First Results from the HAYSTAC Axion Search
Total Page:16
File Type:pdf, Size:1020Kb
Abstract First results from the HAYSTAC axion search Benjamin M. Brubaker 2018 The axion is a well-motivated cold dark matter (CDM) candidate first postulated to explain the absence of CP violation in the strong interactions. CDM axions may be detected via their resonant conversion into photons in a \haloscope" detector: a tunable high-Q microwave cavity maintained at cryogenic temperature, immersed a strong magnetic field, and coupled to a low-noise receiver. This dissertation reports on the design, commissioning, and first operation of the Haloscope at Yale Sensitive to Axion CDM (HAYSTAC), a new detector designed to search for CDM axions with masses above 20 µeV. I also describe the analysis procedure developed to derive limits on axion CDM from the first HAYSTAC data run, which excluded axion −14 −1 models with two-photon coupling gaγγ & 2 × 10 GeV , a factor of 2.3 above the benchmark KSVZ model, over the mass range 23:55 < ma < 24:0 µeV. This result represents two important achievements. First, it demonstrates cosmolog- ically relevant sensitivity an order of magnitude higher in mass than any existing direct limits. Second, by incorporating a dilution refrigerator and Josephson parametric amplifier, HAYSTAC has demonstrated total noise approaching the standard quantum limit for the first time in a haloscope axion search. arXiv:1801.00835v1 [astro-ph.CO] 2 Jan 2018 First results from the HAYSTAC axion search A Dissertation Presented to the Faculty of the Graduate School of Yale University in Candidacy for the Degree of Doctor of Philosophy by Benjamin M. Brubaker Dissertation Director: Steve K. Lamoreaux December 2017 Copyright c 2017 by Benjamin M. Brubaker All rights reserved. ii Contents Acknowledgments xiii 1 Introduction 1 1.1 Motivation for the axion . .4 1.2 Detecting dark matter axions . .6 1.3 The structure of this thesis . .9 2 The strong CP problem and axions 11 2.1 The Standard Model . 12 2.1.1 Spontaneous symmetry breaking . 15 2.1.2 Electroweak symmetry breaking and the CKM matrix . 18 2.1.3 Confinement and the symmetries of hadrons . 23 2.2 The U(1)A problem . 27 2.2.1 The chiral anomaly . 28 2.2.2 Instantons and the θ vacuum . 34 2.3 The strong CP problem . 39 2.3.1 The electric dipole moment of the neutron . 40 2.3.2 Including quarks and electroweak interactions . 42 2.3.3 Fine-tuning and naturalness . 44 2.3.4 Solving the strong CP problem . 46 2.4 Peccei-Quinn theory and the axion . 48 2.4.1 Two perspectives on the Peccei-Quinn mechanism . 49 2.4.2 Generic axion properties . 52 iii 2.4.3 The PQWW model . 54 2.4.4 \Invisible" axion models . 56 3 Dark matter and axion cosmology 58 3.1 Big Bang cosmology . 59 3.1.1 Implications of an expanding universe . 60 3.1.2 A short history of nearly everything . 65 3.2 Evidence for dark matter . 69 3.2.1 Galactic dynamics . 70 3.2.2 The cosmic microwave background . 71 3.3 Dark matter particle candidates . 74 3.3.1 Neutrinos and hot dark matter . 75 3.3.2 Weakly interacting massive particles (WIMPs) . 77 3.3.3 Axions, ALPs, and hidden photons . 80 3.4 Axion Cosmology . 82 3.4.1 Misalignment and axion CDM . 82 3.4.2 The overclosure bound . 86 3.4.3 Topological defects in the axion field . 88 3.4.4 Inflation and the anthropic axion window . 91 4 Searching for axions 95 4.1 Axion Parameter Space . 96 4.1.1 The axion model band . 99 4.1.2 Astrophysical limits . 102 4.2 Axion CDM in the Milky Way . 104 4.2.1 Halo models and the local density . 104 4.2.2 Properties of axion CDM . 108 4.3 The axion haloscope . 110 4.3.1 Essential physics of the haloscope . 111 4.3.2 Signal power derivation . 116 4.3.3 Coherent detection and the radiometer equation . 123 iv 4.3.4 Quantum noise limits . 128 4.3.5 Haloscope scan rate . 133 4.4 Haloscopes in practice . 137 4.4.1 The pilot experiments and ADMX . 137 4.4.2 High-frequency challenges . 140 4.4.3 Motivation for HAYSTAC . 144 5 The HAYSTAC detector 148 5.1 Detector overview . 149 5.2 Experimental infrastructure . 154 5.2.1 Cryogenic systems . 155 5.2.2 Magnet . 158 5.2.3 Magnetic shielding . 159 5.3 Microwave cavity . 161 5.3.1 Cavity design . 162 5.3.2 In-situ characterization . 166 5.3.3 Motion control systems . 171 5.4 Josephson parametric amplifier . 174 5.4.1 Principles of JPA operation . 174 5.4.2 JPA design and fabrication . 181 5.4.3 Flux tuning . 184 5.5 Receiver and electronics . 186 5.5.1 Added noise of the receiver chain . 186 5.5.2 Cryogenic components and cabling . 189 5.5.3 Room-temperature electronics and the IF chain . 191 5.5.4 IF interference and grounding . 193 6 Measurements with HAYSTAC 195 6.1 JPA operations . 196 6.1.1 JPA characterization and biasing . 196 6.1.2 JPA commissioning . 204 v 6.1.3 Flux feedback system . 207 6.2 Data acquisition . 209 6.2.1 The analysis band . 209 6.2.2 Measuring power spectra . 211 6.2.3 Data run procedure . 213 6.3 Noise calibration . 217 6.3.1 Principles of Y -factor calibration . 218 6.3.2 Off-resonance measurements . 223 6.3.3 Thermal disequilibrium and the \hot rod" problem . 225 7 The axion search analysis 230 7.1 Analysis overview . 231 7.2 Data quality cuts . 234 7.2.1 Cuts on spectra . 234 7.2.2 Cuts on IF bins . 236 7.3 Removing the spectral baseline . 239 7.3.1 The Savitzky-Golay filter . 240 7.3.2 Statistics of the processed spectra . 243 7.4 Combining spectra vertically . 245 7.4.1 The rescaling procedure . 246 7.4.2 Constructing the combined spectrum . 248 7.5 Combining bins horizontally . 251 7.5.1 The axion signal lineshape . 253 7.5.2 Rebinning the combined spectrum . 255 7.5.3 Constructing the grand spectrum . 257 7.5.4 Accounting for correlations . 261 7.6 Candidates and exclusion . 265 7.6.1 SG filter-induced attenuation . 268 7.6.2 Setting the threshold . 271 7.7 Rescan data and analysis . 274 vi 7.7.1 Rescan data acquisition . 277 7.7.2 The rescan analysis . 280 7.8 Results . 284 8 Conclusion 286 8.1 HAYSTAC upgrades and R&D . 287 8.2 Other experiments . 289 8.3 Outlook . 291 A Axion electrodynamics 293 B Magnet quench 297 C Receiver layout diagrams 300 D Synthetic signal injections 303 E Maximum likelihood estimation 305 F Optimizing SG filter parameters 308 G Parameter uncertainties 310 H Effects of a wider lineshape 314 I Scaling with integration time 317 vii List of Figures 1.1 The Standard Model of particle physics . ..