Spring 2019 Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

Spring 2019 Newsletter Spring 2019 Published by the Courant Institute of Mathematical Sciences at New York University Courant Newsletter Volume 14, Issue 2 The Physics of Blowing Bubbles See back cover p04 YEVGENIY DODIS ON RANDOMNESS AND CRYPTOGRAPHY p02 p09 MIRANDA HOLMES- IN MEMORIAM: CERFON ON SELF- DAVID CAI ASSEMBLY ALSO IN THIS ISSUE: n COMPUTER SCIENCE ANNOUNCES NEW n AN EMERGENCY MATHEMATICS MASTERS PROGRAM EDUCATION p06 p08 n GSTEM STUDENTS RANK IN TOP 25 n FACULTY HONORS PERCENT IN NATION-WIDE COMPETITION p10 p06 n STUDENT PRIZE AND FELLOWSHIP n SAVE THE DATE: MATHEMATICS IN RECIPIENTS p07 FINANCE CELEBRATES 20 YEARS p11 p06 HENRY MCKEAN RETIRES Geometric foundations of self-assembly with Miranda Holmes-Cerfon FACULTY RESEARCH by April Bacon Those applications include self- In order for the team to calculate the healing, self-replicating, and self-assembling rate at which these systems of interacting synthetics. Miranda is most compelled by self- particles change states, Miranda first needed assembly—i.e. the ability to spontaneously to develop a way to mathematically represent organize into a desired form, a property with their energy landscapes—a plot of the energy game-changing possibilities in medicine of the system—because traditional methods and nanotechnology. A piece of the puzzle is for doing so don’t work effectively for colloids. designing a system architecture that would Whereas the energy landscape of other enable the property to emerge, and so the systems can be graphed as a surface of © NYU Photo Bureau (Slezak) question is in part geometric. gentle hills, for colloids the landscape is a A number of phenomena can be in part flat line with narrow spikes and valleys. This explained by the geometric arrangement means that trying to describe the landscape of particles, including water freezing, gels by certain “critical points” doesn’t provide forming, and glass melting. There are also enough information. “You somehow need to Miranda Holmes-Cerfon has built geometric underpinnings to the ability of incorporate more global information about computational and theoretical tools that certain biological systems (such as proteins the whole geometry (shape, size, etc) of each hold promise for synthetic self-assembly and viruses) to fold, replicate, and assemble flat piece of the landscape,” says Miranda. and broaden our knowledge and means of themselves. The synthetics have to be To get around this, Miranda used investigating complex colloidal systems. designed so that the system starts at a higher the sticky sphere limit, which simplifies energetic state than the desired result, and so the landscape by shrinking the range of Colloids are a mixture of insoluble particles that there aren’t any traps that would make interaction between particles down to exactly in a medium—in milk, butterfat is dispersed the system assemble in a different way while zero. She offers the analogy of two tennis in an aqueous solution of carbohydrates; in en route. balls stuck together with velcro. Unlike a pair blood, cells are suspended in plasma; and in Her first ventures into the area began as of magnets, which will interact over a wider paint, pigment is held within turpentine. For a Postdoc at Harvard in fall 2010. In the labs distance, two tennis balls Velcro-ed together a few decades, theorists and experimentalists of chemical engineer and physicist Vinothan only interact so long as they are exactly stuck have been studying colloids, substances Manoharan and applied mathematician together. with particles small enough to exhibit erratic Michael Brenner, Miranda and collaborators “What happens in the sticky limit is that Brownian motion but large enough to be calculated the rate at which colloid particles the basic shape of the energy landscape is observed by light and escape the realm of transition from one cluster arrangement to determined by the shape of the particles, quantum mechanics. another, as seen modeled with sphere clusters and all the other parameters (interaction Miranda Holmes-Cerfon, an Assistant in Figure A and imaged through a microscope potential, temperature, etc, which are Professor of Mathematics at Courant who in Figure B. usually not known very accurately for also attained her Ph.D. through the Institute’s Colloids exhibit Brownian motion—that colloidal systems) collapse into just one or Center for Atmosphere Ocean Science (2010), is, their particles move around erratically and two parameters. Therefore, you can change was named a 2018 Sloan Fellow for her work incessantly due to constant bombardment interaction potentials but the basic shape on the subject. She explains that colloids by molecules coming from their surrounding of the landscape doesn’t change, so once are about the same scale as the wavelength medium. Much the way shaking a bucket you calculate the complicated geometrical of visible light, making them potentially a of sand will flatten its surface, this constant properties of it, you can use them to unique tool for designing new synthetic jiggling forces the colloids from one geometric understand the system over a wide range materials. configuration to the next. of conditions.” “One of the most popular applications Figure A to cite is an invisibility cloak. Obviously we haven’t gotten there yet,” she says, gesturing to her own visibility—“If I had an invisibility cloak I would be wearing it! Right now, a lot of the interest is in just understanding general Figure B principles of physics from colloids that could be used in material science, but there is a lot of potential for compelling applications.” 0 2 4 (sec) 2µm 2 — Courant Newsletter, Spring 2019 “I’m hoping that looking at the energy through the whole space, but on a computer says Miranda. “They can make a very landscape in this different way might lead we can guide the search.” complicated interaction matrix with different to more efficient ways to solve certain kinds “One thing that is nice about this kinds of interaction for different kinds of of problems. There are highly developed question [of enumerating rigid sphere particles. And they can do this purely by optimization algorithms that I could throw at packings] is that it’s such a simple question coating particles with strands of DNA.” the problem, but I’m also hoping to discover to formulate,” she says. She has done With Postdoc Emilio Zappa, Miranda is some kind of fundamental structure, a demonstrations with both high school looking at the information-theoretical part more general property [within statistical teachers and students, including at cSplash, of DNA-mediated systems—i.e. questions mechanics].” Courant’s day-long program for high such as how DNA can be used to program With this tricky variable pinned schoolers that Miranda co-founded in 2006 the particles to assemble in different ways, down, Miranda and the team at Harvard as a doctoral student. “I give [participants] what structures can be formed by mixing developed a model that determines the these toys and ask them to come up with an particles of different types, and if a system’s rate at which a system will transition from algorithm, and they usually do. They usually energy landscape places constraints on one state to another, the different paths a figure out what some of the rigid clusters what structures it can form. She is also system may take, and the likelihood of any are. It’s a great question for teaching people building computational models with several given arrangement appearing. While former about mathematics research and getting collaborators. For example, With Jonathan methods approaching this latter problem them engaged in solving problems.” Goodman and Nawaf Bou-Rabee, “I’m produced results that couldn’t resolve the fine In new work, Miranda has been looking developing algorithms to efficiently sample differences between states, Miranda’s results at problems related to physical properties and simulate dynamics on sticky energy are far more precise and, further, have been of colloidal systems, such as the effects of landscapes. With Steven Gortler [Harvard] experimentally verified within acceptable friction and the effects of coating colloidal and Louis Theran [St. Andrews], I’m limits of error. particles with DNA strands. developing algorithms to better understand Miranda realized her model offered Adding friction is challenging because the geometrical properties of the landscapes.” solutions for another problem as well: friction itself is not well understood. “My hope is that all these tools will one enumerating rigid sphere packings. Some Miranda gives an example of its complexity day be useful for other kinds of systems of the theoretical work surrounding colloids introduced to her by Tadashi Tokieda as well,” she says. The ideas she has been requires knowing a total set of the way the (Stanford). Place a few small balls in a using to study colloids have connections to spheres can be arranged, or packed. Miranda circular container and move the container other systems that are wonderfully broad— took an algorithmic approach to this question: around in a circle. At first, the balls move in from protein folding and virus assembly to What are all the ways to form a rigid cluster? the same direction as the container. But as robotics and origami, each with the essential Starting with a single cluster, the algorithm more balls are added, at some critical point feature of being a system with objects that breaks one point of contact (i.e. one side they begin to go in the opposite direction. move stochastically, subject to certain of a bar in Figure A), making the cluster “The only way this can happen is constraints. “floppy” instead of “rigid.” A rigid cluster can’t because of the friction between the balls Much of the work is also linked by rearrange itself—it can only jiggle its bonds and some collective property of how they’re randomness and geometry.
Recommended publications
  • For Your Information
    fyi.qxp 3/18/98 3:19 PM Page 244 For Your Information structure federal support. The study is part of a larger ef- International Study of fort at the Academy to gauge where the U.S. stands in- Mathematics and Science ternationally in scientific research. The motivation comes from a 1993 report by the Committee on Science, Engi- Achievement neering, and Public Policy (COSEPUP), which set forth strate- gies for making decisions about how best to use federal The first installment of results from the Third International research funds. COSEPUP is a committee of the NAS, the Mathematics and Science Study (TIMSS) was released on No- National Academy of Engineering, and the Institute of Med- vember 20. This first batch of data pertains to achievement icine. The COSEPUP report recommended that the U.S. aim of eighth-graders; later releases will focus on fourth- and to be the world leader in certain critical fields and to be twelfth-graders. The study found that U.S. eighth-graders among the leaders in other areas. The report urged field- performed below the international average in mathemat- by-field assessments by independent panels of researchers ics but slightly above average in science. The U.S. was in the field, researchers in closely related fields, and users among thirty-three countries in which there was no sta- of the research. The mathematical sciences study is the first tistically significant difference between the performance such assessment. If this project is successful, the Academy of eighth-grade boys and girls in mathematics. The study will follow suit with other areas.
    [Show full text]
  • The Bibliography
    Referenced Books [Ach92] N. I. Achieser. Theory of Approximation. Dover Publications Inc., New York, 1992. Reprint of the 1956 English translation of the 1st Rus- sian edition; the 2nd augmented Russian edition is available, Moscow, Nauka, 1965. [AH05] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework, volume 39 of Texts in Applied Mathe- matics. Springer, New York, second edition, 2005. [Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons Inc., New York, second edition, 1989. [Axe94] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, 1994. [Bab86] K. I. Babenko. Foundations of Numerical Analysis [Osnovy chislennogo analiza]. Nauka, Moscow, 1986. [Russian]. [BD92] C. A. Brebbia and J. Dominguez. Boundary Elements: An Introductory Course. Computational Mechanics Publications, Southampton, second edition, 1992. [Ber52] S. N. Bernstein. Collected Works. Vol. I. The Constructive Theory of Functions [1905–1930]. Izdat. Akad. Nauk SSSR, Moscow, 1952. [Russian]. [Ber54] S. N. Bernstein. Collected Works. Vol. II. The Constructive Theory of Functions [1931–1953]. Izdat. Akad. Nauk SSSR, Moscow, 1954. [Russian]. [BH02] K. Binder and D. W. Heermann. Monte Carlo Simulation in Statistical Physics: An Introduction, volume 80 of Springer Series in Solid-State Sciences. Springer-Verlag, Berlin, fourth edition, 2002. [BHM00] William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2000. [Boy01] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publi- cations Inc., Mineola, NY, second edition, 2001. [Bra84] Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, volume 85 of GMD-Studien [GMD Studies].
    [Show full text]
  • Vorticity and Incompressible Flow - Andrew J
    Cambridge University Press 0521630576 - Vorticity and Incompressible Flow - Andrew J. Majda and Andrea L. Bertozzi Frontmatter More information Vorticity and Incompressible Flow This book is a comprehensive introduction to the mathematical theory of vorticity and incompressible flow ranging from elementary introductory material to current research topics. Although the contents center on mathematical theory, many parts of the book showcase the interactions among rigorous mathematical theory, numerical, asymptotic, and qualitative simplified modeling, and physical phenomena. The first half forms an introductory graduate course on vorticity and incompressible flow. The second half comprises a modern applied mathematics graduate course on the weak solution theory for incompressible flow. Andrew J. Majda is the Samuel Morse Professor of Arts and Sciences at the Courant Institute of Mathematical Sciences of New York University. He is a member of the National Academy of Sciences and has received numerous honors and awards includ- ing the National Academy of Science Prize in Applied Mathematics, the John von Neumann Prize of the American Mathematical Society and an honorary Ph.D. degree from Purdue University. Majda is well known for both his theoretical contributions to partial differential equations and his applied contributions to diverse areas besides in- compressible flow such as scattering theory, shock waves, combustion, vortex motion and turbulent diffusion. His current applied research interests are centered around Atmosphere/Ocean science. Andrea L. Bertozzi is Professor of Mathematics and Physics at Duke University. She has received several honors including a Sloan Research Fellowship (1995) and the Presidential Early Career Award for Scientists and Engineers (PECASE). Her research accomplishments in addition to incompressible flow include both theoretical and applied contributions to the understanding of thin liquid films and moving contact lines.
    [Show full text]
  • Spring 2014 Fine Letters
    Spring 2014 Issue 3 Department of Mathematics Department of Mathematics Princeton University Fine Hall, Washington Rd. Princeton, NJ 08544 Department Chair’s letter The department is continuing its period of Assistant to the Chair and to the Depart- transition and renewal. Although long- ment Manager, and Will Crow as Faculty The Wolf time faculty members John Conway and Assistant. The uniform opinion of the Ed Nelson became emeriti last July, we faculty and staff is that we made great Prize for look forward to many years of Ed being choices. Peter amongst us and for John continuing to hold Among major faculty honors Alice Chang Sarnak court in his “office” in the nook across from became a member of the Academia Sinica, Professor Peter Sarnak will be awarded this the common room. We are extremely Elliott Lieb became a Foreign Member of year’s Wolf Prize in Mathematics. delighted that Fernando Coda Marques and the Royal Society, John Mather won the The prize is awarded annually by the Wolf Assaf Naor (last Fall’s Minerva Lecturer) Brouwer Prize, Sophie Morel won the in- Foundation in the fields of agriculture, will be joining us as full professors in augural AWM-Microsoft Research prize in chemistry, mathematics, medicine, physics, Alumni , faculty, students, friends, connect with us, write to us at September. Algebra and Number Theory, Peter Sarnak and the arts. The award will be presented Our finishing graduate students did very won the Wolf Prize, and Yasha Sinai the by Israeli President Shimon Peres on June [email protected] well on the job market with four win- Abel Prize.
    [Show full text]
  • Institute for Pure and Applied Mathematics, UCLA Award/Institution #0439872-013151000 Annual Progress Report for 2009-2010 August 1, 2011
    Institute for Pure and Applied Mathematics, UCLA Award/Institution #0439872-013151000 Annual Progress Report for 2009-2010 August 1, 2011 TABLE OF CONTENTS EXECUTIVE SUMMARY 2 A. PARTICIPANT LIST 3 B. FINANCIAL SUPPORT LIST 4 C. INCOME AND EXPENDITURE REPORT 4 D. POSTDOCTORAL PLACEMENT LIST 5 E. INSTITUTE DIRECTORS‘ MEETING REPORT 6 F. PARTICIPANT SUMMARY 12 G. POSTDOCTORAL PROGRAM SUMMARY 13 H. GRADUATE STUDENT PROGRAM SUMMARY 14 I. UNDERGRADUATE STUDENT PROGRAM SUMMARY 15 J. PROGRAM DESCRIPTION 15 K. PROGRAM CONSULTANT LIST 38 L. PUBLICATIONS LIST 50 M. INDUSTRIAL AND GOVERNMENTAL INVOLVEMENT 51 N. EXTERNAL SUPPORT 52 O. COMMITTEE MEMBERSHIP 53 P. CONTINUING IMPACT OF PAST IPAM PROGRAMS 54 APPENDIX 1: PUBLICATIONS (SELF-REPORTED) 2009-2010 58 Institute for Pure and Applied Mathematics, UCLA Award/Institution #0439872-013151000 Annual Progress Report for 2009-2010 August 1, 2011 EXECUTIVE SUMMARY Highlights of IPAM‘s accomplishments and activities of the fiscal year 2009-2010 include: IPAM held two long programs during 2009-2010: o Combinatorics (fall 2009) o Climate Modeling (spring 2010) IPAM‘s 2010 winter workshops continued the tradition of focusing on emerging topics where Mathematics plays an important role: o New Directions in Financial Mathematics o Metamaterials: Applications, Analysis and Modeling o Mathematical Problems, Models and Methods in Biomedical Imaging o Statistical and Learning-Theoretic Challenges in Data Privacy IPAM sponsored reunion conferences for four long programs: Optimal Transport, Random Shapes, Search Engines and Internet MRA IPAM sponsored three public lectures since August. Noga Alon presented ―The Combinatorics of Voting Paradoxes‖ on October 5, 2009. Pierre-Louis Lions presented ―On Mean Field Games‖ on January 5, 2010.
    [Show full text]
  • 2015 ICIAM Lagrange Prize Awarded to Andrew Majda
    FOR IMMEDIATE RELEASE International Council for Industrial and Applied Mathematics (ICIAM) Contact: Barbara Keyfitz [email protected] 614-292-5583 Monday, September 15, 2014 2015 ICIAM Lagrange Prize awarded to Andrew Majda Philadelphia, PA— The International Council for Industrial and Applied Mathematics (ICIAM) is pleased to announce Andrew J. Majda of the Courant Institute at New York University as the recipient of the 2015 ICIAM Lagrange Prize in recognition of his ground breaking, original, fundamental and pioneering contributions to applied mathematics and, in particular, to wave front propagation and combustion, scattering theory, fluid dynamics and atmosphere climate science. His research, which has merged asymptotic and numerical methods, physical reasoning and modeling, and rigorous mathematical analysis, has had an enormous and long lasting impact on modern applied mathematics, science and engineering (geophysics, seismology, weather prediction, combustion, and more) and remains the state of the art today. Andrew J. Majda is the Morse Professor of Arts and Sciences at the Courant Institute of New York University. The Lagrange Prize was established to provide international recognition to individual mathematicians who have made an exceptional contribution to applied mathematics throughout their careers. It was created on the initiative of SMAI (Société de Mathématiques Appliquées et Industrielles), SEMA (Sociedad Española de Matematica Aplicada) and SIMAI (Società Italiana di Matematica Applicata e Industriale) and first awarded in 1999. Carrying a cash award of USD 5000, the Lagrange Prize is presently funded by the three member societies SMAI, SEMA and SIMAI. Majda was born in East Chicago, Indiana on January 30, 1949. He received a B.S.
    [Show full text]
  • Selected Papers
    Selected Papers Volume I Arizona, 1968 Peter D. Lax Selected Papers Volume I Edited by Peter Sarnak and Andrew Majda Peter D. Lax Courant Institute New York, NY 10012 USA Mathematics Subject Classification (2000): 11Dxx, 35-xx, 37Kxx, 58J50, 65-xx, 70Hxx, 81Uxx Library of Congress Cataloging-in-Publication Data Lax, Peter D. [Papers. Selections] Selected papers / Peter Lax ; edited by Peter Sarnak and Andrew Majda. p. cm. Includes bibliographical references and index. ISBN 0-387-22925-6 (v. 1 : alk paper) — ISBN 0-387-22926-4 (v. 2 : alk. paper) 1. Mathematics—United States. 2. Mathematics—Study and teaching—United States. 3. Lax, Peter D. 4. Mathematicians—United States. I. Sarnak, Peter. II. Majda, Andrew, 1949- III. Title. QA3.L2642 2004 510—dc22 2004056450 ISBN 0-387-22925-6 Printed on acid-free paper. © 2005 Springer Science+Business Media, Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America.
    [Show full text]
  • Child of Vietnam War Wins Top Maths Honour 19 August 2010, by P.S
    Child of Vietnam war wins top maths honour 19 August 2010, by P.S. Jayaram Vietnamese-born mathematician Ngo Bao Chau Presented every four years to two, three, or four on Thursday won the maths world's version of a mathematicians -- who must be under 40 years of Nobel Prize, the Fields Medal, cementing a journey age -- the medal comes with a cash prize of 15,000 that has taken him from war-torn Hanoi to the Canadian dollars (14,600 US dollars). pages of Time magazine. The only son of a physicist father and a mother who Ngo, 38, was awarded his medal in a ceremony at was a medical doctor, Ngo's mathematical abilities the International Congress of Mathematicians won him a place, aged 15, in a specialist class of meeting in the southern Indian city of Hyderabad. the Vietnam National University High School. The other three recipients were Israeli In 1988, he won a gold medal at the 29th mathematician Elon Lindenstrauss, Frenchman International Mathematical Olympiad and repeated Cedric Villani and Swiss-based Russian Stanislav the same feat the following year. Smirnov. After high school, he was offered a scholarship by Ngo, who was born in Hanoi in 1972 in the waning the French government to study in Paris. He years of the Vietnam war, was cited for his "brilliant obtained a PhD from the Universite Paris-Sud in proof" of a 30-year-old mathematical conundrum 1997 and became a professor there in 2005. known as the Fundamental Lemma. Earlier this year he became a naturalised French The proof offered a key stepping stone to citizen and accepted a professorship at the establishing and exploring a revolutionary theory University of Chicago.
    [Show full text]
  • Arxiv:1904.08041V1 [Math.NT] 17 Apr 2019 Aeyee Roduioua Atcs Hr Santrlprobability Natural a Is There Lattices
    THE SIEGEL VARIANCE FORMULA FOR QUADRATIC FORMS NASER T. SARDARI Abstract. We introduce a smooth variance sum associated to a pair of posi- tive definite symmetric integral matrices Am×m and Bn×n, where m ≥ n. By using the oscillator representation, we give a formula for this variance sum in terms of a smooth sum over the square of a functional evaluated on the B- th Fourier coefficients of the vector valued holomorphic Siegel modular forms A which are Hecke eigenforms and obtained by the theta transfer from O m m . By using the Ramanujan bound on the Fourier coefficients of the holomorphic× cusp forms, we give a sharp upper bound on this variance when n = 1. As applications, we prove a cutoff phenomenon for the probability that a uni- modular lattice of dimension m represents a given even number. This gives an optimal upper bound on the sphere packing density of almost all even unimod- ular lattices. Furthermore, we generalize the result of Bourgain, Rudnick and Sarnak [BRS17], and also give an optimal bound on the diophantine exponent of the p-integral points on any positive definite d-dimensional quadric, where d ≥ 3. This improves the best known bounds due to Ghosh, Gorodnik and Nevo [GGN13] into an optimal bound. Contents 1. Introduction 1 2. Proof of Theorem 1.1 9 3. Proof of Theorem 1.4 14 4. The Siegel variance formula 17 5. Harmonic polynomials 21 6. The oscillator representations and Weyl’s sums 24 7. Proof of Theorem 1.8 30 References 30 arXiv:1904.08041v1 [math.NT] 17 Apr 2019 1.
    [Show full text]
  • AN13 and CT13 Abstracts
    AN13 and CT13 Abstracts Abstracts are printed as submitted by the authors. Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215-386-7999 Conference E-mail: [email protected] Conference web: www.siam.org/meetings/ Membership and Customer Service: 800-447-7426 (US & Canada) or +1-215-382-9800 (worldwide) 2 2013 SIAM Annual Meeting • SIAM Conference on Control & Its Applications Table of Contents Annual Meeting (AN13) Abstracts ...............................................3 Control & Its Applications (CT13) .............................................127 SIAM Presents Since 2008, SIAM has recorded many Invited Lectures, Prize Lectures, and selected Minisymposia from various conferences. These are available by visiting SIAM Presents (http://www.siam.org/meetings/presents.php). 2013 SIAM Annual Meeting • SIAM Conference on Control & Its Applications 3 AN13 Abstracts 4 AN13 Abstracts IC1 system including cars, buses, pedestrians, ants and molecu- Social Networks as Information Filters lar motors, which are considered as ”self-driven particles”. We recently call this interdisciplinary research on jamming Social networks, especially online social networks, are of self-driven particles as ”jamology”. This is based on driven by information sharing. But just how much informa- mathematical physics, and and includes engineering appli- tion sharing is influenced by social networks? A large-scale cations as well. In the talk, starting from the backgroud experiment measured the effect of the social network on the of this research, simple mathematical models, such as the quantity and diversity of information being shared within asymmetric simple exclusion process and the Burgers equa- Facebook. While strong ties were found to be individu- tion, are introduced as basis of all kinds of traffic flow.
    [Show full text]
  • AN17-CT17-GD17 Abstracts
    AN17-CT17-GD17 Abstracts Abstracts are printed as submitted by the authors. SIAM 2017 Events Mobile App Scan the QR code with any QR reader and download the TripBuilder EventMobile™ app to your iPhone, iPad, iTouch or Android mobile device. You can also visit www.tripbuildermedia.com/apps/siamevents Society for Industrial and Applied Mathematics 3600 Market Street, 6th Floor Philadelphia, PA 19104-2688 USA Telephone: +1-215-382-9800 Fax: +1-215-386-7999 Conference E-mail: [email protected] Conference Web: www.siam.org/meetings/ Membership and Customer Service: (800) 447-7426 (USA & Canada) or +1-215-382-9800 (worldwide) www.siam.org/meetings/ 2 2017 SIAM Annual Meeting Table of Contents AN17 Annual Meeting Abstracts ................................................3 CT17 Abstracts .........................................................................130 GD17 Abstracts .........................................................................183 SIAM Presents Since 2008, SIAM has recorded many Invited Lectures, Prize Lectures, and selected Minisymposia from various conferences. These are available by visiting SIAM Presents (http://www.siam.org/meetings/presents.php). 2017 SIAM Annual Meeting AN17 Abstracts 4 AN17 Abstracts IP1 for mapping services this is obtained from mobile phones, Genetic Consequences of Range Expansion Under while for ambulance fleets it is obtained from automatic ve- Climate Change hicle location devices. We demonstrate greatly improved accuracy relative to a system used in Bing Maps, and show Range expansion is a crucial population response to cli- the impact of our methods for improving ambulance fleet mate change. Genetic consequences are coupled to ecolog- management decisions. ical dynamics that, in turn, are driven by shifting climate conditions. We model a population with a reactiondiffu- Dawn Woodard sion system, coupled to a heterogeneous environment that Uber, USA shifts with time due to climate change.
    [Show full text]
  • Algebra & Number Theory
    Algebra & Number Theory Volume 4 2010 No. 2 mathematical sciences publishers Algebra & Number Theory www.jant.org EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Andrei Okounkov Princeton University, USA John H. Coates University of Cambridge, UK Raman Parimala Emory University, USA J-L. Colliot-Thel´ ene` CNRS, Universite´ Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hel´ ene` Esnault Universitat¨ Duisburg-Essen, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universitat,¨ Germany Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Ronald Solomon Ohio State University, USA Andrew Granville Universite´ de Montreal,´ Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Kansas, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale
    [Show full text]