ELECTRIC POWERTRAIN's Impact on BRAKING SYSTEM

Total Page:16

File Type:pdf, Size:1020Kb

ELECTRIC POWERTRAIN's Impact on BRAKING SYSTEM COVER STORY BRAKE SYSTEMS ELECTRIC POWERTRAIN’s IMPACT ON BRAKING SYSTEM Electrification of the powertrain has considerable effects on the chassis systems, particularly on the brake system. Adaptations are necessary, for example, to enable energy recovery to be applied. This has consequences for the system software, the modulation hardware and the pedal feel. Furthermore, brake assist systems for zero-emission vehicles require electric vacuum pumps or other non-vacuum systems. In order to achieve further synergies in the chassis, suitable interfaces need to be created between the regenerative brake system, the steering, the suspen- sion and the axles. In the following report, PSA and Bosch describe which solution has been implemented in the hybrid version of the Peugeot 3008 and which systems are to be expected in the future. 34 www.autotechreview.com AUTHORS IMPACTS ON CHASSIS DOMAIN BASICS OF REGENERATIVE BRAKING The introduction of electric powertrains The objectives of regenerative braking are has had a strong impact on the chassis to reduce CO2 emissions and to increase components of a vehicle, especially on the the energy efficiency or driving range. For braking system. Recuperative braking is a HEVs without plug-in functionality, must for electrified vehicles, either for energy recuperation during deceleration DR. MARC DUVAL-DESTIN range extension in case of electric vehicles phases is the major contribution to reduce is Research and Innovation Director (EV) or for CO2 reduction in case of the CO2 emission. Values of 20 g/km CO2 at PSA Peugeot Citroën in hybrid electric vehicles (HEV). To enable savings are reachable depending on tests Paris (France). energy recuperation during braking conditions, vehicles and drivetrain archi- phases, new and adapted braking systems tectures, amongst other parameters. are necessary. During regenerative braking phases, Regenerative braking, classical friction the electric motor is used as a generator. braking and the driver’s request for decel- The potential of energy recuperation is eration have to be harmonised. The first affected by certain motor characteristics. generation of regenerative braking sys- Especially the maximum brake torque of PROF. DR. THOMAS KROPF is Senior Vice President, Chassis Sys- tems is based on the standard Electronic the electric machine is limited. Further- tems Control at the Robert Bosch Stability Control (ESC), where a limited more, this limitation depends on the cur- GmbH in Stuttgart (Germany). electric and hydraulic brake torque gener- rent rotation speed, which is proportional ation is superimposed. Higher recupera- to the vehicle’s velocity, 1. tion performance is offered by cooperative Beyond the limitations due to braking systems, which avoid deceleration the powertrain, the availability of inconsistencies by means of automated recuperative braking is limited by the torque blending, in particular with regard charging condition of the battery and to powerful electrical machines. restrictions on vehicle stability under DR. VINCENT ABADIE To fulfil requirements for vacuum free critical driving situations. is Corporate Expert, Controlled Chassis Systems at PSA Peugeot braking, the braking architecture has to be Citroën in Paris (France). extended with hydraulic or electric boost. Hybrid and electric vehicles have thus TYPES OF REGENERATIVE BRAKING strong impacts on chassis domain: AND LIMITATIONS :: Adaptations on the braking system are needed to enable energy recuperation; The first possibility for regenerative brak- energy recuperation impacts system ing consists in simply superposing the software, modulation hardware and deceleration of the electric motor/ genera- DR. MICHAEL FAUSTEN pedal feel. tor and the conventional brake system. is Director Advanced Engineering, :: Brake assistance for Zero Emission This solution is called superimposed Chassis Systems Control at the Robert Bosch GmbH in Stuttgart (Germany). Vehicles (ZEV) requires electric regenerative braking system (SRBS). It is vacuum pump or other vacuum simple and very cost effective since it free solutions. avoids blending between friction brake :: Potentials for new synergies require and regenerative braking. The major suitable interfaces between the regen- drawback of this approach is that the drag erative brake system and functional torque of regenerative braking depends on units like a steering system, suspen- the vehicle speed and has to be limited to sions or axles. a level that is still acceptable for the driver. This applies especially for the speed range close to standstill, since the regenerative braking torque will drop to zero at very low speed. This limit has shown to be in the range of 0.1 g, hence this solution is well suited for electric machines up to 20 kW power (mild hybrids). For vehicles with stronger electric engines (strong hybrids and EV) regenerative drag torque of more than 0.2 g can be generated, 2. Due to the restric- tions to 0.1 g drag torque, a SRBS cannot 1 Generator characteristics make use of the regenerative potentials of autotechreview April 2015 Volume 4 | Issue 4 35 COVER STORY BRAKE SYSTEMS (and low drag brakes) are used for HEV and EV vehicle, which can impact the entire chassis tuning. CO2 CYCLES AND RECUPERATION Regenerative efficiency is the proportion of the brake energy that can be recuper- 2 Deceleration characteristics ated by a specific regenerative braking of electric motors system. Its value depends on the under- lying driving cycle. An increased number these powertrains. tem developed with Bosch. The system of acceleration and deceleration events Here, the adequate approach is cooper- uses on a standard ESP and is addition- within a cycle increase the potential ative regenerative braking system (CRBS), ally equipped with a pedal travel sensor, amount of kinetic energy that can be which allows a high level of recuperation a special actuation topology with recuperated. Furthermore, higher decel- without variation of deceleration over the increased dead stroke and a special con- eration levels render a driving cycle more complete speed range down to standstill, trol software. suitable for demonstrating the regenera- 3. This is achieved by blending friction tive efficiency of a particular regenerative braking and recuperative braking for braking system. speed independent constant deceleration OTHER CHASSIS IMPACTS Not all driving cycles represent realistic at a given brake pedal position. This solu- acceleration profiles. Today, several driv- tion is suited for high power electric The technology of HEV and EV vehicles ing cycles for homologation are used machines. CRBS imply additional costs for has multiple impacts and constraints on worldwide, including the NEDC (New hydraulic blending and full or partial other chassis components, depending on European Driving Cycle), FTP (Federal decoupling of the brake pedal from the the powertrain architecture. The location Test Procedure) or JP (different modes). brake circuits. of an electric motor on the rear axle NEDC and HYZEM (Hybrid Technol- implies an axle evolution in order to sup- ogy Approaching Efficient Zero Emission port the electric motor. As well, start/stop Mobility) cycles are represented in (4). REGENERATIVE BRAKING ON THE has to be considered in the control and The NEDC is characterised by low decel- PEUGEOT 3008 HYBRID hardware of steering and braking assis- eration values (maximum 0.14 g). On the tance systems since mechanical power other hand, HYZEM features higher The hybrid architecture of the Peugeot and vacuum are not permanently availa- deceleration levels and more braking 3008 is based on an electric machine ble. This leads to application of an electric events. Therefore, HYZEM offers an linked to the rear wheels. The supervi- power steering (EPS) and discards brake- increased recuperation potential com- sion control unit (PTMU), the batteries, boost solutions, which are based on pared to NEDC. the electric motor and the power elec- mechanical vacuum pumps. Otherwise re- tronics are implanted on the rear axle. start of the ICE might be necessary in case The front axle is powered with an inter- of vacuum drop due to braking in engine REGENERATIVE BRAKING SYSTEMS nal combustion engine with start/stop off mode. function. The electric motor provides the The tyre conception and tuning has to Brake system requirements largely recuperation during deceleration phases be modified as well. The particular torque depend on the underlying vehicle con- (engine drag and braking) in order to profile of the electric motor, which is dif- cepts, platform strategies and additional charge the Ni-MH batteries. ferent from an ICE, can induce some mod- functions. The lack of vacuum due to The recuperative braking system ification to the wear performance. At the ICE with low or no vacuum, start/stop (SRBS) is realised by an ESP w/RBC sys- same time, low rolling resistance tyres and coasting requirements, fuel con- 3 Limited deceleration variation (left, green line) and constant deceleration (right, blue line) in case of cooperative regenerative braking system 36 www.autotechreview.com 4 NEDC (top) and HYZEM (bottom) deceleration profiles sumption reduction for HEV, and driving range extensions for EV require regenera- tive brake systems with actuation inde- pendent from engine vacuum. Platform strategies featuring mixed drivetrain concepts (e.g. ICE and HEV or EV) in one platform demand flexible brake system configurations and scalabil- ity without on-cost for modularity. For additional safety
Recommended publications
  • 2018 Avalon Hybrid Product Information
    2018 Avalon Hybrid Product Information #Avalon #Hybrid HYBRID POWER SYSTEM Hybrid System Net Horsepower 200 hp ENGINE Type, Materials 2.5-liter, 4-cylinder, aluminum alloy block with aluminum alloy head Valvetrain 16-valve DOHC with VVT-i Displacement 2,494 cc Bore x Stroke 3.54 x 3.86 in. Compression Ratio 12.5:1 Horsepower (SAE Net) 156 hp @ 5,700 rpm Torque 156 lb-ft @ 4,500 rpm Recommended Fuel 87-octane or higher - unleaded Emission Certification LEV3 EPA Estimated Fuel Economy* 40/39/40 (city/highway/combined MPG) ELECTRIC MOTOR Type Permanent Magnet AC Synchronous Motor Electric Motor Power Output 105 kW/4,500 RPM Torque 199 lb-ft @ 0-1,500 RPM HYBRID BATTERY PACK Type Sealed Nickel-Metal Hydride (Ni-MH) Nominal Voltage 244.8 V (204 cells, 1.2V/cells) Capacity 6.5 ampere hour System Voltage 650 volts maximum *2018 EPA estimated MPG - Actual mileage will vary. DRIVETRAIN Transmission Type Electronically Controlled Continuously Variable Transmission Final Drive Ratio 3.54 to 1 CHASSIS AND BODY Suspension - Front MacPherson strut with torsion bar - Rear Dual link Independent MacPherson strut with torsion bar 2018 Avalon Hybrid Product Information #Avalon #Hybrid - Stabilizer Bar 25 mm/ 16 mm (0.98 in. / 0.63 in.) Diameter (front/rear) Steering - Type Electric Power Steering (EPS): rack-and-pinion with electric power-assist - Overall 14.8 to 1 Ratio - Turning 40.0 ft. Circle Diameter (curb-to- curb) Brakes - Type Electronically Controlled Brake system (ECB) - Front Ventilated disc with standard Anti-Lock Brake system (ABS), Brake Assist (BA) and integrated regenerative brake system - Front Diameter 11.7 in.
    [Show full text]
  • Design and Fabrication of Regenerative Braking System and Modifying Vehicle Dynamics
    ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Special Issue 8, May 2016 Design and Fabrication of Regenerative Braking System and Modifying Vehicle Dynamics D.Kesavaram 1, K.Arunkumar 2, M.Balasubramanian 3, J.Jayaprakash 4, K.Kalaiselvan 5 Assistant Professor, Department of Mechanical Engineering, TRP Engineering College, Tiruchirapalli, India1 UG Scholars, Department of Mechanical Engineering, TRP Engineering College, Tiruchirapalli, India 2,3,4,5 ABSTRACT: A regenerative brake is an energy recovery mechanism which slows a vehicle or object by converting its kinetic energy into a form which can be either used immediately or stored until needed. The conventional brake setup involves many energy loses and hence in our work, the conventional brake setup is replaced by mounting an alternator assembly in the wheel hub. During the forward motion of the vehicle, the alternator’s rotor rotates freely. During the application of brakes, the input supply is given to the alternator and as a result the rotor coils provide a rotational magnetic flux which cuts the stator conductor which is rotating along with the flywheel and hence an induced voltage is obtained from the alternator output which is stored in a battery. By increasing the alternator load the conductor gradually slows down and hence acts as a brake. The time required to stop the vehicle is directly proportional to the load connected to the alternator. Then by increasing the diameter of the front wheel of the vehicle, the stability of the 2 wheeler can be improved as it modifies the rear suspension effect and provides more contact between the wheel and the ground during braking.
    [Show full text]
  • An Optimal Slip Ratio-Based Revised Regenerative Braking Control Strategy of Range-Extended Electric Vehicle
    energies Article An Optimal Slip Ratio-Based Revised Regenerative Braking Control Strategy of Range-Extended Electric Vehicle Hanwu Liu , Yulong Lei, Yao Fu * and Xingzhong Li State Key Laboratory of Automotive Simulation and Control, School of Automotive Engineering, Jilin University, Changchun 130022, China; [email protected] (H.L.); [email protected] (Y.L.); [email protected] (X.L.) * Correspondence: [email protected] Received: 2 February 2020; Accepted: 20 March 2020; Published: 24 March 2020 Abstract: The energy recovered with regenerative braking system can greatly improve energy efficiency of range-extended electric vehicle (R-EEV). Nevertheless, maximizing braking energy recovery while maintaining braking performance remains a challenging issue, and it is also difficult to reduce the adverse effects of regenerative current on battery capacity loss rate (Qloss,%) to extend its service life. To solve this problem, a revised regenerative braking control strategy (RRBCS) with the rate and shape of regenerative braking current considerations is proposed. Firstly, the initial regenerative braking control strategy (IRBCS) is researched in this paper. Then, the battery capacity loss model is established by using battery capacity test results. Eventually, RRBCS is obtained based on IRBCS to optimize and modify the allocation logic of braking work-point. The simulation results show that compared with IRBCS, the regenerative braking energy is slightly reduced by 16.6% and Qloss,% is reduced by 79.2%. It means that the RRBCS can reduce Qloss,% at the expense of small braking energy recovery loss. As expected, RRBCS has a positive effect on prolonging the battery service life while ensuring braking safety while maximizing recovery energy.
    [Show full text]
  • Module 11: Regenerative Braking
    NPTEL – Electrical Engineering – Introduction to Hybrid and Electric Vehicles Module 11: Regenerative braking Lecture 38: Fundamentals of Regenerative Braking Fundamentals of Regenerative Braking The topics covered in this chapter are as follows: Introduction. Energy Consumption in Braking Braking Power and Energy on Front and Rear Wheels Introduction The electric motors in EVs and HEVs can be controlled to operate as generators to convert the kinetic or potential energy of the vehicle mass into electric energy that can be stored in the energy storage and reused. A successfully designed braking system for a vehicle must always meet two distinct demands: i. In emergency braking, the braking system must bring the vehicle to rest in the shortest possible distance. ii. The braking system must maintain control over the vehicle’s direction, which requires braking force to be distributed equally on all the wheels. Energy Consumption in Braking A significant amount of energy is consumed by braking. Braking a 1500 kg vehicle from 2 100 km/h to zero speed consumes about 0.16 kWh of energy (0.5 Mv V ) in a few tens of meters. If this amount of energy is consumed in coasting by only overcoming the drags (rolling resistance and aerodynamic drag) without braking, the vehicle will travel about 2 km, as shown in Figure 1. When vehicles are driving with a stop-and-go pattern in urban areas, a significant amount of energy is consumed by frequent braking, which results in high fuel consumption. The braking energy in typical urban areas may reach up to more than 25% of the total traction energy.
    [Show full text]
  • Adaptive Brake by Wire from Human Factors to Adaptive Implementation
    UNIVERSITY OF TRENTO Doctoral School in Engineering Of Civil And Mechanical Structural Systems Adaptive Brake By Wire From Human Factors to Adaptive Implementation Thesis Tutor Doctoral Candidate Prof. Mauro Da Lio Andrea Spadoni Mechanical and Mechatronic Systems December 2013 - XXV Cycle 1 Adaptive Brake By Wire From Human Factors to Adaptive Implementation 2 Adaptive Brake By Wire From Human Factors to Adaptive Implementation Table of contents TABLE OF CONTENTS .............................................................................................................. 3 LIST OF FIGURES .................................................................................................................... 6 LIST OF TABLES ...................................................................................................................... 8 GENERAL OVERVIEW .............................................................................................................. 9 INTRODUCTION ................................................................................................................... 12 1. BRAKING PROCESS FROM THE HUMAN FACTORS POINT OF VIEW .................................... 15 1.1. THE BRAKING PROCESS AND THE USER -RELATED ASPECTS ......................................................................... 15 1.2. BRAKE ACTUATOR AS USER INTERFACE ................................................................................................. 16 1.3. BRAKE FORCE ACTUATION : GENERAL MOVEMENT -FORCE DESCRIPTION ......................................................
    [Show full text]
  • Product Information 2013 Holden Volt
    30 August 2012 PRODUCT INFORMATION 2013 HOLDEN VOLT Fast Facts: Front-wheel drive, four passenger long range electric vehicle Travels over 600 kilometres on a fully charged battery and a full tank of fuel, depending on conditions Instant torque makes it quick off the mark, responsive and fun to drive Has a pure electric range of up to 87 kilometres (depending on driving conditions) Not a conventional hybrid – the first car of its kind in Australia Different to most electric cars, Volt can be recharged from a regular household outlet Can be fully charged from empty for as little as $2.50 Can be powered by renewable energy through a partnership with Better Place Long range capability eliminates concerns about being stranded by a depleted battery (range anxiety) Around 80 per cent of Australians living in major capital cities commute fewer than 80 kilometres daily and could travel petrol-free Introduces ‘Holden first’ forward collision avoidance and lane departure warning technology, offers eight airbags, rear camera Has advanced infotainment system with great audio interface, voice recognition, more hands-free connectivity Delivers keyless entry and start with sensor key technology Awarded prestigious North American Car of the Year and European Car of the Year honours Supported by a 49-strong Holden dealer network Australia-wide 1 Overview: the long range Holden Volt redefines electric drive The Holden Volt is not a hybrid. It is a one-of-a-kind, all-electrically driven vehicle designed and engineered to operate in all climates, with a range of over 600 kilometres (depending on conditions).
    [Show full text]
  • Design & Development of Regenerative Braking System At
    International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 8, Number 2 (2018), pp. 165-172 © Research India Publications http://www.ripublication.com Design & Development of Regenerative Braking System at Rear Axle 2, 3 Ketan Warake, Dr. S. R. Bhahulikar Dr. N. V. Satpute 1 ,2Mechanical Engineering Department, Vishwakarma Institute of Technology, Pune 411037, India. 3Mechanical Engineering Department, Fr. C. Rodrigues Institute of Technology, Vashi, Mumbai 400703, India. Abstract In this work, a new methodology with external generator is developed for regenerative braking system. Experimental test setup is developed to verify the feasibility of new methodology. Results are verified using Matlab Simulink simulation. About 10 to 12% of battery energy can be regenerated and stored into battery which shows 10 to 12% increase in Electric vehicles mileage. Keywords: Regenerative brake, motor/generator unit, Matlab simulink. I. INTRODUCTION Regenerative Braking System is the way of slowing vehicle by using the motors as brakes. Instead of the surplus energy of the vehicle being wasted as unwanted heat, the motors act as generators and return some of it to the overhead wires as electricity. This energy is stored in a large battery, and used by an electric motor that provides motive force to the wheels. The regenerative braking taking place on the vehicle is a way to obtain more efficiency; instead of converting kinetic energy to thermal energy through frictional braking, the vehicle can convert a good fraction of its kinetic energy back into charge in the battery, using the same principle as an alternator. II. MAXIMUM BRAKING FORCE REQUIRED Figure.2.1.
    [Show full text]
  • Regenerative Braking Strategy of a Formula SAE Electric Race Car Using Energetic Macroscopic Representation
    Article Regenerative Braking Strategy of a Formula SAE Electric Race Car Using Energetic Macroscopic Representation Andrés Camilo Henao-Muñoz 1,* , Paulo Pereirinha 1,2 and Alain Bouscayrol 3 1 Coimbra Polytechnic-ISEC, 3030-199 Coimbra, Portugal; [email protected] 2 INESC-Coimbra DEEC, 3030-790 Coimbra, Portugal 3 Univ. Lille, Centrale Lille, Arts et Métiers Paris Tech, HEI, EA 2697 – L2EP, F-59000 Lille, France; [email protected] * Correspondence: [email protected] Received: 28 April 2020; Accepted: 2 June 2020; Published: 11 June 2020 Abstract: This paper presents a braking strategy analysis for a Formula SAE electric race car. The proposed braking strategy aims to increase the recovery energy by a relevant distribution of the braking forces between the rear and front wheels. A mathematical model of the car is presented, and a simulation is performed in Matlab-Simulink. The model is organized using the energetic macroscopic representation graphical formalism. A real racetrack driving cycle is considered. Three braking strategies are compared considering the energy recovery and the vehicle stability. The simulation results show that the proposed strategy enables higher energy recovery while avoiding locking on both rear and front wheels. As in such a race the driving range is fixed, the reduction in energy consumption can be used to reduce the battery size. The battery weight can thus be decreased to improve the vehicle performance during competition. Keywords: regenerative brake; race car; energetic macroscopic representation; EMR; car modeling; electric differential 1. Introduction Greenhouse gas (GHG) emissions and air pollution are major concerns related to the massive deployment of gasoline and diesel vehicles.
    [Show full text]
  • Application of Floating Pedal Regenerative Braking for a Rear-Wheel-Drive Parallel-Series Plug-In Hybrid Electric Vehicle with an Automatic Transmission
    Dissertations and Theses 12-2016 Application of Floating Pedal Regenerative Braking for a Rear- Wheel-Drive Parallel-Series Plug-In Hybrid Electric Vehicle with an Automatic Transmission Dylan Lewis Lewton Follow this and additional works at: https://commons.erau.edu/edt Part of the Automotive Engineering Commons, and the Electro-Mechanical Systems Commons Scholarly Commons Citation Lewton, Dylan Lewis, "Application of Floating Pedal Regenerative Braking for a Rear-Wheel-Drive Parallel- Series Plug-In Hybrid Electric Vehicle with an Automatic Transmission" (2016). Dissertations and Theses. 307. https://commons.erau.edu/edt/307 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. APPLICATION OF FLOATING PEDAL REGENERATIVE BRAKING FOR A REAR- WHEEL-DRIVE PARALLEL-SERIES PLUG-IN HYBRID ELECTRIC VEHICLE WITH AN AUTOMATIC TRANSMISSION by Dylan Lewis Lewton A Thesis Submitted to the College of Engineering Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida December 2016 Acknowledgements First and foremost, I would like to thank my thesis advisor Dr. Currier for all his support and guidance throughout the completion of this thesis. Although there were several people that helped with this thesis, I would like to give a special thanks to Adam Szechy, Matthew Nelson, Abdulla Karmustaji, and Marc Compere. Adam for working closely with me to develop a full vehicle model that could be used for testing control algorithms before vehicle testing.
    [Show full text]
  • Regenerative Intelligent Brake Control for Electric Motorcycles
    energies Article Regenerative Intelligent Brake Control for Electric Motorcycles Juan Jesús Castillo Aguilar * ID , Javier Pérez Fernández, Juan María Velasco García and Juan Antonio Cabrera Carrillo ID Department of Mechanical Engineering, University of Málaga, 29071 Málaga, Spain; [email protected] (J.P.F.); [email protected] (J.M.V.G.); [email protected] (J.A.C.C.) * Correspondence: [email protected]; Tel.: +34-951-952-372; Fax: +34-951-952-605 Received: 17 August 2017; Accepted: 13 October 2017; Published: 20 October 2017 Abstract: Vehicle models whose propulsion system is based on electric motors are increasing in number within the automobile industry. They will soon become a reliable alternative to vehicles with conventional propulsion systems. The main advantages of this type of vehicles are the non-emission of polluting gases and noise and the effectiveness of electric motors compared to combustion engines. Some of the disadvantages that electric vehicle manufacturers still have to solve are their low autonomy due to inefficient energy storage systems, vehicle cost, which is still too high, and reducing the recharging time. Current regenerative systems in motorcycles are designed with a low fixed maximum regeneration rate in order not to cause the rear wheel to slip when braking with the regenerative brake no matter what the road condition is. These types of systems do not make use of all the available regeneration power, since more importance is placed on safety when braking. An optimized regenerative braking strategy for two-wheeled vehicles is described is this work. This system is designed to recover the maximum energy in braking processes while maintaining the vehicle’s stability.
    [Show full text]
  • AUTOMOBILE ENGINEERING Question Bank
    SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING ME6602 - AUTOMOBILE ENGINEERING Question Bank UNIT-4 - STEERING, BREAKS AND SUSPENSION PART-A 1. Define wheel track and wheel base. The distance between the tyre centers, mounted on the same axle is known as wheel track. The wheelbase is the distance between the centers of the front and rear wheels 2. Give a brief note on damper. It is used to dampen the vibrations of the suspension springs. It is mostly used in independent suspension. 3. What is meant by bleeding of brakes? The process of removing air from the hydraulic brakes is known as bleeding of brakes. 4. Define steering gear. The steering gear is used to convert the rotational movement of the steering wheel into linear movement of the steering linkage. Moreover it provides mechanical advantage. 5. What are the different types of wheels? o Pressed steel disc wheels o Wire spoke wheels o Light alloy casted wheels 6. What is the purpose of Toe-in and Toe-out? The purpose of providing a toe in and toe out is straight line stability of the vehicle, after negotiating a turn. 7. What are the different types of tyres used in automobile? a. Cross ply tyres b. Radial ply tyres c. Belted bias tyres 8. What are the different types of springs used in suspension system? o Leaf springs (Rigid axle suspension) o Coil springs (Independent suspension) o Torsion bar (Independent suspension) 9. Define king pin inclination. The tilt of the king pin from the vertical reference line is known as King Pin Inclination (KPI).
    [Show full text]
  • Regenerative Braking System on a Conventional Bike
    Paper ID #21365 Regenerative Braking System on a Conventional Bike Dr. Bala Maheswaran, Northeastern University Bala Maheswaran, PhD Northeastern University 367 Snell Engineering Center Boston, MA 02115 Mr. Nicolas Berna Tedori Mr. Eamon J. Whitmore, Northeastern University Current sophomore in the Civil Engineering program of Northeastern University’s College of Engineering with a small background in physical mechanics from working with racing karts. Miss Bailey L. Ritchie Mr. Logan Gross, Northeastern University Second year Mechanical Engineering student at Northeastern University. Passion for entrepreneurship, finance, and the culinary arts. c American Society for Engineering Education, 2018 Regenerative Braking System on a Conventional Bike Logan Gross, Bailey Ritchie, Nicolas Tedori, Eamon Whitmore, and Bala Maheswaran College of Engineering Northeastern University Abstract As the world’s supply of natural resources diminishes, the quest for renewable energy solutions is becoming more and more critical. To help curb the use of non-renewable energy sources, scientist and engineers are tasked with the challenge of finding alternative energies. One of these alternative sources is recovering energy lost to mechanical systems, which could counteract the world's energy shortage. Regenerative braking has already been implemented in hybrid and electric vehicles; however, this paper introduces a regenerative braking system specifically for the conventional, every-day bike. The RE-Brake system recaptures energy that would normally be lost to
    [Show full text]