Avocado-Yearbook-2019-Vol-42-Web
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterising Plant Pathogen Communities and Their Environmental Drivers at a National Scale
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Characterising plant pathogen communities and their environmental drivers at a national scale A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Andreas Makiola Lincoln University, New Zealand 2019 General abstract Plant pathogens play a critical role for global food security, conservation of natural ecosystems and future resilience and sustainability of ecosystem services in general. Thus, it is crucial to understand the large-scale processes that shape plant pathogen communities. The recent drop in DNA sequencing costs offers, for the first time, the opportunity to study multiple plant pathogens simultaneously in their naturally occurring environment effectively at large scale. In this thesis, my aims were (1) to employ next-generation sequencing (NGS) based metabarcoding for the detection and identification of plant pathogens at the ecosystem scale in New Zealand, (2) to characterise plant pathogen communities, and (3) to determine the environmental drivers of these communities. First, I investigated the suitability of NGS for the detection, identification and quantification of plant pathogens using rust fungi as a model system. -
BIOSECURITY NEW ZEALAND STANDARD 155.02.06 Importation
BIOSECURITY NEW ZEALAND STANDARD 155.02.06 Importation of Nursery Stock Issued as an import health standard pursuant to section 22 of the Biosecurity Act 1993 Biosecurity New Zealand Ministry of Agriculture and Forestry PO Box 2526 Wellington New Zealand CONTENTS Endorsement Review Amendment Record 1. Introduction 1.1 Official Contact Point 1.2 Scope 1.3 References 1.4 Definitions and Abbreviations 1.5 General 1.6 Convention on International Trade in Endangered Species 2. Import Specification and Entry Conditions 2.1 Import Specification 2.2 Entry Conditions 2.2.1 Basic Conditions 2.2.1.1 Types of Nursery Stock that may be Imported 2.2.1.2 Import Permit 2.2.1.3 Labelling 2.2.1.4 Cleanliness 2.2.1.5 Phytosanitary Certificate 2.2.1.6 Pesticide treatments for whole plants and cuttings 2.2.1.7 Pesticide treatments for dormant bulbs 2.2.1.8 Measures for Helicobasidium mompa 2.2.1.9 Measures for Phymatotrichopsis omnivora 2.2.1.10 Post-Entry Quarantine (PEQ) 2.2.2 Entry Conditions for Tissue Culture 2.2.2.1 Labelling 2.2.2.2 Cleanliness 2.2.2.3 Phytosanitary Certificate 2.2.2.4 Inspection on Arrival 2.2.3 Importation of Pollen 2.2.4 Importation of New Organisms 2.3 Compliance Procedures 2.3.1 Validation of Overseas Measures 2.3.2 Treatment and Testing of the Consignment 2.4 New Zealand Nursery Stock Returning from Overseas 3. Schedule of Special Entry Conditions 3.1 Special Entry Conditions 3.2 Accreditation of Offshore Plant Quarantine Facilities 3.3 Amendments to the Plants Biosecurity Index Biosecurity New Zealand Standard 155.02.06: Importation of Nursery Stock. -
Australian Cultures of Botryosphaeriaceae Held in Queensland and Victoria Plant Pathology Herbaria Revisited
Australasian Plant Pathology https://doi.org/10.1007/s13313-018-0559-7 ORIGINAL PAPER Australian cultures of Botryosphaeriaceae held in Queensland and Victoria plant pathology herbaria revisited Yu Pei Tan1,2 & Roger G. Shivas1,3 & Thomas S. Marney1 & Jacqueline Edwards4,5 & John Dearnaley6 & Fahimeh Jami7 & Treena I. Burgess7,8 Received: 22 January 2018 /Accepted: 24 April 2018 # Australasian Plant Pathology Society Inc. 2018 Abstract The Botryosphaeriaceae is one of the most widespread and cosmopolitan endophytic group of fungi. However, the species of this group can cause severe disease when the hosts are under stressful conditions. The aim of this study was to identify living cultures from the Botryosphaeriaceae family preserved in the Queensland and Victorian Plant Pathology Herbaria using DNA sequence analyses. The 51 isolates were collected between 1971 and 2017, from 35 different host genera, with the dominant host genera being Mangifera (11 isolates), Acacia (10), and Persea (5). Multilocus sequence analyses resulted in the re-identification of 41 isolates to the genera Botryosphaeria (2 isolates), Diplodia (4), Dothiorella (1), Lasiodiplodia (19), and Neofusicoccum (15), as well as some that belonged to genera outside of the Botryosphaeriaceae (10). New records for Australia were Botryosphaeria sinensis, Diplodia alatafructa, Lasiodiplodia gonubiensis, Neofusicoccum cryptoaustrale,andN. mangroviorum. These were identified as a result of a workshop organised by the Subcommittee on Plant Health Diagnostics. The results of this study provide the fundamental information regarding the diversity of Botryosphaeriaceae species present in Australian. Keywords Biosecurity . Diagnostics . Taxonomy Introduction The Botryosphaeriaceae (Dothideomycetes: Botryosphaeriales) includes 24 genera of ecologically diverse fungi that occur as * Yu Pei Tan saprobes, endophytes or plant pathogens (Slippers et al. -
Stem-End Rot in Major Tropical and Sub-Tropical Fruit Species
REVIEW ARTICLE Stem-end rot in major tropical and sub-tropical fruit species K.O.L.C. Karunanayake and N.K.B. Adikaram Highlights • Stem-end rot (SER) is a most destructive postharvest disease in tropical and sub-tropical fruits. • SER can be caused by several fungal pathogens, Lasiodiplodia theobromae being the most common. • Infection occurs at flowering or fruit development. Fungi may become endophytic in the inflorescence. • Many control options are available where reduction of field infections is key to SER control. Ceylon Journal of Science 49 (Special Issue) 2020: 327-336 DOI: http://doi.org/10.4038/cjs.v49i5.7800 REVIEW ARTICLE Stem-end rot in major tropical and sub-tropical fruit species K.O.L.C. Karunanayake1 and N.K.B. Adikaram2,* 1Department of Botany, The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka 2National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka Received: 01/09/2020 ; Accepted: 08/10/2020 Abstract: Stem-end rot (SER) is one of the most destructive fruit loss could be accounted for disease caused by fungal postharvest diseases affecting some tropical and sub-tropical pathogens. Fruit susceptibility to postharvest diseases fruits. The disease is caused by several fungal pathogens, including increases during ripening due to physiological changes Botryosphaeriaceae species. In mango, Dothiorella dominicana, D. and senescence favoring disease development (Prusky mangiferae, Lasiodiplodia theobromae, Phomopsis mangiferae, et al., 2002). Diseases of harvested fruits and mycotoxin Cytosphaera mangiferae, Pestalotiopsis sp. endophytically contamination contribute to major economic losses to colonize the inflorescence in the orchard or field. Fungi may occur grower, wholesaler, retailer and consumer.