Four Decades of Structure Determination by Mass Spectrometry: from Alkaloids to Heparin

Total Page:16

File Type:pdf, Size:1020Kb

Four Decades of Structure Determination by Mass Spectrometry: from Alkaloids to Heparin View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Four Decades of Structure Determination by Mass Spectrometry: From Alkaloids to Heparin Klaus Biemann Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA The early (1950’s and 1960’s) use of mass spectrometry in natural products chemistry and its evolution to the present significance in biochemistry is recounted. This methodology allowed the facile and speedy determination of the structure of a number of indole alkaloids, such as sarpagine, quebrachamine, and two groups isolated from the roots of Aspidosperma quebracho blanco. At the same time, the first strategy for the sequencing of small peptides by mass spectrometry was demonstrated. It slowly advanced, over a period of two decades, to an important alternative of the ubiquitous automated Edman degradation. Further advances in methodology and instrumentation established mass spectrometry as today’s indispensable tool for the characterization of proteins in biochemistry and biology. A new concept of the ionization of highly acidic compounds as the protonated complexes with basic peptides, which allows the accurate determination of the molecular weights of the former, a highly sensitive method for the sequencing of heparin fragments and related sulfated glycosaminoglycans was developed more recently. (J Am Soc Mass Spectrom 2002, 13, 1254-1272) © 2002 American Society for Mass Spectrometry n the 1950’s the most vigorously pursued research pounds and establishing their identity using elemental efforts in organic chemistry concerned the study of analysis (by combustion) and “mixed melting point” Ithe structure and chemistry of natural products and [the melting point of a mixture of two identical com- the elucidation of the detailed mechanism of chemical pounds is the same as that of each of the components, reactions. Both were fostered by developments before, while it is depressed if two different compounds of during, and after World War II. At that time rational same melting point are mixed], the gold standard of the drug design was still a relatively unknown concept. time. The understanding of reaction mechanisms in Instead, a search for pharmacologically and medically vitro had led to the formulation of biosynthetic path- useful plant products was on all over the world, espe- ways in vivo, which aided in the postulation of struc- cially in the tropics. Many of these were alkaloids, tures that then could be proven by conventional means. because they could be most easily isolated by aqueous Ultraviolet spectra were used routinely for the detection acid from an otherwise complex plant extract. of chromophores, particularly aromatic substitution An early success was an alkaloid isolated in 1932 patterns and infrared spectra came slowly into use. from the root of Rauwolfia serpentina and named reser- pine [1]. Its structure was not determined until 12 years Alkaloids later [2]. Reserpine was one of the first antihypertensive drugs and became a huge financial success for CIBA The circumstances that led me to choose mass spectro- (Basel, Switzerland) in the early 1950’s. Research labo- metry—a field at that time well established in physics, ratories in the pharmaceutical industry and academia the petroleum industry, and then analytical chemistry, raced to duplicate this achievement and shelves began but virtually unknown among organic chemists—as my to fill with alkaloids, which had names and melting area of research have been described earlier [3]. In 1957, points, but unfortunately, mostly lacked useful pharma- when I made the transition from a synthetic organic cological activity. chemist to instructor (in those days the bottom rung of The determination of the structure of these complex the tenure-track at MIT) in analytical chemistry, I had molecules (aronatic-alicyclic, about 20 carbon atoms, been considering the determination of the structure of two nitrogens and a few oxygens) was tedious, time sarpagine, an indole-alkaloid also isolated from R. ser- and material-consuming. At that time (1950’s) it gener- pentina. ally required degradation or conversion to known com- However, before I could design a proper strategy, three research groups independently suggested [to limit the number of references listed in this historical paper, Published online September 17, 2002 Address reprint requests to Dr. K. Biemann, Department of Chemistry, MIT, the interested reader is referred to further details Cambridge, MA 02139-4307, USA. E-mail: [email protected] quoted in those cited here] structure 1. The aromatic © 2002 American Society for Mass Spectrometry. Published by Elsevier Science Inc. Received April 22, 2002 1044-0305/02/$20.00 Revised July 1, 2002 PII S1044-0305(02)00441-5 Accepted July 1, 2002 J Am Soc Mass Spectrom 2002, 13, 1254-1272 FOUR DECADES OF STRUCTURE DETERMINATION 1255 Figure 1. Mass spectra of 3 from sarpagine, 2 from ajmaline, and of ibogaine (4) and ibogamine (5) (reproduced from Reference [6], copyright 1960, with permission of Elsevier Science). 1256 BIEMANN J Am Soc Mass Spectrom 2002, 13, 1254-1272 portion was supported by UV-spectroscopy, but the two alkaloids (Figure 1) indeed showed an identical alicyclic system was chiefly based upon biogenetic pattern (with a shift of 30 u, CH3O vesus H), which is, considerations. One of the papers [4] promised to however, very different from that exhibited by 2 and 3. provide final proof of the structure by conversion of Having thus demonstrated the validity of the new sarpagine to 2, which can be made from another alka- concept, which later became known as the “mass spec- loid, ajmaline, of known structure [5]. No such report trometric shift technique”, it was enticing to look for appeared, probably because the conversion of 1 to 2 other examples, preferably indole alkaloids, for which would be quite tedious, requiring the removal of an structures had been proposed but final proof was aromatic and an aliphatic hydroxyl, introduction of a difficult by conventional methods. One such case was methyl group at the indole-nitrogen, and reduction of a quebrachamine isolated long ago [8] from Aspidosperma double bond. The product would have to be purified to quebracho blanco. It was known to contain an indole- constant melting point, followed by the proof of iden- system unsubstituted on its benzene ring and nitrogen, tity with 2 by mixed melting point. and a tertiary amino group. However, there was no It occurred to me that this correlation could be functionality which could provide a site suitable for accomplished much easier and requiring much less selective degradation. The more drastic “zinc dust dis- material by comparison of the mass spectra of two tillation”, another procedure in the tool chest of the analogous, but not necessarily identical compounds. classical organic chemist, led to a complex mixture of Rather than removing the aromatic hydroxyl group, alkyl indoles and alkyl pyridines [9]. They were te- which is very difficult, it was simply methylated; the diously purified by crystallization as picrates and iden- aliphatic hydroxyl group was removed by tosylation tified by elemental analysis, melting points, and mixed and reduction, and the double bond was catalytically melting points when authentic samples were available. hydrogenated to yield 3. Fortunately, the comparison As one of the earliest examples of a proton-NMR Compound 2 was easier to come by: It required only a spectrum used in this field, the presence of an unsub- quick trip up the river to Professor Robert B. Wood- stituted indole was corroborated, but a previously sug- ward’s laboratory at Harvard where it was sitting on gested N-methyl group could be ruled out [10]. The lack the shelf, left over from earlier work [5]. of resolution and extensive chemical shift data at that The mass spectra of 2 and 3 (Figure 1) exhibited a time did not allow the unraveling of the alicyclic remarkably similar pattern, shifted of course, in the m/z system. On the basis of all these rather meager data, values of the peaks due to the different substituents at the aromatic system (methoxyl versus methyl ϭ 16). Witkop et al. suggested structures 6a or b for que- Thus, what a sizeable Swiss research group could not brachamine [11]. A complete qualitative and quantita- do in a couple of years, was accomplished [6] in a few tive analysis of the pyridine mixture was required to weeks by the use of mass spectrometry and a few differentiate these two possibilities and would have milligrams of sarpagine kindly provided by Dr. A. needed a much larger amount of the alkaloid than was Hofman. available. It should be noted that these spectra were obtained Therefore, we repeated the Zn-dust distillation of by electron ionization. In contrast to today’s widely quebrachamine on a very small scale (13 mg). The mass used “soft” ionization (CI, FAB, ESI, and MALDI) this spectra of the pyridine fraction, after separation on a “hard” ionization generates molecular radical cations of packed GC column and collection of each peak, re- high excess energy which fragment extensively and vealed that the most abundant product by far was very reproducibly. 3-ethylpyridine, while 3-methyl-5-ethylpyridine, which Because this proof of structure was novel and un- had supported Structure 6b was a very minor component. precedented, it had to be shown that another isomer of It could well have arisen by thermal rearrangement from different carbon skeleton exhibits a different mass spec- 6a during the harsh conditions of the experiment. This trum which is, however, specific for that type. Fortu- structure is closely related to aspidospermine, the major nately, Dr. William I. Taylor (CIBA, Summit, NJ) had alkaloid of Aspidosperma quebracho blanco. Its structure such a pair at hand: Ibogaine (4) and ibogamine (5), the (7a) had just been determined by x-ray crystallography structures of which he had determined shortly before [12].
Recommended publications
  • Mass Spectrometry in Trace Organic Analysis
    Pure & Appl. Chem.,Vol. 63, No. 11, pp. 1637-1646, 1991 Printed in Great Britain. @ 1991 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON MICROCHEMICAL TECHNIQUES AND TRACE ANALYSIS* WORKING GROUP ON ORGANIC TRACE ANALYSIS ANALYTICAL TECHNIQUES FOR TRACE ORGANIC COMPOUNDS-I11 MASS SPECTROMETRY IN TRACE ORGANIC ANALYSIS Prepared for publication by KLAUS BIEMANN Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA *Membership of the Commission during the period (1985-89) when this report was prepared was as follows: Chairman: 1985-89 B. Griepink (Netherlands); Secretary: 1985-89 D. E. Wells (UK); Titular Members: K. Biemann (USA; 1985-89); W. H. Gries (FRG; 1987-89); E. Jackwerth (FRG; 1985-87); M. Leroy (France; 1987-89); A. Lamotte (France; 1985-87); Z. Marczenko (Poland; 1985-89); D. G. Westmoreland (USA; 1987-89); Yu. A. Zolotov (USSR; 1985-87); Associate Members: K. Ballschmiter (FRG; 1985-87); R. Dams (Belgium; 1985-89); K. Fuwa (Japan; 1985-89); M. Grasserbauer (Austria; 1985-87); W. H. Gries (FRG; 1985-87); M. W. Linscheid (FRG; 1985-89); M. Morita (Japan; 1987-89); M. Huntau (Italy; 1985-89); M. J. Pellin (USA; 1985-89); L. Reutergardh (Sweden; 1987-89); B. D. Sawicka (Canada; 1987-89); E. A. Schweikert (USA; 1987-89); G. Scilla (USA; 1987-89); B. Ya. Spivakov (USSR; 1985-89); A. Townshend (UK; 1985-87); W. Wegscheider (Austria; 1987-89); D. G. Westmoreland (USA; 1985-87); National Representatives: R. Gijbels (Belgium; 1985-89); Z.-M. Ni (Chinese Chemical Society; 1985-89); G. Werner (GDR; 1987-89); M.
    [Show full text]
  • Pittsburgh Conference
    Journal of Automatic Chemistry, Vol. 16, No. 3 (May-June 1994), pp. 75-116 Abstracts of papers presented at the 1994 Pittsburgh Conference The following are the abstracts of the papers read at March 1994s Pittcon which are important to readers of 'Journal of Automatic Chemistry'. 1995s Pittcon will be held in New Orleans from 5 to 10 March. Details from The Pittsburgh Conference, 300 Penn Center Boulevard, Suite 332, Pittsburgh, PA 15235-5503, USA. Reflecting on the past; creating for the future interest in the determination of the structure of natural products. Therefore, no preconceived notions prevented Howard V. Malmstadt, University of the Nations, Kailua-Kona, him from applying mass spectrometry to the structure HI 96740 elucidation of new alkaloids, amino acids and peptides. A particularly field was the determination of Powerful and elegant analytical methods and instruments productive the structure of many indole alkaloids. By classical are used daily in industry, hospitals, R & D laboratories chemical methods this was difficult and very time and process control systems. Major improvements in but with the use of mass sensitivity, detectability, accuracy, speed and reliability consuming, spectrometry combined with a few chemical reactions, the task could provide the necessary data for dramatic breakthroughs in be accomplished quickly and with minimal material. science and technology. The speaker reflected on some of Thus, the early work brought mass spectrometry to the the developments on which he had helped pioneer. attention of the organic chemist. The story behind the story often starts with a simple In the 1960s, high resolution mass spectrometry was question or comment.
    [Show full text]
  • Nature Milestones Mass Spectrometry October 2015
    October 2015 www.nature.com/milestones/mass-spec MILESTONES Mass Spectrometry Produced with support from: Produced by: Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols MILESTONES Mass Spectrometry MILESTONES COLLECTION 4 Timeline 5 Discovering the power of mass-to-charge (1910 ) NATURE METHODS: COMMENTARY 23 Mass spectrometry in high-throughput 6 Development of ionization methods (1929) proteomics: ready for the big time 7 Isotopes and ancient environments (1939) Tommy Nilsson, Matthias Mann, Ruedi Aebersold, John R Yates III, Amos Bairoch & John J M Bergeron 8 When a velocitron meets a reflectron (1946) 8 Spinning ion trajectories (1949) NATURE: REVIEW Fly out of the traps (1953) 9 28 The biological impact of mass-spectrometry- 10 Breaking down problems (1956) based proteomics 10 Amicable separations (1959) Benjamin F. Cravatt, Gabriel M. Simon & John R. Yates III 11 Solving the primary structure of peptides (1959) 12 A technique to carry a torch for (1961) NATURE: REVIEW 12 The pixelation of mass spectrometry (1962) 38 Metabolic phenotyping in clinical and surgical 13 Conquering carbohydrate complexity (1963) environments Jeremy K. Nicholson, Elaine Holmes, 14 Forming fragments (1966) James M. Kinross, Ara W. Darzi, Zoltan Takats & 14 Seeing the full picture of metabolism (1966) John C. Lindon 15 Electrospray makes molecular elephants fly (1968) 16 Signatures of disease (1975) 16 Reduce complexity by choosing your reactions (1978) 17 Enter the matrix (1985) 18 Dynamic protein structures (1991) 19 Protein discovery goes global (1993) 20 In pursuit of PTMs (1995) 21 Putting the pieces together (1999) CITING THE MILESTONES CONTRIBUTING JOURNALS UK/Europe/ROW (excluding Japan): The Nature Milestones: Mass Spectroscopy supplement has been published as Nature Methods, Nature, Nature Biotechnology, Nature Publishing Group, Subscriptions, a joint project between Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols.
    [Show full text]
  • Original Filepdf
    CHEMICAL HERITAGE FOUNDATION NICO M. NIBBERING Transcript of an Interview Conducted by Michael A. Grayson at Home of Michael Gross St. Louis Park, Minnesota on 7 and 8 June 2013 (With Subsequent Corrections and Additions) NICO M. NIBBERING ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancemen t of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Chemical Heritage Foundation (CHF) Center for Oral History to credit CHF using the format below: Nico M. Nibbering, interview by Michael A. Grayson at the home of Michael Gross St. Louis Park, Minnesota, 7 and 8 June 2013 (Philadelphia: Chemical Heritage Foundation, Oral History Transcript # 0709). Chemical Heritage Foundation Center for Oral History 315 Chestnut Street Philadelphia, Pennsylvania 19106 The Chemical Heritage Foundation (CHF) serves the community of the chemical and molecular sciences, and the wider public, by treasuring the past, educating the present, and inspiring the future. CHF maintains a world-class collection of materials that document the history and heritage of the chemical and molecular sciences, technologies, and industries; encourages research in CHF collections; and carries out a program of outreach and interpretation in order to advance an understanding of the role of the chemical and molecular sciences, technologies, and industries in shaping society.
    [Show full text]
  • Science History Institute Ronald D. Macfarlane
    SCIENCE HISTORY INSTITUTE RONALD D. MACFARLANE Transcript of an Interview Conducted by Michael A. Grayson at Texas A&M University College Station, Texas on 26 May 2011 (With Subsequent Corrections and Additions) Ronald D. Macfarlane ACKNOWLEDGMENT This oral history is one in a series initiated by the Chemical Heritage Foundation on behalf of the American Society for Mass Spectrometry. The series documents the personal perspectives of individuals related to the advancement of mass spectrometric instrumentation, and records the human dimensions of the growth of mass spectrometry in academic, industrial, and governmental laboratories during the twentieth century. This project is made possible through the generous support of the American Society for Mass Spectrometry. This oral history is designated Free Access. Please note: Users citing this interview for purposes of publication are obliged under the terms of the Center for Oral History, Science History Institute, to credit the Science History Institute using the format below: Ronald D. MacFarlane, interview by Michael Grayson at Texas A&M University, College Station, Texas, 26 May 2011 (Philadelphia: Science History Institute, Oral History Transcript #0877). Formed by the merger of the Chemical Heritage Foundation and the Life Sciences Foundation, the Science History Institute collects and shares the stories of innovators and of discoveries that shape our lives. We preserve and interpret the history of chemistry, chemical engineering, and the life sciences. Headquartered in Philadelphia, with offices in California and Europe, the Institute houses an archive and a library for historians and researchers, a fellowship program for visiting scholars from around the globe, a community of researchers who examine historical and contemporary issues, and an acclaimed museum that is free and open to the public.
    [Show full text]
  • Ronald A. Hites
    RONALD A. HITES School of Public and Environmental Affairs Indiana University Bloomington, IN 47405 (812) 855-0193 [email protected] PROFESSIONAL EXPERIENCE Distinguished Professor, Indiana University, Bloomington, 1989-present Professor of Public and Environmental Affairs and of Chemistry, Indiana University, Bloomington, 1979-1989 Associate and Assistant Professor of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, 1972-1979 Research Staff, Department of Chemistry, Massachusetts Institute of Technology, Cambridge, 1969-1972 National Academy of Sciences Postdoctoral Associate, Agricultural Research Service, Peoria, Illinois, 1968- 1969 EDUCATION Doctor of Philosophy in Analytical Chemistry, Massachusetts Institute of Technology, Cambridge, 1968; stud- ied with Professor Klaus Biemann (member of the National Academy of Sciences) Bachelor of Arts in Chemistry, Oakland University, Rochester, Michigan, 1964 HONORS (SELECTED) Lifetime Achievement Award, International Association for Great Lakes Research, 2016 “Ronald A. Hites Tribute Issue,” Environmental Science & Technology, 1 December 2015 Society of Environmental Toxicology and Chemistry Charter Fellow, 2014-present American Chemical Society Charter Fellow, 2009-present Ron Hites Award for an Outstanding Research Publication in the Journal of the American Society for Mass Spectrometry, named in Prof. Hites’ honor in November 2008 President, Board of Directors, International Association for Great Lakes Research, 2008-2009 Associate Editor, Environmental Science
    [Show full text]
  • Focus in Honor of Carol V. Robinson, 2003 Biemann Medal Awardee
    EDITORIAL Focus in Honor of Carol V. Robinson, 2003 Biemann Medal Awardee Figure 1. Carol Robinson (Photo by Nathan Pitt). The Biemann Medal recognizes a significant achieve- technician at Pfizer Pharmaceutical (in Sandwich, UK), ment in basic or applied mass spectrometry made by an where she began to be exposed to mass spectrometry. individual early in his or her career. The award is This propelled Carol to pursue further training in the presented in honor of Professor Klaus Biemann and is field of mass spectrometry. After receiving her degrees endowed by contributions from his students, postdoc- and after an eight-year hiatus while her children were toral associates, and friends. The 2003 Medal was pre- young, she received a Royal Society Research Fellow- sented to Professor Carol V. Robinson (Figure 1) of ship in 1995 and assumed the position of Director of Cambridge University for her achievements and contri- Mass Spectrometry at the Oxford Centre for Molecular butions to the areas of protein mass spectrometry and Sciences. In 1999 she became one of the youngest structural biology (Figure 2). professors and also one of only 17 women with the title Carol received her Master of Science degree under of Professor at Oxford University. She moved recently the tutelage of Professor John Beynon at the University to Cambridge University, where she holds the rank of of Wales, Swansea and her Ph.D. degree from Cam- University Professor in the Department of Chemistry. bridge University under the supervision of Professor Mass spectrometry has become a technique to study Dudley Williams. Carol’s research career has always the structure and dynamics of macromolecules and to been focused on the mass spectrometric analysis of describe their folding and assembly, largely because of large biomolecules.
    [Show full text]
  • Mass Spec Masterwork
    JUNE 2017 # 53 Upfront In My View Feature Sitting Down With Investigating the dangers of Te time to help developing Syft Technologies goes for SERS superstar, sex-changing eels countries is now gold with SIFT-MS Duncan Graham 10 – 11 17 – 18 32 – 39 50 – 51 Mass Spec Masterwork Catherine Fenselau refects on 50 years in analytical science. 24 – 31 www.theanalyticalscientist.com 24 Feature D I G G I N G D E E P E R , B U I L D I N G BETTER ------ AN INTERVIEW WITH CATHERINE FENSELAU Catherine Fenselau’s impressive analytical science career has taken her from ancient ruins in Colorado to the analysis of lunar rock samples, from the early introduction of MS technology to the biomedical lab, to the heady days of fedgling mass spec journals. Here, Catherine refects on the past, present and future of mass spec and explains why analytical science deserves more respect. the Analytical Scientist 26 Feature hen I was a child, I wanted to be a “lady were working with high-end equipment, which was exciting – it archaeologist”. We went to Mesa Verde was a very successful experience for me. However, I only stayed National Park many times on family vacations, two years before moving on to my own position. My father always and I thought the archaeology there was just told me I should have waited till the moon rocks came back... wonderful. One of the big mysteries of the Mesa Verde ruins is My husband and I both received job ofers from Johns Hopkins where the people went; they had a tough couple of decades with School of Medicine, so I packed up my cats (and my husband), drought, inter-tribal warfare and even cannibalism..
    [Show full text]
  • 2013 Summer Newsletter
    ChemistryThe Department of N E W S L E T T E R Chemist Receives High Honor from ASMS Summer 2013 Volume 1 - Number 3 Yinsheng Wang, a professor of chemistry at the University of California, Riverside, has received the Biemann Medal, awarded by the American Society for Mass Spectrometry (ASMS) to an individual early in his or her career in recognition of significant achievement in In this Issue Pages basic or applied mass spectrometry. Student News 2-3 Wang received the medal and gave an award lecture earlier this month at the annual conference Dr. Haddon 4 of the ASMS in Minneapolis, Minn. The medal is accompanied by a cash prize of $5,000. “I feel humbled to be the recipient of this year’s Biemann Medal,” Wang said. “This is a great Dr. Hooley 5 recognition of our work by the mass spectrometry community. I appreciate very much the hard Alumni News 6-7 work of my graduate students and postdoctoral fellows, without which this would not have been possible.” The first person at UC Riverside to win the medal, Wang focuses his research on discovering the biological consequences of DNA damage and on unraveling mechanisms of action for anti-tumor drugs and environmental toxicants. His laboratory’s use and development of mass spectrometry, synthetic organic chemistry, biochemistry and molecular biology enable us to understand, at the molecular level, how various DNA damage products are repaired, and how they perturb the efficiency and fidelity of the flow of genetic information during DNA replication and transcription. Wang is the director of the Environmental Toxicology Graduate Program at UCR.
    [Show full text]
  • 50Th Annual Conference • 2002 • Orlando, FL
    th 2019 History Committee 50 Annual Conference • 2002 • Orlando, FL American Society for Mass Spectrometry Biology Meets Mass Spectrometry Mass Spectrometry and Forensic Applications of Mass Spectrometry Pharmaceuticals In the 1950s-60s, the earliest examples of forensic mass spectrometry focused on the structural characterization During the ‘90s and beyond, mass spectrometrists began to capitalize on the instrumentation developments of previous years. Almost every area of the mass of psychoactive and medical compounds from botanic matter. In the 1970s, applications shifted to the spectrometer had undergone significant improvement: sampling, ionization, mass analyzers and detectors. In addition new methods had evolved for coupling MS The 1990s saw a meteoric rise in the use of mass characterization of drugs and poisons in human stomach contents. With the availability of commercial gas spectrometry in pharmaceutical research. Long a chromatography-mass spectrometry (GC-MS) instruments in the 1970s, forensic applications expanded to include with separation techniques like liquid chromatography. These instrument developments enabled larger biomolecular compounds to be analyzed and this led to standard tool for molecular weight determination and the analysis of explosives and ignitable liquids in arson investigations. However, the forensic community was not an explosion of new applications in the biological and medical sciences. structural elucidation in pharma, mass spectrometers engaged with ASMS during this period, so the number of presentations
    [Show full text]
  • Development and Application of Mass Spectrometry-Based Proteomics to Generate and Navigate the Proteomes of the Genus Populus
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2013 DEVELOPMENT AND APPLICATION OF MASS SPECTROMETRY- BASED PROTEOMICS TO GENERATE AND NAVIGATE THE PROTEOMES OF THE GENUS POPULUS Paul Edward Abraham [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Biochemistry Commons, Biology Commons, Cell Biology Commons, Forest Biology Commons, Genomics Commons, Molecular Biology Commons, Plant Biology Commons, and the Systems Biology Commons Recommended Citation Abraham, Paul Edward, "DEVELOPMENT AND APPLICATION OF MASS SPECTROMETRY-BASED PROTEOMICS TO GENERATE AND NAVIGATE THE PROTEOMES OF THE GENUS POPULUS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/1692 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Paul Edward Abraham entitled "DEVELOPMENT AND APPLICATION OF MASS SPECTROMETRY-BASED PROTEOMICS TO GENERATE AND NAVIGATE THE PROTEOMES OF THE GENUS POPULUS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Life Sciences. Robert Hettich, Major Professor We have read this dissertation and recommend its acceptance: Mircea Podar, Steven Wilhelm, Albrecht von Arnim, Loren Hauser Accepted for the Council: Carolyn R.
    [Show full text]
  • Goessmann Laboratory (Opened in the Fall of 1924) and the New Physical Sciences Building (Opening in the Spring of 2018)
    GOE SSMANNgazette A Publication of the Chemistry Department University of Massachusetts Amherst www.chem.umass.edu VOLUME 46 – SUMMER 2017 INSIDE Alumni Reunion .......................2 Points of Pride ...........................4 Lab Notes .................................5 NEW FACES Seminar Program ....................20 Get to know Chemistry’s newest faculty members– Dissertation Seminars .............21 Senior Awards Dinner .............22 Trisha Andrew, Jianhan Chen, Eric Strieter Degrees Awarded ...................22 and Mingxu You! Research Symposium ..............23 PROFESSOR TRISHA ANDREW (TA) Research endeavors are Friends of Chemistry ...............26 in: (1) creating solar textiles and other monolithically-integrated Letter from Head ....................28 wearable technologies using vapor phase organic chemistry; (2) effecting subdiffraction optical lithography using organic photochromes; and (3) synthesizing organic analogs of diluted magnetic EVENTS for 2017 semiconductors and characterizing spin-dependent charge and exciton transport in these materials. (BS University of Washington, PhD Massachusetts Institute of Technology) Marvin Rausch Lectureship Prof. Stephen Buchwald MIT GG: What convinced you to go to the grad school you March 23, 2017 attended? TA: MIT is filled with ambitious, creative nerds who work hard Five College Seminar and work collectively to solve big problems. There is no better Prof. Samuel Houk Iowa State University and work place environment. Ames National Laboratory April 13, 2017 GG: What did you study for your PhD? TA: Materials Chemistry Senior Awards Dinner April 26, 2017 GG: What was your proudest moment ever (chemistry related Alumni Reunion 2017 or otherwise)? June 3, 2017 TA: When my technology was adopted by the TSA to screen passengers for liquid explosive residues in domestic airports. ResearchFest 2017 August 29, 2017 GG: What is the most useful tool in your lab? TA: A torque wrench William E.
    [Show full text]