve was not found in the first, but was present in the other two. In one of these brains there was a single strand on the right side and two stands on the left. One of the latter strands presented three conspicuous ganglion-like enlargements. Upon staining and mounting these proved to be true ganglia. The nerve of the right side contained single ganglion cells scattered along its course, two collections of six to eight cells each and a ganglion at its distal end larger than one of the three on the left side. A piece of the left nerve, treated in Von Rath's fluid, showed a single, lightly medullated fiber. According to Larsell (1918) the nervus terminalis of the beef lay mediad to the olfactory nerves, between the meninges and the ventral brain surface. Running parallel with it were branches of the anterior cerebral artery. In the numerous brains examined there was considerable variation in the relation of the different strands which, by their union, formed the main nerve bundle. This variation was found not only when comparing one brain with another, but also when comparing the two nerves of the same specimen. In some cases the strands were independent up to a short distance from the forward margin of the hemispheres, in other cases the bundle was formed much further caudad. For the greater part of its 6 course the portion of the nerve present in the specimens was covered by meningeal membranes. It emerged to the outer surface of the arachnoid coat at about the point where the cerebral hemispheres begin to curve upward. At this point the nerve was always compact in a single bundle. This bundle, after emerging, lay free on the surface of the arachnoid. The appearance of the free end indicated that it had been stretched and broken in removing the brain from the cranial cavity. Several ganglionic swellings were visible, the largest one in the brain from which the figure was drawn, at the point where the nerve crossed the artery. Just caudad to this ganglion the bundle divided into two strands. A short distance rostral to this ganglionic mass, a similar strand was given off from the main trunk. These strands followed the branches of the anterior cerebral artery ramifying to the secondary branches of these vessels, and at intervals they gave off fine twigs which penetrated into the muscular walls of the arteries. Several of the strands were traced continuously to the points where the, respective arteries dipped into the fissures. On the same brain, and on others, similar strands were found on all the arteries examined in this region of the brain, both on the ventral surface and in the sagittal fissure.
Recommended publications
  • Perioral Gustatory Sweating: Case Report
    The Journal of Laryngology & Otology (2012), 126, 532–534. CLINICAL RECORD © JLO (1984) Limited, 2012 doi:10.1017/S0022215112000229 Perioral gustatory sweating: case report S C KÄYSER1, K J A O INGELS2, F J A VAN DEN HOOGEN2 1Department of Primary and Community Care, Radboud University Nijmegen Medical Centre, and 2Department of Otorhinolaryngology/Head and Neck Surgery, Radboud University Nijmegen Medical Centre, The Netherlands Abstract Objective: Presentation of a case of perioral Frey syndrome. Design: Case report. Subject: A 72-year-old woman with hyperhidrosis around the mouth and chin. Results: This patient suffered from bilateral perioral gustatory sweating following a mandibular osteotomy; such a case has not previously been described. Possible pathophysiological hypotheses are discussed in relation to the anatomy and innervation of the salivary glands. Conclusion: Perioral gustatory sweating is a rare complication of osteotomy. Key words: Gustatory sweating; Frey Syndrome; Perioral; Hyperhidrosis Introduction perioral excessive sweating and flushing which only Frey syndrome, also known as auriculotemporal syndrome, is a occurred during (and not preceding) eating. Her complaints well-known complication of parotid surgery. Approximately had begun following bilateral osteotomy of the mandible in 24 per cent of patients undergoing parotidectomy experience 1960, at the age of 25 years. The indication for this procedure gustatory sweating, although the reported incidence varies had been prognathism. Her recovery had been complicated greatly.1 Frey syndrome appears following a latency period by inadequate bone healing and loss of the right and left of one to 36 months (or longer) after surgery.2,3 inferior alveolar nerves (Figure 1). The aetiology of Frey syndrome is explained by ‘aberrant The diagnosis of hyperhidrosis was made using the nervous regeneration’.
    [Show full text]
  • Level of Superior Colliculus ° Edinger- Westphal Nucleus ° Pretectal Nucleus: Close to the Lateral Part of the Superior Colliculus
    Level of superior colliculus ° Edinger- Westphal nucleus ° pretectal nucleus: close to the lateral part of the superior colliculus. Red nucleus • Rounded mass of gray matter • Situated bt cerebral aqueduct and substantia nigra • Reddish blue(vascularity & iron containing pigment) • Afferents from: cerebral cortex,cerebellum,substa ntia nigra, thalamic nuclei, spinal cord • Efferent to: spinal cord, reticular formation. thalamus and substantia nigra • involved in motor coordination. Crus cerebri • Corticospinal & corticonuclear fibers (middle) • Frontopontine fibers (medial) • Temporopontine fibers (lateral) these descending tracts connect the cerebral cortex with spinal cord, cranial nerves nuclei, pons & cerebellum Level at superior colliculus ° Superior colliculus ° Occulomotor nucleus (posterior to MLF) ° Occulomotor n emerges through red nucleus ° Edinger-Westphal nucleus ° pretectal nucleus: close to the lateral part of the superior colliculus. ° MLF ° Medial , trigeminal, spinal leminiscus ( no lateral leminiscus) ° Red nucleus ° Substantia nigra ° Crus cerebri ° RF Substantia nigra ° Large motor nucleus ° is a brain structure located in the midbrain ° plays an important role in reward, addiction, and movement. ° Substantia nigra is Latin for "black substance" due to high levels of melanin ° has connections with basal ganglia ,cerebral cortex ° Concerned with muscle tone ° Parkinson's disease is caused by the death of neurons in the substantia nigra Oculomotor Nerve (III) • Main oculomotor nucleus • Accessory parasympathetic nucleus
    [Show full text]
  • Palatal Injection Does Not Block the Superior Alveolar Nerve Trunks: Correcting an Error Regarding the Innervation of the Maxillary Teeth
    Open Access Review Article DOI: 10.7759/cureus.2120 Palatal Injection does not Block the Superior Alveolar Nerve Trunks: Correcting an Error Regarding the Innervation of the Maxillary Teeth Joe Iwanaga 1 , R. Shane Tubbs 2 1. Seattle Science Foundation 2. Neurosurgery, Seattle Science Foundation Corresponding author: Joe Iwanaga, [email protected] Abstract The superior alveolar nerves course lateral to the maxillary sinus and the greater palatine nerve travels through the hard palate. This difficult three-dimensional anatomy has led some dentists and oral surgeons to a critical misunderstanding in developing the anterior and middle superior alveolar (AMSA) nerve block and the palatal approach anterior superior alveolar (P-ASA) nerve block. In this review, the anatomy of the posterior, middle and anterior superior alveolar nerves, greater palatine nerve, and nasopalatine nerve are revisited in order to clarify the anatomy of these blocks so that the perpetuated anatomical misunderstanding is rectified. We conclude that the AMSA and P-ASA nerve blockades, as currently described, are not based on accurate anatomy. Categories: Anesthesiology, Medical Education, Other Keywords: anatomy, innervation, local anesthesia, maxillary nerve, nerve block, tooth Introduction And Background Anesthetic blockade of the posterior superior alveolar (PSA) branch of the maxillary nerve has played an important role in the endodontic treatment of irreversible acute pulpitis of the upper molar teeth except for the mesiobuccal root of the first molar tooth [1, 2]. This procedure requires precise anatomical knowledge of the pterygopalatine fossa and related structures in order to avoid unnecessary complications and to make the blockade most effective. The infraorbital nerve gives rise to middle superior alveolar (MSA) and anterior superior alveolar (ASA) branches.
    [Show full text]
  • Regional Anesthesia in Head and Neck Surgery
    TITLE: Regional Anesthesia in Head and Neck Surger SOURCE: Grand Rounds Presentation, UTMB, Dept. of Otolaryngology DATE: May 24, 2006 RESIDENT PHYSICIAN: Jacques Peltier, MD FACULTY PHYSICIAN: Francis B. Quinn, MD SERIES EDITORS: Francis B. Quinn, Jr., MD and Matthew W. Ryan, MD "This material was prepared by resident physicians in partial fulfillment of educational requirements established for the Postgraduate Training Program of the UTMB Department of Otolaryngology/Head and Neck Surgery and was not intended for clinical use in its present form. It was prepared for the purpose of stimulating group discussion in a conference setting. No warranties, either express or implied, are made with respect to its accuracy, completeness, or timeliness. The material does not necessarily reflect the current or past opinions of members of the UTMB faculty and should not be used for purposes of diagnosis or treatment without consulting appropriate literature sources and informed professional opinion." Introduction Local anesthetic techniques were popularized early in the history of surgery with the advent of injectable nerve blocking agents. Until their discovery, patients were either held down or knocked unconscious to perform procedures. In the early days of general anesthesia, local anesthesia was preferred in all cases that it was applicable due to the significant risks associated with general anesthesia. Many procedures performed today under general anesthesia, such as tonsillectomy, rhinoplasty, and even bronchoscopy, were performed under local anesthesia to avoid the perils of general anesthetics. With the introduction of pulse oximetry, safer inhaled anesthetics, and combined intravenous and inhaled general anesthesia techniques, general anesthesia has become much safer, resulting in many surgeons being unfamiliar with regional nerve blocks to perform surgery.
    [Show full text]
  • Questions on Human Anatomy
    Standard Medical Text-books. ROBERTS’ PRACTICE OF MEDICINE. The Theory and Practice of Medicine. By Frederick T. Roberts, m.d. Third edi- tion. Octavo. Price, cloth, $6.00; leather, $7.00 Recommended at University of Pennsylvania. Long Island College Hospital, Yale and Harvard Colleges, Bishop’s College, Montreal; Uni- versity of Michigan, and over twenty other medical schools. MEIGS & PEPPER ON CHILDREN. A Practical Treatise on Diseases of Children. By J. Forsyth Meigs, m.d., and William Pepper, m.d. 7th edition. 8vo. Price, cloth, $6.00; leather, $7.00 Recommended at thirty-five of the principal medical colleges in the United States, including Bellevue Hospital, New York, University of Pennsylvania, and Long Island College Hospital. BIDDLE’S MATERIA MEDICA. Materia Medica, for the Use of Students and Physicians. By the late Prof. John B Biddle, m.d., Professor of Materia Medica in Jefferson Medical College, Phila- delphia. The Eighth edition. Octavo. Price, cloth, $4.00 Recommended in colleges in all parts of the UnitedStates. BYFORD ON WOMEN. The Diseases and Accidents Incident to Women. By Wm. H. Byford, m.d., Professor of Obstetrics and Diseases of Women and Children in the Chicago Medical College. Third edition, revised. 164 illus. Price, cloth, $5.00; leather, $6.00 “ Being particularly of use where questions of etiology and general treatment are concerned.”—American Journal of Obstetrics. CAZEAUX’S GREAT WORK ON OBSTETRICS. A practical Text-book on Midwifery. The most complete book now before the profession. Sixth edition, illus. Price, cloth, $6.00 ; leather, $7.00 Recommended at nearly fifty medical schools in the United States.
    [Show full text]
  • The Incisive Canal: a Comprehensive Review. Cureus 10(7): E3069
    Providence St. Joseph Health Providence St. Joseph Health Digital Commons Journal Articles and Abstracts 7-30-2018 The ncI isive Canal: A Comprehensive Review. Sasha Lake Joe Iwanaga Shogo Kikuta Rod J Oskouian Neurosurgery, Swedish Neuroscience Institute, Seattle, USA. Marios Loukas See next page for additional authors Follow this and additional works at: https://digitalcommons.psjhealth.org/publications Part of the Neurology Commons, and the Pathology Commons Recommended Citation Lake, Sasha; Iwanaga, Joe; Kikuta, Shogo; Oskouian, Rod J; Loukas, Marios; and Tubbs, R Shane, "The ncI isive Canal: A Comprehensive Review." (2018). Journal Articles and Abstracts. 813. https://digitalcommons.psjhealth.org/publications/813 This Article is brought to you for free and open access by Providence St. Joseph Health Digital Commons. It has been accepted for inclusion in Journal Articles and Abstracts by an authorized administrator of Providence St. Joseph Health Digital Commons. For more information, please contact [email protected]. Authors Sasha Lake, Joe Iwanaga, Shogo Kikuta, Rod J Oskouian, Marios Loukas, and R Shane Tubbs This article is available at Providence St. Joseph Health Digital Commons: https://digitalcommons.psjhealth.org/publications/813 Open Access Review Article DOI: 10.7759/cureus.3069 The Incisive Canal: A Comprehensive Review Sasha Lake 1 , Joe Iwanaga 2 , Shogo Kikuta 3 , Rod J. Oskouian 4 , Marios Loukas 5 , R. Shane Tubbs 6 1. Anatomical Studies, St. George's, St. George, GRD 2. Medical Education and Simulation, Seattle Science Foundation, Seattle, WA, USA 3. Seattle Science Foundation, Seattle, USA 4. Neurosurgery, Swedish Neuroscience Institute, Seattle, USA 5. Anatomical Sciences, St. George's University, St.
    [Show full text]
  • Anatomy of Maxillary and Mandibular Local Anesthesia
    Anatomy of Mandibular and Maxillary Local Anesthesia Patricia L. Blanton, Ph.D., D.D.S. Professor Emeritus, Department of Anatomy, Baylor College of Dentistry – TAMUS and Private Practice in Periodontics Dallas, Texas Anatomy of Mandibular and Maxillary Local Anesthesia I. Introduction A. The anatomical basis of local anesthesia 1. Infiltration anesthesia 2. Block or trunk anesthesia II. Review of the Trigeminal Nerve (Cranial n. V) – the major sensory nerve of the head A. Ophthalmic Division 1. Course a. Superior orbital fissure – root of orbit – supraorbital foramen 2. Branches – sensory B. Maxillary Division 1. Course a. Foramen rotundum – pterygopalatine fossa – inferior orbital fissure – floor of orbit – infraorbital 2. Branches - sensory a. Zygomatic nerve b. Pterygopalatine nerves [nasal (nasopalatine), orbital, palatal (greater and lesser palatine), pharyngeal] c. Posterior superior alveolar nerves d. Infraorbital nerve (middle superior alveolar nerve, anterior superior nerve) C. Mandibular Division 1. Course a. Foramen ovale – infratemporal fossa – mandibular foramen, Canal -> mental foramen 2. Branches a. Sensory (1) Long buccal nerve (2) Lingual nerve (3) Inferior alveolar nerve -> mental nerve (4) Auriculotemporal nerve b. Motor (1) Pterygoid nerves (2) Temporal nerves (3) Masseteric nerves (4) Nerve to tensor tympani (5) Nerve to tensor veli palatine (6) Nerve to mylohyoid (7) Nerve to anterior belly of digastric c. Both motor and sensory (1) Mylohyoid nerve III. Usual Routes of innervation A. Maxilla 1. Teeth a. Molars – Posterior superior alveolar nerve b. Premolars – Middle superior alveolar nerve c. Incisors and cuspids – Anterior superior alveolar nerve 2. Gingiva a. Facial/buccal – Superior alveolar nerves b. Palatal – Anterior – Nasopalatine nerve; Posterior – Greater palatine nerves B.
    [Show full text]
  • EDS Awareness in the TMJ Patient
    EDS Awareness in the TMJ Patient TMJ and CCI with the EDS Patient “The 50/50” Myofascial Pain Syndrome EDNF, Baltimore, MD August 14,15, 2015 Generation, Diagnosis and Treatment of Head Pain of Musculoskeletal Origin Head pain generated by: • Temporomandibular joint dysfunction • Cervicocranial Instability • Mandibular deviation • Deflection of the Pharyngeal Constrictor Structures Parameters & Observations . The Myofascial Pain Syndrome (MPS) is a description of pain tracking in 200 Ehlers-Danlos patients. Of the 200 patients, 195 were afflicted with this pain referral syndrome pattern. The MPS is in direct association and correlation to Temporomandibular Joint dysfunction and Cervico- Cranial Instability syndromes. Both syndromes are virtually and always correlated. Evaluation of this syndrome was completed after testing was done to rule out complex or life threatening conditions. The Temporomandibular Joint TMJ Dysfunction Symptoms: Deceptively Simple, with Complex Origins 1) Mouth opening, closing with deviation of mandibular condyles. -Menisci that maybe subluxated causing mandibular elevation. -Jaw locking “open” or “closed”. -Inability to “chew”. 2) “Headaches”/”Muscles spasms” (due to decreased vertical height)generated in the temporalis muscle, cheeks areas, under the angle of the jaw. 3) Osseous distortion Pain can be generated in the cheeks, floor of the orbits and/or sinuses due to osseous distortion associated with “bruxism”. TMJ dysfunction cont. (Any of the following motions may produce pain) Pain With: . Limited opening(closed lock): . Less than 33 mm of rotation in either or both joints . Translation- or lack of . Deviations – motion of the mandible to the affected side or none when both joints are affected . Over joint pain with or without motion around or .
    [Show full text]
  • Dr. Maue-Dickson Is Associate Professor of Pediat- Rics, University of Miami, Mailman Center for Child Development, University
    Section II. Anatomy and Physiology WILMA MAUE-DICKSON, Ph.D. (CHAIRMAN) Introduction Middle Ear Musculature, The Auditory Tube, and The Velopharyngeal This Section has been prepared for the Mechanism purpose of updating the previous report, "Status of Research in Cleft Palate: Anat- 1. Tur Mippour® Ear omy and Physiology," published in two parts in the Cleft Palate Journal, Volume 11, The authors of the previous report 1974, and Volume 12, 1975. questioned the validity of the concept that As indicated in the previous two-part the tensor tympani and the stapedius mus- report, it is imperative to consider not only cles provide protection to the inner ear the palate but all of the oral-facial-pharyn- from loud sounds, except perhaps for geal system, both in normal and abnormal minimal protection (less than 10 dB) at low conditions, and both in the adult and in frequencies. They also cited research the developing child. Thus, this review in- which indicated that stapedius contraction cludes normal, abnormal, and develop- is more closely associated with voicing and mental studies on middle ear musculature, coughing than with acoustic stimuli, and the auditory tube, the velopharyngeal that the middle ear muscles might be in- mechanism, the tongue, the larynx, the volved in auditory tube opening. face and mandible, and blood supply and The literature reviewed for this report innervation relevant to cleft lip and palate. does not resolve all of these questions, but Though the relevance of embryology of it does add some focus for future research. the orofacial complex is obvious, it has Greisen and Neergaard (1975) used extra- been reviewed in a recently published re- tympanic phonometry to study middle ear port (Dickson, 1975) and will not be in- reflex activity and were able to demon- cluded as a separate topic in this review strate a tensor tympani reflex in response because of space limitations.
    [Show full text]
  • Functional MRI, DTI and Neurophysiology in Horizontal Gaze Palsy with Progressive Scoliosis
    Neuroradiology (2008) 50:453–459 DOI 10.1007/s00234-007-0359-1 FUNCTIONAL NEURORADIOLOGY Functional MRI, DTI and neurophysiology in horizontal gaze palsy with progressive scoliosis Sven Haller & Stephan G. Wetzel & Jürg Lütschg Received: 19 August 2007 /Accepted: 14 December 2007 /Published online: 24 January 2008 # Springer-Verlag 2008 Abstract suspected HGPPS, any technique appears appropriate for Introduction Horizontal gaze palsy with progressive scoliosis further investigation. Auditory fMRI suggests that a (HGPPS) is an autosomal recessive disease due to a mutation monaural auditory system with bilateral auditory activations in the ROBO3 gene. This rare disease is of particular interest might be a physiological advantage as compared to a because the absence, or at least reduction, of crossing of the binaural yet only unilateral auditory system, in analogy to ascending lemniscal and descending corticospinal tracts in the anisometropic amblyopia. Moving-head fMRI studies in the medulla predicts abnormal ipsilateral sensory and motor future might show whether the compensatory head move- systems. ments instead of normal eye movements activate the eye- Methods We evaluated the use of functional magnetic movement network. resonance imaging (fMRI) for the first time in this disease and compared it to diffusion tensor imaging (DTI) Keywords Functional MRI . HGPPS . ROBO3 tractography and neurophysiological findings in the same patient with genetically confirmed ROBO3 mutation. Abbreviations Results As expected, motor fMRI, somatosensory evoked BAEP brainstem auditory evoked potentials potentials (SSEP) and motor evoked potentials (MEP) were BOLD blood oxygenation level dependent dominantly ipsilateral to the stimulation side. DTI tractography DTI diffusion tensor imaging revealed ipsilateral ascending and descending connectivity in fMRI functional magnetic resonance imaging the brainstem yet normal interhemispheric connections in the FEF frontal eye field corpus callosum.
    [Show full text]
  • Relation of Macular and Other Holes to the Insertion of the Inferior Oblique
    Br J Ophthalmol: first published as 10.1136/bjo.47.2.90 on 1 February 1963. Downloaded from Brit. J. Ophthal. (1963) 47, 90. RELATION OF MACULAR AND OTHER HOLES TO THE INSERTION OF THE INFERIOR OBLIQUE* WITH A NOTE ON THE TOPOGRAPHY OF THE POSTERIOR SURFACE OF THE GLOBE BY ANWAR EL MASSRI Faculty ofMedicine, Ein-Shams University, Cairo THE macular region, like the peripheral retina, is liable to cystic degeneration, especially in high myopes and in old people. This gives a honeycomb appearance and on rupture of the cyst or cysts by slight or severe trauma a depression is produced which may be confined to the inner layers of the retina or form a macular hole. A hole may occur in a normal macula immediately after trauma or after an interval during which probably cystic degeneration has developed. A macular hole may also be formed in the process of retrac- tion of the vitreous if the macula is previously diseased or affected. These holes are always round or oval with a punched appearance. Multiple holes are rare. They may or may not be accompanied by retinal detachment. copyright. It seems that relationship exists between the formation of a macular hole and the contraction of the inferior oblique muscle (el Massri, 1958). In about five out of nine cases, the hole is accompanied by a peripheral tear or an area of degeneration at about 7 to 8 o'clock in the right eye or 4 to 5 o'clock in the left. At operation the peripheral tears were seen to be situated of the insertion of over the lateral end the inferior oblique.
    [Show full text]
  • The Mandibular Nerve - Vc Or VIII by Prof
    The Mandibular Nerve - Vc or VIII by Prof. Dr. Imran Qureshi The Mandibular nerve is the third and largest division of the trigeminal nerve. It is a mixed nerve. Its sensory root emerges from the posterior region of the semilunar ganglion and is joined by the motor root of the trigeminal nerve. These two nerve bundles leave the cranial cavity through the foramen ovale and unite immediately to form the trunk of the mixed mandibular nerve that passes into the infratemporal fossa. Here, it runs anterior to the middle meningeal artery and is sandwiched between the superior head of the lateral pterygoid and tensor veli palatini muscles. After a short course during which a meningeal branch to the dura mater, and the nerve to part of the medial pterygoid muscle (and the tensor tympani and tensor veli palatini muscles) are given off, the mandibular trunk divides into a smaller anterior and a larger posterior division. The anterior division receives most of the fibres from the motor root and distributes them to the other muscles of mastication i.e. the lateral pterygoid, medial pterygoid, temporalis and masseter muscles. The nerve to masseter and two deep temporal nerves (anterior and posterior) pass laterally above the medial pterygoid. The nerve to the masseter continues outward through the mandibular notch, while the deep temporal nerves turn upward deep to temporalis for its supply. The sensory fibres that it receives are distributed as the buccal nerve. The 1 | P a g e buccal nerve passes between the medial and lateral pterygoids and passes downward and forward to emerge from under cover of the masseter with the buccal artery.
    [Show full text]