LMP Fundamental Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathematical Constants and Sequences
Mathematical Constants and Sequences a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics. Math BOOKS | SI Units | SI Dimensions PHYSICS Constants (on a separate page) Mathematics LINKS | Stan's Library | Stan's HUB This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice). Bold dots after a value are a link to the ••• OEIS ••• database. This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages. Basic math constants Binary sequences Constants of number-theory functions More constants useful in Sciences Derived from the basic ones Combinatorial numbers, including Riemann zeta ζ(s) Planck's radiation law ... from 0 and 1 Binomial coefficients Dirichlet eta η(s) Functions sinc(z) and hsinc(z) ... from i Lah numbers Dedekind eta η(τ) Functions sinc(n,x) ... from 1 and i Stirling numbers Constants related to functions in C Ideal gas statistics ... from π Enumerations on sets Exponential exp Peak functions (spectral) .. -
Tutorme Subjects Covered.Xlsx
Subject Group Subject Topic Computer Science Android Programming Computer Science Arduino Programming Computer Science Artificial Intelligence Computer Science Assembly Language Computer Science Computer Certification and Training Computer Science Computer Graphics Computer Science Computer Networking Computer Science Computer Science Address Spaces Computer Science Computer Science Ajax Computer Science Computer Science Algorithms Computer Science Computer Science Algorithms for Searching the Web Computer Science Computer Science Allocators Computer Science Computer Science AP Computer Science A Computer Science Computer Science Application Development Computer Science Computer Science Applied Computer Science Computer Science Computer Science Array Algorithms Computer Science Computer Science ArrayLists Computer Science Computer Science Arrays Computer Science Computer Science Artificial Neural Networks Computer Science Computer Science Assembly Code Computer Science Computer Science Balanced Trees Computer Science Computer Science Binary Search Trees Computer Science Computer Science Breakout Computer Science Computer Science BufferedReader Computer Science Computer Science Caches Computer Science Computer Science C Generics Computer Science Computer Science Character Methods Computer Science Computer Science Code Optimization Computer Science Computer Science Computer Architecture Computer Science Computer Science Computer Engineering Computer Science Computer Science Computer Systems Computer Science Computer Science Congestion Control -
Inevitable Dottie Number. Iterals of Cosine and Sine
Inevitable Dottie Number. Iterals of cosine and sine Valerii Salov Abstract The unique real root of cos(x) = x, recently referred to as the Dottie number, is expressed as an iteral of cosine. Using the derivatives of iterals, it is shown why this number is achieved starting from any real number, when the iterates of cosine successfully approach infinity, and how this affects the Maclaurin series of the iterals. Properties of the iterals of cosine and sine and their derivatives are considered. A C++ template for iteral is applied for computation of Julia sets. 1 Introduction If one sets a calculator to work with radians, types any number, and presses the button cos over and over again, then soon the screen shows unchanging further decimal digits 0:739085133215 :::. This is a truncated root of the equation cos(x) = x. Remembering such a story occurred with Dottie, a professor of French, Samuel Kaplan refers to the root as the Dottie number [7]. He formulates exercises involving the number for Advanced Calculus, Differential Equations, Chaos, Complex Variables, and concludes It is unlikely that the Dottie number will enter the annals of great constants along side e, π, the Golden Ratio and many others. However, the Dottie number and its story might make good teaching elements for others out there. I also imagine there are many other interesting facets of the Dottie number yet to be discovered. The two properties that this is 1) the only real root of cos(x) = x, and 2) the attractor in the iterates of cos, where the domain of attraction is the entire arXiv:1212.1027v1 [math.HO] 1 Dec 2012 real line had been known prior to the Kaplan’s naming proposal. -
Chemical Reaction Networks: Computability, Complexity, and Randomness
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2020 Chemical reaction networks: Computability, complexity, and randomness Xiang Huang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Huang, Xiang, "Chemical reaction networks: Computability, complexity, and randomness" (2020). Graduate Theses and Dissertations. 18328. https://lib.dr.iastate.edu/etd/18328 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Chemical reaction networks: Computability, complexity, and randomness by Xiang Huang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Computer Science Program of Study Committee: Jack H. Lutz, Major Professor Pavan Aduri Soma Chaudhuri David Fernadnez-Baca James Lathrop Timothy McNicholl The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2020 Copyright © Xiang Huang, 2020. All rights reserved. ii DEDICATION To my wife and best friend Qiuyan Liao, my newborn son Wenqiao Huang, and Xiang Huang in a parallel universe, where he works as a programmer in Beijing and spends more time with his family and friends in China. -
Problem Solving I: Mathematical Techniques
Kevin Zhou Physics Olympiad Handouts Problem Solving I: Mathematical Techniques For the basics of dimensional analysis and limiting cases, see chapter 1 of Morin or chapter 2 of Order of Magnitude Physics. Many more examples are featured in The Art of Insight; some particularly relevant sections are 2.1, 5.5, 6.3, 8.2, and 8.3. Other sections will be mentioned throughout the course. There is a total of 81 points. 1 Dimensional Analysis Idea 1 The dimensions of all physical equations should match on both sides. Sometimes, this constraint alone can determine the answers to physical questions. Even a statement such as \the speed v is slow" does not make sense, since we need to compare it to something else with dimensions of speed. A more meaningful statement would be \v is slow compared to the speed of light", which would correspond to v=c 1. Example 1: F = ma 2018 B11 A circle of rope is spinning in outer space with an angular velocity !0. Transverse waves on the rope have speed v0, as measured in a rotating reference frame where the rope is at rest. If the angular velocity of the rope is doubled, what is the new speed of transverse waves? Solution To solve this problem by dimensional analysis, we reason about what could possibly affect the speed of transverse waves. The result could definitely depend on the rope's length L, mass per length λ, and angular velocity !0. It could also depend on the tension, but since this tension balances the centrifugal force, it is determined by all of the other quantities.