Tectonic Inheritance and Kinematic Strain Localization As Trigger for the Formation of the Helvetic Nappes, Switzerland

Total Page:16

File Type:pdf, Size:1020Kb

Tectonic Inheritance and Kinematic Strain Localization As Trigger for the Formation of the Helvetic Nappes, Switzerland Swiss J Geosci (2017) 110:523–534 DOI 10.1007/s00015-017-0260-9 Tectonic inheritance and kinematic strain localization as trigger for the formation of the Helvetic nappes, Switzerland 1,2 3 Arthur Bauville • Stefan M. Schmalholz Received: 30 May 2016 / Accepted: 13 January 2017 / Published online: 2 March 2017 Ó Swiss Geological Society 2017 Abstract The Helvetic nappes in Switzerland consist of depth and 25 km width the localization generates (a) low- sediments, which have been sheared off and thrust over the angle shear zones at the basement-sediment interface, but also crystalline basement of the European passive continental entirely within the sediments, (b) horizontal transport[10 km margin during Alpine orogeny. Their basal shear zones usu- associated with the shear zones, (c) shear zones with thickness ally root above the external crystalline massifs. However, the in the order of 100 m, (d) an ordered stacking of model nappes mechanisms that initiated the shear zones and the associated and (e) shear zones that root above the basement. The results nappe formation are still debated. We perform two-dimen- suggest that tectonic inheritance in the form of half-grabens sional numerical simulations of the shearing of linear viscous and associated kinematic strain localization could have been fluids above a linear viscous fluid with considerably higher the triggering mechanism for Helvetic nappe formation, and viscosity (quasi-undeformable). The boundary between the not rheological softening mechanisms, which might, how- fluid, mimicking the sediments, and the quasi-undeformable ever, have subsequently further intensified shear localization fluid, mimicking the basement, exhibits geometrical pertur- significantly. bations, mimicking half-grabens. These geometrical pertur- bations can trigger significant strain localization and the Keywords Tectonic inheritance Á Kinematic strain formation of shear zones within the linear viscous fluid localization Á Helvetic nappes Á Wedge although no rheological softening mechanism is active. This kinematic, ductile strain localization is caused by the half- grabens and the viscosity ratio between basement and sedi- 1 Introduction ments. The viscosity ratio has a strong control on the kine- matics of strain localization, whereas the depth of the half- During Alpine orogeny, parts of the sedimentary cover of grabens has a weak control. For sediment viscosities in the the European passive margin have been sheared off and order of 1021 Pas and typical half-graben geometries of 5 km thrust over the crystalline basement whereby the pre- Alpine basement topography was characterized by half- grabens and horsts (e.g. Tru¨mpy 1960). The half-grabens Editorial handling: C. Sue and S. Schmid. and horsts represent a tectonic inheritance from an earlier & Arthur Bauville rifting event. At present the sheared and displaced sedi- [email protected] mentary units form sedimentary nappes within the Helvetic 1 nappe system of Switzerland (Fig. 1). Parts of the crys- Department of Mathematical Science and Advanced talline basement, including autochthonous cover sediments, Technology (MAT), Japan Agency for Marine-Earth Sciences and Technology (JAMSTEC), Yokohama, Japan have also been deformed and form the external crystalline massifs (e.g. Me´not et al. 1994). The sedimentary nappes 2 Geophysics and Geodynamics Group, Institute of Geosciences, Johannes Gutenberg University, Mainz, have been displaced over more than 10 km along low angle Germany shear zones. However, the mechanisms responsible for 3 Institute of Earth Sciences, University of Lausanne, triggering and forming these shear zones are still incom- Lausanne, Switzerland pletely understood. 524 A. Bauville, S. M. Schmalholz Fig. 1 Simplified geological cross sections across the Helvetic nappe Molasse and Flysch sediments (a). The cross sections are parallel to system (a–c) and conceptual model of its evolution (e, f). The the displacement direction of the nappes. e Conceptual palinspastic simplified tectonic map in d shows the location of the cross sections. reconstruction of the European margin in Western and Central a–c Cross sections across the Helvetic nappe system in Eastern, Switzerland. f Conceptual model of nappe emplacement: sediments central and western Switzerland, respectively (after Pfiffner 1993; initially filling distal basins are displaced tens of kilometers over more Herwegh and Pfiffner 2005; Escher et al. 1993, respectively). The proximal basement and sediment units while acquiring their typical Helvetic nappes are thrusted along a prominent basal shear zone nappe geometry (modified after Steck 1984; Bugnon 1986) (thick red line) over the Infra-Helvetic complex (b, c) and over Geologic reconstructions suggest that the sediments in a fold nappe as in Western Switzerland (Fig. 1; Siegenthaler, structurally higher nappes have been deposited in more distal 1974). The basal shear zones of the tectonic nappes are often (SE direction) regions of the passive margin (Fig. 1;e.g. (a) continuous over more than10 km, (b) subhorizontal, and Masson et al. 1980). The sedimentary units forming indi- (c) root in the external crystalline massifs (Fig. 1, see also vidual nappes have been attributed to different depositional Pfiffner et al. 2011). domains related to the paleo-topography of the pre-Alpine Many studies argue that softening mechanisms are European basement (Fig. 1). The lowermost nappes in required to generate ductile shear zones and that basal Western Switzerland are fold nappes (Morcles and Dolden- shear zones during nappe displacement are weaker than the horn nappes; parts of the so-called Infrahelvetic complex; less deformed rocks forming the nappe (e.g. Poirier 1980; Epard 1990; Pfiffner 1993) and consist of sediments that have Austin et al. 2008). Therefore, different thermo-mechanical been deposited in the North-Helvetic basin which is inter- processes have been suggested for the softening of basal preted as a half-graben (Epard 1990). The uppermost nappes shear zones, such as grain size reduction in combination are more similar to thrust sheets (so-called Helvetic nappes, with grain size sensitive diffusion creep (e.g. Ebert et al. e.g. Wildhorn nappe) and have been deposited in the more 2008; Austin et al. 2008), higher temperatures at the base distal Helvetic domain (basin) which was separated from the of the nappe in combination with a temperature-dependent North-Helvetic basin by a horst (e.g. Epard 1990). In Eastern viscosity (e.g. Bauville et al. 2013) or combined shear Switzerland, the Glarus thrust sheet has been sheared over heating and fluid release by carbonate decomposition (e.g. more proximal basement, autochthonous Mesozoic sediments Poulet et al. 2014). In contrast, we show in this study that and Flysch units whereby the Infrahelvetic units did not form basal shear zones can also be initiated and maintained Tectonic inheritance and kinematic strain localization as trigger for the formation of the… 525 during finite strain deformation in a linear viscous fluid (mimicking sediments) which is sheared over a rigid mate- without any softening mechanism. rial with laterally-varying topography (mimicking basement Structural observations, such as the buttressing of sedi- with half grabens). Following earlier nomenclature, we refer ments against the crystalline massif in the Ecrins and Bourg to such a strain localization process in a linear viscous fluid d’Oisan massifs in France (Gillcrist et al. 1987,Dumont as kinematic strain localization (e.g. Brun, 2002; Braun et al. et al. 2008, Bellanger et al. 2014), indicate that the basement 2010). Kinematic strain localization can be caused by the was more competent (i.e. having a higher mechanical applied boundary conditions (e.g. a velocity discontinuity; strength or greater resistance to deformation) than the sed- Brun 2002), the geometrical configuration (e.g. flow around imentary cover. The increase of strain towards the base of a rigid obstacle or particular shear zone geometry; Braun spreading-gliding nappes is another example for such com- et al. 2010) or internal variations in mechanical strength, petence contrast (e.g. Brun and Merle 1985;Merle1986). such as the viscosity variation (due to thermal gradient) in The impact of the basement-cover competence contrast on channel flow models (e.g. Bauville and Schmalholz 2015). nappe formation has been studied with analogue experi- The aims of this study are (a) to show that significant ments and numerical simulations. For example, experiments shear localization can occur within a linear viscous fluid if showed that the indentation of a viscous material by a rigid it is sheared above a rigid material with topography mim- object leads to the formation of a shear zone above the rigid icking half-grabens, (b) to quantify the shear localization indenter and the subsequent formation of a viscous fold and shear zone thickness inside the linear viscous fluid, nappe (e.g. Bucher 1956; Merle and Guillier 1989). Similar (c) to study the impact of half-graben depth and fluid vis- results have been obtained with numerical simulations cosity on shear localization and (d) to argue that the pre- (Duretz et al. 2011). Also, Wissing and Pfiffner (2003) Alpine basement topography, which represents the tectonic showed with viscoplastic numerical simulations that the inheritance from earlier rifting, could have triggered shear formation of a nappe with a prominent basal shear zone can zone formation within sediments and hence played an be triggered by a rigid obstacle
Recommended publications
  • Fluid Flow and Rock Alteration Along the Glarus Thrust
    1661-8726/08/020251-18 Swiss J. Geosci. 101 (2008) 251–268 DOI 10.1007/s00015-008-1265-1 Birkhäuser Verlag, Basel, 2008 Fluid flow and rock alteration along the Glarus thrust JEAN-PIERRE HÜRZELER 1 & RAINER ABART 2 Key words: Glarus thrust, rock alteration, strain localization, Lochseiten calc tectonite ABSTRACT Chemical alteration of rocks along the Glarus overthrust reflects different the footwall units. In the northern sections of the thrust, the Lochseiten calc- stages of fluid rock interaction associated with thrusting. At the base of the tectonite has a distinct chemical and stable isotope signature, which suggests Verrucano in the hanging wall of the thrust, sodium was largely removed dur- that it is largely derived from Infrahelvetic slices, i.e. decapitated fragments of ing an early stage of fluid-rock interaction, which is ascribed to thrust-paral- the footwall limestone from the southern sections of the thrust, which were lel fluid flow in a damage zone immediately above the thrust. This alteration tectonically emplaced along the thrust further north. Only at the Lochseiten leads to the formation of white mica at the expense of albite-rich plagioclase type locality the original chemical and stable isotope signatures of the calc- and potassium feldspar. This probably enhanced mechanical weakening of the tectonite were completely obliterated during intense reworking by dissolution Verrucano base allowing for progressive strain localization. At a later stage and re-precipitation. of thrusting, fluid-mediated chemical exchange between the footwall and the hanging wall lithologies produced a second generation of alteration phenom- ena. Reduction of ferric iron oxides at the base of the Verrucano indicates DEDICATION fluid supply from the underlying flysch units in the northern section of the thrust.
    [Show full text]
  • Field Trip - Alps 2013
    Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010).
    [Show full text]
  • The Glarus Thrust: Excursion Guide and Report of a Field Trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16
    1661-8726/08/020323-18 Swiss J. Geosci. 101 (2008) 323–340 DOI 10.1007/s00015-008-1259-z Birkhäuser Verlag, Basel, 2008 The Glarus thrust: excursion guide and report of a field trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16. 09. 2006) MARCO HERWEGH 1, *, JEAN-PIERRE HÜRZELER 2, O. ADRIAN PFIFFNER 1, STEFAN M. SCHMID 2, RAINER ABART 3 & ANDREAS EBERT 1 Key words: Helvetics, Glarus thrust, deformation mechanism, mylonite, brittle deformation, geochemical alteration, fluid pathway PARTICIPANTS Ansorge Jörg (ETHZ) Nyffenegger Franziska (Fachhochschule Burgdorf, University of Bern) den Brok Bas (EAWAG-EMPA) Pfiffner Adrian (University of Bern) Dèzes Pierre (SANW) Schreurs Guido (University of Bern) Gonzalez Laura (University of Bern) Schmalholz Stefan (ETHZ) Herwegh Marco (University of Bern) Schmid Stefan (University of Basel) Hürzeler Jean-Pierre (University of Basel) Wiederkehr Michael (University of Basel) Imper David (GeoPark) Wilson Christopher (Melbourne University) Mancktelow Neil (ETHZ) Wilson Lilian (Melbourne University) Mullis Josef (University of Basel) ABSTRACT This excursion guide results form a field trip to the Glarus nappe complex or- and fluid flow, and (iii) the link between large-scale structures, microstruc- ganized by the Swiss Tectonic Studies Group in 2006. The aim of the excursion tures, and geochemical aspects. Despite 150 years of research in the Glarus was to discuss old and recent concepts related to the evolution of the Glarus nappe complex and the new results discussed during the excursion,
    [Show full text]
  • Alpine Thermal and Structural Evolution of the Highest External Crystalline Massif: the Mont Blanc
    TECTONICS, VOL. 24, TC4002, doi:10.1029/2004TC001676, 2005 Alpine thermal and structural evolution of the highest external crystalline massif: The Mont Blanc P. H. Leloup,1 N. Arnaud,2 E. R. Sobel,3 and R. Lacassin4 Received 5 May 2004; revised 14 October 2004; accepted 15 March 2005; published 1 July 2005. [1] The alpine structural evolution of the Mont Blanc, nappes and formed a backstop, inducing the formation highest point of the Alps (4810 m), and of the of the Jura arc. In that part of the external Alps, NW- surrounding area has been reexamined. The Mont SE shortening with minor dextral NE-SW motions Blanc and the Aiguilles Rouges external crystalline appears to have been continuous from 22 Ma until at massifs are windows of Variscan basement within the least 4 Ma but may be still active today. A sequential Penninic and Helvetic nappes. New structural, history of the alpine structural evolution of the units 40Ar/39Ar, and fission track data combined with a now outcropping NW of the Pennine thrust is compilation of earlier P-T estimates and geo- proposed. Citation: Leloup, P. H., N. Arnaud, E. R. Sobel, chronological data give constraints on the amount and R. Lacassin (2005), Alpine thermal and structural evolution of and timing of the Mont Blanc and Aiguilles Rouges the highest external crystalline massif: The Mont Blanc, massifs exhumation. Alpine exhumation of the Tectonics, 24, TC4002, doi:10.1029/2004TC001676. Aiguilles Rouges was limited to the thickness of the overlying nappes (10 km), while rocks now outcropping in the Mont Blanc have been exhumed 1.
    [Show full text]
  • The Glarus Thrust: Excursion Guide and Report of a Field Trip of the Swiss
    1661-8726/08/020323-18 Swiss J. Geosci. 101 (2008) 323–340 DOI 10.1007/s00015-008-1259-z Birkhäuser Verlag, Basel, 2008 The Glarus thrust: excursion guide and report of a field trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16. 09. 2006) MARCO HERWEGH 1, *, JEAN-PIERRE HÜRZELER 2, O. ADRIAN PFIFFNER 1, STEFAN M. SCHMID 2, RAINER ABART 3 & ANDREAS EBERT 1 Key words: Helvetics, Glarus thrust, deformation mechanism, mylonite, brittle deformation, geochemical alteration, fluid pathway PARTICIPANTS Ansorge Jörg (ETHZ) Nyffenegger Franziska (Fachhochschule Burgdorf, University of Bern) den Brok Bas (EAWAG-EMPA) Pfiffner Adrian (University of Bern) Dèzes Pierre (SANW) Schreurs Guido (University of Bern) Gonzalez Laura (University of Bern) Schmalholz Stefan (ETHZ) Herwegh Marco (University of Bern) Schmid Stefan (University of Basel) Hürzeler Jean-Pierre (University of Basel) Wiederkehr Michael (University of Basel) Imper David (GeoPark) Wilson Christopher (Melbourne University) Mancktelow Neil (ETHZ) Wilson Lilian (Melbourne University) Mullis Josef (University of Basel) ABSTRACT This excursion guide results form a field trip to the Glarus nappe complex or- and fluid flow, and (iii) the link between large-scale structures, microstruc- ganized by the Swiss Tectonic Studies Group in 2006. The aim of the excursion tures, and geochemical aspects. Despite 150 years of research in the Glarus was to discuss old and recent concepts related to the evolution of the Glarus nappe complex and the new results discussed during the
    [Show full text]
  • Towards a Nappe Theory
    https://doi.org/10.5194/se-2019-130 Preprint. Discussion started: 26 August 2019 c Author(s) 2019. CC BY 4.0 License. Towards a nappe theory: Thermo-mechanical simulations of nappe detachment, transport and stacking in the Helvetic Nappe System, Switzerland Dániel Kiss1, Thibault Duretz2,1, and Stefan M. Schmalholz1 1Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland 2Univ. Rennes, CNRS, Géosciences Rennes - UMR 6118, F-35000 Rennes, France Correspondence: Dániel Kiss ([email protected]) Abstract. Tectonic nappes are observed for more than a hundred years. Although geological studies often refer to a “nappe theory”, the physical mechanisms of nappe formation are still incompletely understood. We apply two-dimensional numerical simulations of shortening of a passive margin, to investigate the thermo-mechanical processes of detachment, transport and stacking of 5 nappes. We use a visco-elasto-plastic model with standard creep flow laws and Drucker-Prager yield criterion. We consider tectonic inheritance with two initial mechanical heterogeneities: (1) lateral heterogeneity of the basement-cover interface due to half-grabens and horsts and (2) vertical heterogeneities due to layering of mechanically strong and weak sedimentary units. The model shows detachment and horizontal transport of a thrust nappe and stacking of this thrust nappe above a fold nappe. The detachment of the thrust sheet is triggered by stress concentrations around the sediment-basement contact and the resulting 10 brittle-plastic shear band formation. The horizontal transport is facilitated by a basal shear zone just above the basement-cover contact, composed of thin, weak sediments. Fold nappe formation occurs by a dominantly ductile closure of a half-graben and the associated extrusion of the half-graben fill.
    [Show full text]
  • Interactions Between Tectonics Erosion and Sedimentation During The
    Interactions between tectonics erosion and sedimentation during the recent evolution of the Alpine orogen : analogue modeling insights Cécile Bonnet, Jacques Malavieille, J. Mosar To cite this version: Cécile Bonnet, Jacques Malavieille, J. Mosar. Interactions between tectonics erosion and sedimentation during the recent evolution of the Alpine orogen : analogue modeling insights. Tectonics, American Geophysical Union (AGU), 2007, 26 (6), pp.TC6016. 10.1029/2006TC002048. hal-00404424 HAL Id: hal-00404424 https://hal.archives-ouvertes.fr/hal-00404424 Submitted on 22 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. TECTONICS, VOL. 26, TC6016, doi:10.1029/2006TC002048, 2007 Interactions between tectonics, erosion, and sedimentation during the recent evolution of the Alpine orogen: Analogue modeling insights Ce´cile Bonnet,1 Jacques Malavieille,2 and Jon Mosar3 Received 8 September 2006; revised 24 July 2007; accepted 4 October 2007; published 29 December 2007. [1] On the basis of a section across the northwestern Molasse Basin is largely driven by the subduction mecha- Alpine wedge and foreland basin, analogue modeling is nism of the European plate under the Adriatic promontory. used to investigate the impact of surface processes on the However, it appears that erosion of the overlying Penninic orogenic evolution.
    [Show full text]
  • Structure and Tectonic Evolution Penninic Cover
    001,2-94021 0I I020231 -16 $ 1.50 + 0.2010 Eclogaegeol. Helv.94 (2001)237-252 EirkhäuserVerlag, Basel, 2001 Penniniccover nappesin the Prättigauhalf-window (EasternSwitzerland):Structure and tectonicevolution Manrus Wenl'2 & Nrr<olaus FRorrzi{ErM1'3 Key words: Alps, Penninic, Bündnerschiefer,Falknis nappe,Prättigau half-window, structural geology,Alpine tectonics ZUSAMMENFASSUNG ABSTRACT Die Sedimentabfolgeder zum Valaisan gehörenden Grava-Decke im Prätti- The sedimentary sequence of the Grava nappe (Valaisan) in the Prättigau gau-Halbfensterder Ostschweizbesteht aus kretazischenSchiefern (Bündner- half-window of easternSwitzerland consistsof Cretaceouscalcschists (,,8ünd- schiefer) und spätkretazisch/alttertiärem Flysch. Diese Gesteine wurden durch nerschiefer") and Late CretaceouslEarly Tertiary flysch. It records the follow- die folgenden alpinen Deformationsvorgänge überprägt: (D1a) Abscherung ing stagesof Alpine deformation: (D1a) d6collement of the sediment cover of der Sedimentbedeckungeiner südwärts abtauchendenLithosphärenplatte und a southward-subductedlithospheric slab and accretion of this cover as a hin- Akkretion der abgeschertenSerien als Duplex an der Basis des Orogenkeils, terland-dippingduplex at the baseof the orogenic wedge,beginning around 50 etrva 50 Ma; (D1b) lokale Verfaltung der D1a-Strukturen; (D2) top-SE- Ma; (D1b) local refolding of D1a structures; (D2) rop-SE shearing and Scherung und "Rückfaltung" in einem extensionalenRegime, zwischen35 und "backfolding" in an exlensionalregime, between 35 and 30 Ma; (D3)
    [Show full text]
  • Italian Alps S
    TECTONICS, VOL. 15, NO. 5, PAGES 1036-1064, OCTOBER 1996 Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps S. M. Schmid,10. A. Pfiffner,2 N. Froitzheim,1 G. Sch6nborn,3 and E. Kissling4 Abstract. A complete Alpine cross section inte- relatively strong lower crust and detachmentbetween grates numerous seismicreflection and refraction pro- upper and lower crust. files, across and along strike, with published and new field data. The deepest parts of the profile are con- strained by geophysicaldata only, while structural fea- Introduction tures at intermediate levelsare largely depicted accord- ing to the resultsof three-dimensionalmodels making Plate 1 integrates geophysicaland geologicaldata useof seismicand field geologicaldata. The geometryof into one singlecross section acrossthe easternCentral the highest structural levels is constrainedby classical Alps from the Molasse foredeep to the South Alpine along-strikeprojections of field data parallel to the pro- thrust belt. The N-S section follows grid line 755 of nounced easterly axial dip of all tectonic units. Because the Swisstopographic map (exceptfor a southernmost the transect is placed closeto the westernerosional mar- part near Milano, see Figure i and inset of Plate 1). gin of the Austroalpinenappes of the Eastern Alps, it As drawn, there is a marked difference between the tec- contains all the major tectonic units of the Alps. A tonic style of the shallower levels and that of the lower model for the tectonic evolution along the transect is crustal levels. This difference in style is only partly real. proposedin the form of scaledand area-balancedprofile The wedgingof the lower crust stronglycontrasts with sketches.Shortening within the Austroalpinenappes is the piling up and refolding of thin flakesof mostly up- testimonyof a separateCretaceous-age orogenic event.
    [Show full text]
  • Control of 3D Tectonic Inheritance on Fold-And-Thrust Belts
    https://doi.org/10.5194/se-2019-173 Preprint. Discussion started: 2 December 2019 c Author(s) 2019. CC BY 4.0 License. Control of 3D tectonic inheritance on fold-and-thrust belts: insights from 3D numerical models and application to the Helvetic nappe system Richard Spitz1, Arthur Bauville2, Jean-Luc Epard1, Boris J.P. Kaus3, Anton A. Popov3, and Stefan M. Schmalholz1 1Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland 2Department of Mathematical Science and Advanced Technology, Japan Agency for Marin-Earth Science and Technology, 3173-25, Showa-machi, Kanazawa-ku Yokohama, Japan 3Institute of Geosciences, Johannes Gutenberg University Mainz, Mainz 55128, Germany Correspondence: Richard Spitz ([email protected]) Abstract Fold-and-thrust belts and associated tectonic nappes are common in orogenic regions. They exhibit a wide variety of geometries and often a considerable along-strike variation. However, the mechanics of fold-and-thrust belt formation and the control of the initial geological configuration on this formation are still incompletely understood. Here, we apply three-dimensional (3D) 5 thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin to investigate the control of 3D laterally variable inherited structures on the fold-and-thrust belt evolution and associated nappe formation. We consider tectonic inheritance by applying an initial model configuration with horst and graben structures having laterally variable geometry and with sedimentary layers having different mechanical strength. We use a visco-plastic rheology with temperature dependent flow laws and a Drucker-Prager yield criterion. The models show the folding, detachment and horizontal 10 displacement of sedimentary units, which resemble structures of fold and thrust nappes.
    [Show full text]
  • Thermochronometry Across the Austroalpine
    PUBLICATIONS Tectonics RESEARCH ARTICLE Thermochronometry Across the Austroalpine- 10.1002/2017TC004619 Pennine Boundary, Central Alps, Switzerland: Special Section: Orogen-Perpendicular Normal Fault Slip on a Major Orogenic cycles: from field observations to global “Overthrust” and Its Implications for Orogenesis geodynamics Jason B. Price1 , Brian P. Wernicke1 , Michael A. Cosca2, and Kenneth A. Farley1 Key Points: 1 2 • Thermal histories of the Austroalpine Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, Geology, hanging wall and Pennine footwall, Geophysics, and Geochemistry Science Center, U.S. Geological Survey Denver, CO, USA constrained by nine thermochronometric systems, show that they did not thermally equilibrate Abstract Fifty-one new and 309 published thermochronometric ages (nine systems with closure until after 29 Ma, and possibly not until 18 Ma temperatures ranging from ~450 to 70°C) from the Graubünden region of the Central Alps demonstrate • The thermal data indicate that the that a pronounced thermal mismatch between the Austroalpine allochthon (Alpine “orogenic lid”) and the Austroalpine-Pennine contact zone is Pennine zone persisted until at least 29 Ma and, allowably, until circa 18 Ma. The observed mismatch supports a top-south to top-southeast normal “ ” fault with at least 60 km of previous suggestions that the famous overthrust between the Austroalpine allochthon and the Pennine zone, displacement, active during the main historically regarded as primarily an Eocene top-north thrust fault, is in fact primarily an Oligocene-Miocene phase of Alpine mountain building normal fault that has a minimum of 60 km of displacement with top-south or top-southeast sense of shear.
    [Show full text]
  • The Helvetic Nappe System and Landscape Evolution of the Kander Valley
    The helvetic nappe system and landscape evolution of the Kander valley Autor(en): Pfiffner, Adrian O. Objekttyp: Article Zeitschrift: Swiss bulletin für angewandte Geologie = Swiss bulletin pour la géologie appliquée = Swiss bulletin per la geologia applicata = Swiss bulletin for applied geology Band (Jahr): 15 (2010) Heft 1 PDF erstellt am: 09.10.2021 Persistenter Link: http://doi.org/10.5169/seals-227477 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch Swiss Bull. angew. Geol. Vol. 15/1, 2010 S. 53-61 The Helvetic nappe system and landscape evolution of the Kander valley O. Adrian Pfiffner1 Summary of presentation and excursion guide given at the VSP/ASP annual convention, Interlaken, Switzerland, June 2009 1.
    [Show full text]