Graph Homomorphism Revisited for Graph Matching

Total Page:16

File Type:pdf, Size:1020Kb

Graph Homomorphism Revisited for Graph Matching Graph Homomorphism Revisited for Graph Matching Wenfei Fan1,2 Jianzhong Li2 Shuai Ma1 Hongzhi Wang2 Yinghui Wu1 1University of Edinburgh 2Harbin Institute of Technology wenfei@inf.,shuai.ma@,y.wu-18@sms. ed.ac.uk {lijzh, wangzh}@hit.edu.cn { } A B Abstract G p G In a variety of emerging applications one needs to decide whether books audio books sports digital a graph G matches another Gp, i.e., whether G has a topological textbooks abooks albums categories booksets CDs structure similar to that of Gp. The traditional notions of graph DVDs homomorphism and isomorphism often fall short of capturing the features genres structural similarity in these applications. This paper studies revi- artsschool audiobooks sions of these notions, providing a full treatment from complexity albums to algorithms. (1) We propose p-homomorphism (p-hom) and 1-1 Figure 1: Graphs representing online stores p-hom, which extend graph homomorphism and subgraph isomor- phism, respectively, by mapping edges from one graph to paths in are also carried by the store G, and G and Gp can be navigated another, and by measuring the similarity of nodes. (2) We intro- similarly, i.e., if a site for selling item a can be reached from a site duce metrics to measure graph similarity, and several optimization for item b in Gp by following hyperlinks, then the site for item a problems for p-hom and 1-1 p-hom. (3) We show that the deci- can also be reached from the site for b in G. sion problems for p-hom and 1-1 p-hom are NP-complete even for When graph homomorphism or subgraph isomorphism is used to DAGs, and that the optimization problems are approximation-hard. measure graph similarity, G does not match Gp. Indeed, (a) nodes (4) Nevertheless, we provide approximation algorithms with prov- in G may not find a node in G with the same label, e.g., audio; and able guarantees on match quality. We experimentally verify the worse still, (b) there exists no sensible mapping from Vp to V that effectiveness of the revised notions and the efficiency of our algo- maps edges in Gp to edges in G accordingly. rithms in Web site matching, using real-life and synthetic data. However, a page checker (e.g., [8, 29]) may find connections between pages in Gp and those in G based on their functionality: 1. Introduction A 7→ B, books 7→ books, audio 7→ digital, textbooks 7→ school, abooks 7→ audiobooks, albums 7→ albums The notions of graph homomorphism and subgraph isomorphism That is, the store indeed has the capability of . While the [9] can be found in almost every graph theory textbook. Given G Gp edges in Gp are not preserved by the similarity relation, each edge two node-labeled graphs G1 = (V1, E1) and G2 = (V2, E2), the in Gp is mapped to a path in G, e.g., the edge (books, textbooks) problem of graph homomorphism (resp. subgraph isomorphism) is in Gp is mapped to the path books/categories/school in G. This to find a (resp. 1-1) mapping from V1 to V2 such that each node in tells us that G preserves the navigational structure of Gp. Hence G V1 is mapped to a (resp. distinct) node in V2 with the same label, should logically be considered as a match of Gp. ✷ and each edge in E1 is mapped to an edge in E2. These conventional notions are, however, often too restrictive These highlight the need for revising the conventional notions for graph matching in emerging applications. In a nutshell, graph of graph matching. In response to these, several extensions of the matching is to decide whether a graph G matches another graph conventional notions have been studied for graph matching [10, 11, Gp, i.e., whether G has a structure similar to that of Gp, although 14, 24, 32]. However, a formal analysis of these extensions is not not necessarily identical. The need for this is evident in, e.g., Web yet in place, from complexity bounds to approximation algorithms. anomaly detection [23], search result classification [25], plagiarism detection [20] and spam detection [3]. In these contexts, identi- Contributions. We propose several notions to capture graph struc- cal label matching is often an overkill, and edge-to-edge mappings tural similarity that encompass the previous extensions, and pro- only allow strikingly similar graphs to be matched. vide a full treatment of these notions for graph matching. (1) We introduce p-homomorphism (p-hom) and 1-1 p-hom in Sec- Example 1.1: Consider two online stores depicted in Fig. 1 as tion 3. These notions extend graph homomorphism and subgraph graphs Gp = (Vp, Ep) and G = (V, E). In these graphs, each isomorphism, respectively, by (a) incorporates similarity metrics to node denotes a Web page for sale of certain items, as indicated measure the similarity of nodes, as opposed to node label equal- by its label; and the edges denote hyperlinks. One wants to know ity; and (b) mapping edges in a graph to paths in another, rather whether G matches Gp, i.e., whether all the items specified by Gp than edge-to-edge mappings. In contrast to previous extensions, one can use node similarity to assure, e.g., that two Web pages are Permission to make digital or hard copies of all or part of this work for matched only when they have similar contents [29] or play a simi- personal or classroom use is granted without fee provided that copies are lar role (as a hub or authority [6]). Edge-to-path mappings allow us not made or distributed for profit or commercial advantage and that copies to match graphs that have similar navigational structures but can- bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific not be identified by the conventional notions of graph matching. In permission and/or a fee. Articles from this volume were presented at The addition, these notions can be readily extended to deciding whether 36th International Conference on Very Large Data Bases, September 13•17, two graphs are similar to each other in a symmetric fashion. 2010, Singapore. Proceedings of the VLDB Endowment, Vol. 3, No. 1 (2) To provide a quantitative measure of graph similarity, we de- Copyright 2010 VLDB Endowment 2150•8097/10/09... $ 10.00. velop two metrics, also in Section 3, based on (a) the maximum number of nodes matched, and (b) the maximum overall similar- graphs based on simulation [17, 12], subgraph isomorphism (com- ity when the weights of nodes are taken into account, respectively. mon maximum subgraph) [27, 30], or edit distance [31] (see [9, These metrics give rise to two natural optimization problems, re- 26] for surveys). Graph simulation considers edge-preserving re- ferred to as the maximum cardinality problem and the maximum lations instead of functions from one graph to another. Graph edit similarity problem, respectively, for each of p-hom and 1-1 p-hom. distance is essentially based on subgraph isomorphism. (c) Vertex In particular, the maximum common subgraph problem [19] is a similarity: it builds a matrix of node similarity based on fixpoint special case of the maximum cardinality problem for 1-1 p-hom. computation [6, 21] and the roles of nodes in the structures of the (3) We establish complexity bounds of the decision problems and graphs (e.g., hubs or authorities [6]). As pointed out by [25, 30], the optimization problems for p-hom and 1-1 p-hom, in Section 4. We feature-based approach does not observe global structural connec- show that the problems for determining p-hom and 1-1 p-hom, tivity, and is often less accurate than the structure-based measure. as well as the maximum cardinality problem and the maximum As observed by [4, 23], vertex similarity alone does not suffice to identify accurate matches since it ignores the topology of graphs similarity problem, are all NP-complete, even for directed acyclic by and large. For Web site matching in particular, it is essential graphs (DAGs). Worse still, the optimization problems are hard to to consider how pages are linked to each other. One cannot match approximate: unless P = NP, it is beyond reach in practice to ap- proximate the problems within O(1/n1−ǫ) of the optimal solutions two sites with different navigational structures even if most of their for any constant ǫ. All proofs are given in the appendix. pages can be matched pairwise. Further, vertex similarity requires fixpoint operations and is often too expensive to compute on large (4) Nevertheless, we provide in Section 5 approximation algo- graphs. As opposed to previous approaches, we introduce (1-1) rithms for finding mappings with the maximum cardinality or the p-hom to capture both structural similarity by enforcing edge-to- maximum similarity, for p-hom and 1-1 p-hom. These algorithms path mappings, and the contents of individual nodes by incorporat- possess performance guarantees on match quality: for any graphs ing node similarity. In addition, we provide maximum cardinality G1 and G2, the solutions found by the algorithms are provable to be and maximum overall similarity metrics to quantitatively measure 2 within a polynomial O(log (n1n2)/(n1n2)) of the optimal solu- graph similarity, which have not been studied by previous work. tions, where n1 (resp. n2) is the number of nodes in G1 (resp. G2). A number of graph matching algorithms have been developed (5) Using Web site matching as a testbed, we experimentally evalu- (see [9] for a survey).
Recommended publications
  • Homomorphisms of 3-Chromatic Graphs
    Discrete Mathematics 54 (1985) 127-132 127 North-Holland HOMOMORPHISMS OF 3-CHROMATIC GRAPHS Michael O. ALBERTSON Department of Mathematics, Smith College, Northampton, MA 01063, U.S.A. Karen L. COLLINS Department of Mathematics, M.L T., Cambridge, MA 02139, U.S.A. Received 29 March 1984 Revised 17 August 1984 This paper examines the effect of a graph homomorphism upon the chromatic difference sequence of a graph. Our principal result (Theorem 2) provides necessary conditions for the existence of a homomorphism onto a prescribed target. As a consequence we note that iterated cartesian products of the Petersen graph form an infinite family of vertex transitive graphs no one of which is the homomorphic image of any other. We also prove that there is a unique minimal element in the homomorphism order of 3-chromatic graphs with non-monotonic chromatic difference sequences (Theorem 1). We include a brief guide to some recent papers on graph homomorphisms. A homomorphism f from a graph G to a graph H is a mapping from the vertex set of G (denoted by V(G)) to the vertex set of H which preserves edges, i.e., if (u, v) is an edge in G, then (f(u), f(v)) is an edge in H. If in addition f is onto V(H) and each edge in H is the image of some edge in G, then f is said to be onto and H is called a homomorphic image of G. We define the homomorphism order ~> on the set of finite connected graphs as G ~>H if there exists a homomorphism which maps G onto H.
    [Show full text]
  • Graph Operations and Upper Bounds on Graph Homomorphism Counts
    Graph Operations and Upper Bounds on Graph Homomorphism Counts Luke Sernau March 9, 2017 Abstract We construct a family of countexamples to a conjecture of Galvin [5], which stated that for any n-vertex, d-regular graph G and any graph H (possibly with loops), n n d d hom(G, H) ≤ max hom(Kd,d,H) 2 , hom(Kd+1,H) +1 , n o where hom(G, H) is the number of homomorphisms from G to H. By exploiting properties of the graph tensor product and graph exponentiation, we also find new infinite families of H for which the bound stated above on hom(G, H) holds for all n-vertex, d-regular G. In particular we show that if HWR is the complete looped path on three vertices, also known as the Widom-Rowlinson graph, then n d hom(G, HWR) ≤ hom(Kd+1,HWR) +1 for all n-vertex, d-regular G. This verifies a conjecture of Galvin. arXiv:1510.01833v3 [math.CO] 8 Mar 2017 1 Introduction Graph homomorphisms are an important concept in many areas of graph theory. A graph homomorphism is simply an adjacency-preserving map be- tween a graph G and a graph H. That is, for given graphs G and H, a function φ : V (G) → V (H) is said to be a homomorphism from G to H if for every edge uv ∈ E(G), we have φ(u)φ(v) ∈ E(H) (Here, as throughout, all graphs are simple, meaning without multi-edges, but they are permitted 1 to have loops).
    [Show full text]
  • Chromatic Number of the Product of Graphs, Graph Homomorphisms, Antichains and Cofinal Subsets of Posets Without AC
    CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS, GRAPH HOMOMORPHISMS, ANTICHAINS AND COFINAL SUBSETS OF POSETS WITHOUT AC AMITAYU BANERJEE AND ZALAN´ GYENIS Abstract. In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. • If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. • If in a partially ordered set, all chains are finite and all antichains have size ℵα, then the set has size ℵα for any regular ℵα. • CS (Every partially ordered set without a maximal element has two disjoint cofinal subsets). • CWF (Every partially ordered set has a cofinal well-founded subset). • DT (Dilworth’s decomposition theorem for infinite p.o.sets of finite width). We also study a graph homomorphism problem and a problem due to Andr´as Hajnal without AC. Further, we study a few statements restricted to linearly-ordered structures without AC. 1. Introduction Firstly, the first author observes the following in ZFA (Zermelo-Fraenkel set theory with atoms). (1) In Problem 15, Chapter 11 of [KT06], applying Zorn’s lemma, Komj´ath and Totik proved the statement “Every partially ordered set without a maximal element has two disjoint cofinal subsets” (CS). In Theorem 3.26 of [THS16], Tachtsis, Howard and Saveliev proved that CS does not imply ‘there are no amorphous sets’ in ZFA. We observe ω that CS 6→ ACfin (the axiom of choice for countably infinite familes of non-empty finite − sets), CS 6→ ACn (‘Every infinite family of n-element sets has a partial choice function’) 1 − for every 2 ≤ n<ω and CS 6→ LOKW4 (Every infinite linearly orderable family A of 4-element sets has a partial Kinna–Wegner selection function)2 in ZFA.
    [Show full text]
  • No Finite-Infinite Antichain Duality in the Homomorphism Poset D of Directed Graphs
    NO FINITE-INFINITE ANTICHAIN DUALITY IN THE HOMOMORPHISM POSET D OF DIRECTED GRAPHS PETER¶ L. ERDOS} AND LAJOS SOUKUP Abstract. D denotes the homomorphism poset of ¯nite directed graphs. An antichain duality is a pair hF; Di of antichains of D such that (F!) [ (!D) = D is a partition. A generalized duality pair in D is an antichain duality hF; Di with ¯nite F and D: We give a simpli¯ed proof of the Foniok - Ne·set·ril- Tardif theorem for the special case D, which gave full description of the generalized duality pairs in D. Although there are many antichain dualities hF; Di with in¯nite D and F, we can show that there is no antichain duality hF; Di with ¯nite F and in¯nite D. 1. Introduction If G and H are ¯nite directed graphs, write G · H or G ! H i® there is a homomorphism from G to H, that is, a map f : V (G) ! V (H) such that hf(x); f(y)i is a directed edge 2 E(H) whenever hx; yi 2 E(G). The relation · is a quasi-order and so it induces an equivalence relation: G and H are homomorphism-equivalent if and only if G · H and H · G. The homomorphism poset D is the partially ordered set of all equivalence classes of ¯nite directed graphs, ordered by ·. In this paper we continue the study of antichain dualities in D (what was started, in this form, in [2]). An antichain duality is a pair hF; Di of disjoint antichains of D such that D = (F!) [ (!D) is a partition of D, where the set F! := fG : F · G for some F 2 Fg, and !D := fG : G · D for some D 2 Dg.
    [Show full text]
  • Graph Relations and Constrained Homomorphism Partial Orders (Relationen Von Graphen Und Partialordungen Durch Spezielle Homomorphismen) Long, Yangjing
    Graph Relations and Constrained Homomorphism Partial Orders Der Fakultät für Mathematik und Informatik der Universität Leipzig eingereichte DISSERTATION zur Erlangung des akademischen Grades DOCTOR RERUM NATURALIUM (Dr.rer.nat.) im Fachgebiet Mathematik vorgelegt von Bachelorin Yangjing Long geboren am 08.07.1985 in Hubei (China) arXiv:1404.5334v1 [math.CO] 21 Apr 2014 Leipzig, den 20. März, 2014 献给我挚爱的母亲们! Acknowledgements My sincere and earnest thanks to my ‘Doktorväter’ Prof. Dr. Peter F. Stadler and Prof. Dr. Jürgen Jost. They introduced me to an interesting project, and have been continuously giving me valuable guidance and support. Thanks to my co-authers Prof. Dr. Jiří Fiala and Prof. Dr. Ling Yang, with whom I have learnt a lot from discussions. I also express my true thanks to Prof. Dr. Jaroslav Nešetřil for the enlightening discussions that led me along the way to research. I would like to express my gratitude to my teacher Prof. Dr. Yaokun Wu, many of my senior fellow apprentice, especially Dr. Frank Bauer and Dr. Marc Hellmuth, who have given me a lot of helpful ideas and advice. Special thanks to Dr. Jan Hubička and Dr. Xianqing Li-jost, not only for their guidance in mathematics and research, but also for their endless care and love—they have made a better and happier me. Many thanks to Dr. Danijela Horak helping with the artwork in this thesis, and also to Dr. Andrew Goodall, Dr. Johannes Rauh, Dr. Chao Xiao, Dr. Steve Chaplick and Mark Jacobs for devoting their time and energy to reading drafts of the thesis and making language corrections.
    [Show full text]
  • Counting Subgraphs Via Homomorphisms∗
    Counting Subgraphs via Homomorphisms∗ Omid Aminiy Fedor V. Fominz Saket Saurabhx Abstract We introduce a generic approach for counting subgraphs in a graph. The main idea is to relate counting subgraphs to counting graph homomorphisms. This approach provides new algorithms and unifies several well known results in algorithms and combinatorics includ- ing the recent algorithm of Bj¨orklund,Husfeldt and Koivisto for computing the chromatic polynomial, the classical algorithm of Kohn, Gottlieb, Kohn, and Karp for counting Hamil- tonian cycles, Ryser's formula for counting perfect matchings of a bipartite graph, and color coding based algorithms of Alon, Yuster, and Zwick. By combining our method with known combinatorial bounds, ideas from succinct data structures, partition functions and the color coding technique, we obtain the following new results: • The number of optimal bandwidth permutations of a graph on n vertices excluding n+o(n) a fixed graph as a minor can be computedp in time O(2 ); in particular in time O(2nn3) for trees and in time 2n+O( n) for planar graphs. • Counting all maximum planar subgraphs, subgraphs of bounded genus, or more gen- erally subgraphs excluding a fixed graph M as a minor can be done in 2O(n) time. • Counting all subtrees with a given maximum degree (a generalization of counting Hamiltonian paths) of a given graph can be done in time 2O(n). • A generalization of Ryser's formula: Let G be a graph with an independent set of size `. Then the number of perfect matchings in G can be found in time O(2n−`n3).
    [Show full text]
  • Approximation Algorithms for Graph Homomorphism Problems
    Approximation Algorithms for Graph Homomorphism Problems Michael Langberg?1, Yuval Rabani??2, and Chaitanya Swamy3 1 Dept. of Computer Science, Caltech, Pasadena, CA 91125. [email protected] 2 Computer Science Dept., Technion — Israel Institute of Technology, Haifa 32000, Israel. [email protected] 3 Center for the Mathematics of Information, Caltech, Pasadena, CA 91125. [email protected] Abstract. We introduce the maximum graph homomorphism (MGH) problem: given a graph G, and a target graph H, find a mapping ϕ : VG 7→ VH that maximizes the number of edges of G that are mapped to edges of H. This problem encodes various fundamental NP-hard prob- lems including Maxcut and Max-k-cut. We also consider the multiway uncut problem. We are given a graph G and a set of terminals T ⊆ VG. We want to partition VG into |T | parts, each containing exactly one terminal, so as to maximize the number of edges in EG having both endpoints in the same part. Multiway uncut can be viewed as a special case of prela- 0 beled MGH where one is also given a prelabeling ϕ : U 7→ VH ,U ⊆ VG, and the output has to be an extension of ϕ0. Both MGH and multiway uncut have a trivial 0.5-approximation algo- rithm. We present a 0.8535-approximation algorithm for multiway uncut based on a natural linear programming relaxation. This relaxation has 6 an integrality gap of 7 ' 0.8571, showing that our guarantee is almost 1 tight. For maximum graph homomorphism, we show that a 2 + ε0 - approximation algorithm, for any constant ε0 > 0, implies an algorithm for distinguishing between certain average-case instances of the subgraph isomorphism problem that appear to be hard.
    [Show full text]
  • Homomorphisms of Cayley Graphs and Cycle Double Covers
    Homomorphisms of Cayley Graphs and Cycle Double Covers Radek Huˇsek Robert S´amalˇ ∗ Computer Science Institute Charles University Prague, Czech Republic fhusek,[email protected] Submitted: Jan 16, 2019; Accepted: Dec 31, 2019; Published: Apr 3, 2020 c The authors. Released under the CC BY license (International 4.0). Abstract We study the following conjecture of Matt DeVos: If there is a graph homomor- phism from a Cayley graph Cay(M; B) to another Cayley graph Cay(M 0;B0) then every graph with an (M; B)-flow has an (M 0;B0)-flow. This conjecture was origi- nally motivated by the flow-tension duality. We show that a natural strengthening of this conjecture does not hold in all cases but we conjecture that it still holds for an interesting subclass of them and we prove a partial result in this direction. We also show that the original conjecture implies the existence of an oriented cycle double cover with a small number of cycles. Mathematics Subject Classifications: 05C60, 05C21, 05C15 1 Introduction For an abelian group M (all groups in this article are abelian even though we often do not say it explicitly), an M-flow ' on a directed graph G = (V; E) is a mapping E ! M such that the oriented sum around every vertex v is zero: X X '(vw) − '(uv) = 0: vw2E uv2E We say that M-flow ' is an (M; B)-flow if '(e) 2 B for all e 2 E. We always assume that B ⊆ M and that B is symmetric, i. e., B = −B.
    [Show full text]
  • LNCS 3729, Pp
    RDF Entailment as a Graph Homomorphism Jean-Fran¸cois Baget INRIA Rhˆone-Alpes, 655 avenue de l’Europe, 38334, Saint Ismier, France [email protected] Abstract. Semantic consequence (entailment) in RDF is ususally com- puted using Pat Hayes Interpolation Lemma. In this paper, we reformu- late this mechanism as a graph homomorphism known as projection in the conceptual graphs community. Though most of the paper is devoted to a detailed proof of this result, we discuss the immediate benefits of this reformulation: it is now easy to translate results from different communities (e.g. conceptual graphs, constraint programming, . ) to obtain new polynomial cases for the NP- complete RDF entailment problem, as well as numerous algorithmic optimizations. 1 Introduction Simple RDF is the knowledge representation language on which RDF (Resource Description Framework) and its extension RDFS are built. As a logic, it is pro- vided with a syntax (its abstract syntax will be used here), and model theoretic semantics [1]. These semantics are used to define entailments: an RDF graph G entails an RDF graph H iff H is true whenever G is. However, since an infinity of interpretations must be evaluated according to this definition, an operational inference mechanism, sound and complete w.r.t. entailment, is needed. This is the purpose of the interpolation lemma [1]: a finite procedure characterizing en- tailments. It has been extended to take into account more expressive languages (RDF, RDFS [1], and other languages e.g. [2]). All these extensions rely on a polynomial-time initial treatment of the graphs, the hard kernel remaining the basic simple entailment, which is a NP-hard problem.
    [Show full text]
  • Geometric Graph Homomorphisms
    1 Geometric Graph Homomorphisms Debra L. Boutin Department of Mathematics Hamilton College, Clinton, NY 13323 [email protected] Sally Cockburn Department of Mathematics Hamilton College, Clinton, NY 13323 [email protected] Abstract A geometric graph G is a simple graph drawn on points in the plane, in general position, with straightline edges. A geometric homo- morphism from G to H is a vertex map that preserves adjacencies and crossings. This work proves some basic properties of geometric homo- morphisms and defines the geochromatic number as the minimum n so that there is a geometric homomorphism from G to a geometric n-clique. The geochromatic number is related to both the chromatic number and to the minimum number of plane layers of G. By pro- viding an infinite family of bipartite geometric graphs, each of which is constructed of two plane layers, which take on all possible values of geochromatic number, we show that these relationships do not de- termine the geochromatic number. This paper also gives necessary (but not sufficient) and sufficient (but not necessary) conditions for a geometric graph to have geochromatic number at most four. As a corollary we get precise criteria for a bipartite geometric graph to have geochromatic number at most four. This paper also gives criteria for a geometric graph to be homomorphic to certain geometric realizations of K2;2 and K3;3. 1 Introduction Much work has been done studying graph homomorphisms. A graph homo- morphism f : G ! H is a vertex map that preserves adjacencies (but not necessarily non-adjacencies). If such a map exists, we write G ! H and 2 say `G is homomorphic to H.' As of this writing, there are 166 research pa- pers and books addressing graph homomorphisms.
    [Show full text]
  • Exact Algorithms for Graph Homomorphisms∗
    Exact Algorithms for Graph Homomorphisms∗ Fedor V. Fomin† Pinar Heggernes† Dieter Kratsch‡ Abstract Graph homomorphism, also called H-coloring, is a natural generalization of graph coloring: There is a homomorphism from a graph G to a complete graph on k vertices if and only if G is k-colorable. During the recent years the topic of exact (exponential-time) algorithms for NP-hard problems in general, and for graph coloring in particular, has led to extensive research. Consequently, it is natural to ask how the techniques developed for exact graph coloring algorithms can be extended to graph homomorphisms. By the celebrated result of Hell and Neˇsetˇril, for each fixed simple graph H, deciding whether a given simple graph G has a homomorphism to H is polynomial-time solvable if H is a bipartite graph, and NP-complete otherwise. The case where H is a cycle of length 5 is the first NP-hard case different from graph coloring. We show that, for a given graph G on n vertices and an odd integer k ≥ 5, whether G is homomorphic to n n/2 O(1) a cycle of length k can be decided in time min{ n/k , 2 }· n . We extend the results obtained for cycles, which are graphs of treewidth two, to graphs of bounded treewidth as follows: If H is of treewidth at most t, then whether G is homomorphic to H can be decided in time (2t + 1)n · nO(1). Topic: Design and Analysis of Algorithms. Keywords: Exact algorithms, homomorphism, coloring, treewidth. ∗This work is supported by the AURORA mobility programme for research collaboration between France and Norway.
    [Show full text]
  • Homomorphisms of Signed Graphs: an Update Reza Naserasr, Eric Sopena, Thomas Zaslavsky
    Homomorphisms of signed graphs: An update Reza Naserasr, Eric Sopena, Thomas Zaslavsky To cite this version: Reza Naserasr, Eric Sopena, Thomas Zaslavsky. Homomorphisms of signed graphs: An update. European Journal of Combinatorics, Elsevier, inPress, 10.1016/j.ejc.2020.103222. hal-02429415v2 HAL Id: hal-02429415 https://hal.archives-ouvertes.fr/hal-02429415v2 Submitted on 17 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Homomorphisms of signed graphs: An update Reza Naserasra, Eric´ Sopenab, Thomas Zaslavskyc aUniversit´ede Paris, IRIF, CNRS, F-75013 Paris, France. E-mail: [email protected] b Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France cDepartment of Mathematical Sciences, Binghamton University, Binghamton, NY 13902-6000, U.S.A. Abstract A signed graph is a graph together with an assignment of signs to the edges. A closed walk in a signed graph is said to be positive (negative) if it has an even (odd) number of negative edges, counting repetition. Recognizing the signs of closed walks as one of the key structural properties of a signed graph, we define a homomorphism of a signed graph (G; σ) to a signed graph (H; π) to be a mapping of vertices and edges of G to (respectively) vertices and edges of H which preserves incidence, adjacency and the signs of closed walks.
    [Show full text]