A Revision of Vernicomacanthus Miles with Comments on the Characters Of

Total Page:16

File Type:pdf, Size:1020Kb

A Revision of Vernicomacanthus Miles with Comments on the Characters Of A revision of Vernicomacanthus Miles with comments on the characters of stem-group chondrichthyans Richard Dearden, Jan Blaauwen, Ivan Sansom, Carole Burrow, Robert Davidson, Michael Newman, Andy Ko, Martin Brazeau To cite this version: Richard Dearden, Jan Blaauwen, Ivan Sansom, Carole Burrow, Robert Davidson, et al.. A revision of Vernicomacanthus Miles with comments on the characters of stem-group chondrichthyans. Papers in Palaeontology, Wiley, In press, 10.1002/spp2.1369. hal-03274825 HAL Id: hal-03274825 https://hal.archives-ouvertes.fr/hal-03274825 Submitted on 30 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. [Papers in Palaeontology, 2021, pp. 1–28] A REVISION OF VERNICOMACANTHUS MILES WITH COMMENTS ON THE CHARACTERS OF STEM-GROUP CHONDRICHTHYANS by RICHARD P. DEARDEN1,2 , JAN L. DEN BLAAUWEN3,IVANJ.SANSOM4 , CAROLE J. BURROW5 ,ROBERTG.DAVIDSON6, MICHAEL J. NEWMAN7 , ANDY KO1 and MARTIN D. BRAZEAU1,8 1Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK; [email protected] 2CR2P, Centre de Recherche en Paleontologie–Paris, Museum National d’Histoire Naturelle, Sorbonne Universite, Centre National de la Recherche Scientifique, CP 38, 57 rue Cuvier, F75231, Paris Cedex 05, France; [email protected] 3University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; 4School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK; 5Geosciences, Queensland Museum, 122 Gerler Road, Hendra, Qld 4011, Australia; 635 Millside Road, Peterculter, Aberdeen, AB14 0WG, UK; 7Vine Lodge, Vine Road, Johnston, Haverfordwest, SA62 3NZ, UK; 8Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK; Typescript received 5 October 2020; accepted in revised form 1 April 2021 Abstract: The ‘acanthodian’ fishes provide key anatomi- differences between V. uncinatus and its congeneric, cal insights into the deepest branches of the chon- V. waynensis, which include potentially phylogenetically sig- drichthyan stem group. We review the anatomy of the nificant characters of the shoulder girdle and spines, are acanthodian Vernicomacanthus uncinatus from the Lochko- sufficient to erect a new genus for V. waynensis: Dobun- vian (Lower Devonian, 419.2–410.8 Ma) of Scotland based nacanthus gen. nov. The scales of Vernicomacanthus are on eight articulated fossils, one of which is newly described. identical to those of the ‘shark’ scale genus Altholepis,sug- Broadly, the anatomy of V. uncinatus fits with that of con- gesting that some such scales may instead belong to taxa temporaneous acanthodians such as Climatius and Parexus, with acanthodian-like gross anatomies. Based on these with a head covered by robust tesserae, an enlarged postor- scales we highlight potential patterns in chondrichthyan bital scale, an armoured shoulder girdle, and many pairs of scale evolution, in particular the axial addition of odon- ventrolateral spines. However, it departs from this anatomy todes. Anatomical similarities between Vernicomacanthus in key respects. Its pectoral fin spines are obliquely ridged and gyracanths, highlighted by previous authors, may indi- and posteriorly denticulated, similarly to Carboniferous cate the existence of a grade including these and similar gyracanth stem-group chondrichthyans. Its scales consist of acanthodian-grade taxa placed relatively crownwards in the multiple anteroposteriorly aligned odontodes, similarly to chondrichthyan stem-group. many Palaeozoic ‘sharks’. And its endoskeletal shoulder gir- dle may have a posterolateral angle, previously observed Key words: stem-group chondrichthyan, Lower Devonian, only in shark-like chondrichthyans. We propose that the Acanthodian, scales, shoulder girdle, Scotland. O VER the last decade, evidence has mounted that ‘acan- conceals how acanthodians are related to one another as thodians’ (a collection of poorly understood fishes previ- well as to ostensibly more shark-like stem- ously grouped with bony fishes, cartilaginous fishes, stem- chondrichthyans, leading to poorly resolved phylogenetic gnathostomes, or all three) are in fact all stem-group relationships (Brazeau 2009; Davis et al. 2012; Zhu et al. chondrichthyans (Zhu et al. 2013; Brazeau & Friedman 2013; Giles et al. 2015; King et al. 2016; Chevrinais et al. 2014; Coates et al. 2018). These taxa have the potential to 2017; Coates et al. 2018; Dearden et al. 2019, Frey et al. provide insight into the evolution of chondrichthyan 2020). The best hope for broadly comparable phylo- morphology, as well as that of gnathostomes (jawed verte- genetic characters, outside of rarely preserved endoskeletal brates) more broadly. However, a lack of traits widely structures, lies in the detailed microanatomy of acantho- comparable with outgroup taxa (i.e. endoskeletal data) dians. However, few studies have been able to document © 2021 The Authors. doi: 10.1002/spp2.1369 1 Papers in Palaeontology published by John Wiley & Sons Ltd on behalf of The Palaeontological Association. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. 2 PAPERS IN PALAEONTOLOGY these anatomical details in the context of articulated spec- The erosion of phylogenetic support for the climatiids imens. has, at least in part, reflected the recent recognition of This paper presents a new description and taxonomic chondrichthyan-like traits in these taxa. Consequently, they re-assessment of Vernicomacanthus Miles, 1973, an acan- have become a focal point in studies of chondrichthyan thodian from the Lower Devonian (Lochkovian, 419– origins. The loss of support for their phylogenetic coher- 411 Ma) Midland Valley of Scotland. Vernicomacanthus is ence has come from two sources. First, there is the recog- known from rare articulated skeletons and provides valu- nition of chondrichthyan scale morphotypes in climatiids able information on the morphological diversity of early such as Kathemacanthus (Hanke & Wilson 2010) and Par- acanthodians and other stem-group chondrichthyans exus (Burrow et al. 2013), or at least a lack of characteristi- (Miles 1973). Miller (1858) first described and figured cally acanthodian superpositional scale growth (e.g. remains that would later be assigned to Vernicomacanthus Brazeau 2012; Burrow et al. 2015; Chevrinais et al. 2017). uncinatus (Powrie 1881; Newman & Davidson 2010), not- Second, there is the identification of climatiid-like hard tis- ing that the inner edge of a pectoral fin spine from Bal- sue structures in the articulated skeleton of Doliodus (an ruddery Den had ‘projecting prickles, that resemble sharp undisputed chondrichthyan) showing stout, nodose, ribbed hooked teeth’ (Miller 1858, p. 160). Later, the articulated fin spines with shallow insertions, a complete complement type material was assigned to the species Climatius unci- of ventrolateral and prepectoral fin spines, and a differenti- natus by Powrie (1864) based on a manuscript name by ated head and trunk squamation (Miller et al. 2003; Bur- Egerton; Miles (1973) subsequently found it sufficiently row et al. 2017; Maisey et al. 2017). It remains unclear to distinct from that taxon to erect a new genus. Miles what extent the armoured and heavily spined climatiid (1973) also assigned material from the Welsh borders to conditions reflect shared derived traits of early V. waynensis that we assign to a new genus in the present crown-group chondrichthyans, or whether these are ple- paper. This reassignment reflects anatomical differences in siomorphic traits of the chondrichthyan total group. the shoulder girdle, spines, and size that distinguish the Climatiid-like taxa variably appear in phylogenies as either two taxa. Furthermore, assuming that these species are nested close to crown-group chondrichthyans (Giles et al. monophyletic in the absence of clear evidence could be 2015; King et al. 2016; Chevrinais et al. 2017; Coates et al. problematic in the context of unsettled stem- 2018; Dearden et al. 2019), with remaining lightly armoured chondrichthyan phylogenetic relationships. acanthodians in a more remote position, or as a basal grade Vernicomacanthus was assigned to the Climatiidae by of the chondrichthyan total group (Burrow et al. 2016; Frey Miles (1973). The Family Climatiidae Berg, 1940, placed et al. 2020), perhaps reflecting their retention of within the Order Climatiida Berg, 1940, are an assem- osteichthyan-like characters such as branchiostegal plates. blage of acanthodians with shoulder girdles carrying der- Here, we redescribe Vernicomacanthus on the basis of a mal plates, skulls clad in dermal tesserae, and pre-pectoral new specimen as well as a re-examination of four speci- fin spines. The Climatiidae in particular have stout fin- mens described previously. Despite having been known spines with the dorsal and anal spines superficially since the nineteenth century, Vernicomacanthus uncinatus inserted into
Recommended publications
  • Memoirs of the National Museum, Melbourne January 1906
    Memoirs of the National Museum, Melbourne January 1906 https://doi.org/10.24199/j.mmv.1906.1.01 ON A CARBONIFEROUS FISH-FAUNA FROM THE MANSFIELD DISTRICT, VICTORIA. f BY AWL'HUR SJnTu T oomYARD, LL.D., F.U..S. I.-IN'l1RODUC'I1ION. The fossil fish-remains colloctocl by 1fr. George Sweet, F.G.S., from the reel rncks of the Mansfield District, are in a very imperfect state of presern1tion. 'J1lic·y vary considerably in appea1·a11co according to the Hature of the stratum whence they were obtained. 'l'he specimens in the harder ealcm-oous layers retain their original bony ot· ealcifiocl tissue, which ndhores to tbe rock ancl cannot readily ho exposed without fractnre. 'l'he remains hnriecl in the more fcrruginous ancl sanely layers have left only hollmv moulds of their outm1rd shape, or arc much doeayod and thus Yeq difficult to recognise. MoreQvor, the larger fishes arc repr0sontNl only hy senttcrocl fragments, while the smaller fishes, eYon when approximately whole, arc more or less distorted and disintcgrato(l. Under these circumstancPs, with few materials for comparison, it is not Rnrprising that the latt: Sil' Broderick McCoy should haYe failed to pnbJii.,h a sntisfactory a(•eount of the Mansfield eollection. \Yith great skill, ho sPlcctcd nearly all the more important specimens to be drawn in the series of plates accom­ panying the present memoir. II0 also instructed ancl snp0rvif-ecl the artist, so thnt moRt of' tbc pl'ineipnl foaturcs of the fossils "\Yore duly 0111phasisc•cl. IIis preliminary determinations, however, published in 1800, 1 arc now shown to have been for the most part erroneous; while his main conelusions as to the affinities of 1 F.
    [Show full text]
  • Comparative Morphology of the Male Genitalia in Lepidoptera
    COMPARATIVE MORPHOLOGY OF THE MALE GENITALIA IN LEPIDOPTERA. By DEV RAJ MEHTA, M. Sc.~ Ph. D. (Canta.b.), 'Univefsity Scholar of the Government of the Punjab, India (Department of Zoology, University of Oambridge). CONTENTS. PAGE. Introduction 197 Historical Review 199 Technique. 201 N ontenclature 201 Function • 205 Comparative Morphology 206 Conclusions in Phylogeny 257 Summary 261 Literature 1 262 INTRODUCTION. In the domains of both Morphology and Taxonomy the study' of Insect genitalia has evoked considerable interest during the past half century. Zander (1900, 1901, 1903) suggested a common structural plan for the genitalia in various orders of insects. This work stimulated further research and his conclusions were amplified by Crampton (1920) who homologized the different parts in the genitalia of Hymenoptera, Mecoptera, Neuroptera, Diptera, Trichoptera Lepidoptera, Hemiptera and Strepsiptera with those of more generalized insects like the Ephe­ meroptera and Thysanura. During this time the use of genitalic charac­ ters for taxonomic purposes was also realized particularly in cases where the other imaginal characters had failed to serve. In this con­ nection may be mentioned the work of Buchanan White (1876), Gosse (1883), Bethune Baker (1914), Pierce (1909, 1914, 1922) and others. Also, a comparative account of the genitalia, as a basis for the phylo­ genetic study of different insect orders, was employed by Walker (1919), Sharp and Muir (1912), Singh-Pruthi (1925) and Cole (1927), in Orthop­ tera, Coleoptera, Hemiptera and the Diptera respectively. It is sur­ prising, work of this nature having been found so useful in these groups, that an important order like the Lepidoptera should have escaped careful analysis at the hands of the morphologists.
    [Show full text]
  • Geological Survey of Ohio
    GEOLOGICAL SURVEY OF OHIO. VOL. I.—PART II. PALÆONTOLOGY. SECTION II. DESCRIPTIONS OF FOSSIL FISHES. BY J. S. NEWBERRY. Digital version copyrighted ©2012 by Don Chesnut. THE CLASSIFICATION AND GEOLOGICAL DISTRIBUTION OF OUR FOSSIL FISHES. So little is generally known in regard to American fossil fishes, that I have thought the notes which I now give upon some of them would be more interesting and intelligible if those into whose hands they will fall could have a more comprehensive view of this branch of palæontology than they afford. I shall therefore preface the descriptions which follow with a few words on the geological distribution of our Palæozoic fishes, and on the relations which they sustain to fossil forms found in other countries, and to living fishes. This seems the more necessary, as no summary of what is known of our fossil fishes has ever been given, and the literature of the subject is so scattered through scientific journals and the proceedings of learned societies, as to be practically inaccessible to most of those who will be readers of this report. I. THE ZOOLOGICAL RELATIONS OF OUR FOSSIL FISHES. To the common observer, the class of Fishes seems to be well defined and quite distin ct from all the other groups o f vertebrate animals; but the comparative anatomist finds in certain unusual and aberrant forms peculiarities of structure which link the Fishes to the Invertebrates below and Amphibians above, in such a way as to render it difficult, if not impossible, to draw the lines sharply between these great groups.
    [Show full text]
  • Chelicerata; Eurypterida) from the Campbellton Formation, New Brunswick, Canada Randall F
    Document generated on 10/01/2021 9:05 a.m. Atlantic Geology Nineteenth century collections of Pterygotus anglicus Agassiz (Chelicerata; Eurypterida) from the Campbellton Formation, New Brunswick, Canada Randall F. Miller Volume 43, 2007 Article abstract The Devonian fauna from the Campbellton Formation of northern New URI: https://id.erudit.org/iderudit/ageo43art12 Brunswick was discovered in 1881 at the classic locality in Campbellton. About a decade later A.S. Woodward at the British Museum (Natural History) (now See table of contents the Natural History Museum, London) acquired specimens through fossil dealer R.F. Damon. Woodward was among the first to describe the fish assemblage of ostracoderms, arthrodires, acanthodians and chondrichthyans. Publisher(s) At the same time the museum also acquired specimens of a large pterygotid eurypterid. Although the vertebrates received considerable attention, the Atlantic Geoscience Society pterygotids at the Natural History Museum, London are described here for the first time. The first pterygotid specimens collected in 1881 by the Geological ISSN Survey of Canada were later identified by Clarke and Ruedemann in 1912 as Pterygotus atlanticus, although they suggested it might be a variant of 0843-5561 (print) Pterygotus anglicus Agassiz. An almost complete pterygotid recovered in 1994 1718-7885 (digital) from the Campbellton Formation at a new locality in Atholville, less than two kilometres west of Campbellton, has been identified as P. anglicus Agassiz. Like Explore this journal the specimens described by Clarke and Ruedemann, the material from the Natural History Museum, London is herein referred to P. anglicus. Cite this article Miller, R. F. (2007). Nineteenth century collections of Pterygotus anglicus Agassiz (Chelicerata; Eurypterida) from the Campbellton Formation, New Brunswick, Canada.
    [Show full text]
  • The Pharynx of the Stem-Chondrichthyan Ptomacanthus and the Early Evolution of the Gnathostome Gill Skeleton
    ARTICLE https://doi.org/10.1038/s41467-019-10032-3 OPEN The pharynx of the stem-chondrichthyan Ptomacanthus and the early evolution of the gnathostome gill skeleton Richard P. Dearden 1, Christopher Stockey1,2 & Martin D. Brazeau1,3 The gill apparatus of gnathostomes (jawed vertebrates) is fundamental to feeding and ventilation and a focal point of classic hypotheses on the origin of jaws and paired appen- 1234567890():,; dages. The gill skeletons of chondrichthyans (sharks, batoids, chimaeras) have often been assumed to reflect ancestral states. However, only a handful of early chondrichthyan gill skeletons are known and palaeontological work is increasingly challenging other pre- supposed shark-like aspects of ancestral gnathostomes. Here we use computed tomography scanning to image the three-dimensionally preserved branchial apparatus in Ptomacanthus,a 415 million year old stem-chondrichthyan. Ptomacanthus had an osteichthyan-like compact pharynx with a bony operculum helping constrain the origin of an elongate elasmobranch-like pharynx to the chondrichthyan stem-group, rather than it representing an ancestral condition of the crown-group. A mixture of chondrichthyan-like and plesiomorphic pharyngeal pat- terning in Ptomacanthus challenges the idea that the ancestral gnathostome pharynx con- formed to a morphologically complete ancestral type. 1 Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK. 2 Centre for Palaeobiology Research, School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK. 3 Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK. Correspondence and requests for materials should be addressed to M.D.B.
    [Show full text]
  • Note on Pterygotus Anglicus Agassiz (Eurypterida: Devonian) from the Campbellton Formation, New Brunswick Randall F
    Document generated on 10/01/2021 12:30 a.m. Atlantic Geology Note on Pterygotus anglicus Agassiz (Eurypterida: Devonian) from the Campbellton Formation, New Brunswick Randall F. Miller Volume 32, Number 2, Summer 1996 Article abstract Fragments of the large euryptcrid Pterygotus, recently collected from the URI: https://id.erudit.org/iderudit/ageo32_2art01 Devonian Campbellton Formation at Atholville, New Brunswick, are identified as belonging to P. anglicus Agassiz. The only previous Pterygotus specimens See table of contents from this site, collected in 1881, were assigned to a new species P. atlanticus Clarke and Rucdemann, in 1912. Clarke and Rucdcmann's suggestion that P. atlanticus might turn out to be a small specimen of P. anglicus is supported by Publisher(s) this new find. However, possible revision of P. atlanticus awaits the discovery of additional, more complete, material. Atlantic Geoscience Society ISSN 0843-5561 (print) 1718-7885 (digital) Explore this journal Cite this article Miller, R. F. (1996). Note on Pterygotus anglicus Agassiz (Eurypterida: Devonian) from the Campbellton Formation, New Brunswick. Atlantic Geology, 32(2), 95–100. All rights reserved © Atlantic Geology, 1996 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research. https://www.erudit.org/en/ A tlantic Geology 95 Note on Pterygotus anglicus Agassiz (Eurypterida: Devonian) from the Campbellton Formation, New Brunswick Randall F.
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Tayside, Central and Fife Tayside, Central and Fife
    Detail of the Lower Devonian jawless, armoured fish Cephalaspis from Balruddery Den. © Perth Museum & Art Gallery, Perth & Kinross Council Review of Fossil Collections in Scotland Tayside, Central and Fife Tayside, Central and Fife Stirling Smith Art Gallery and Museum Perth Museum and Art Gallery (Culture Perth and Kinross) The McManus: Dundee’s Art Gallery and Museum (Leisure and Culture Dundee) Broughty Castle (Leisure and Culture Dundee) D’Arcy Thompson Zoology Museum and University Herbarium (University of Dundee Museum Collections) Montrose Museum (Angus Alive) Museums of the University of St Andrews Fife Collections Centre (Fife Cultural Trust) St Andrews Museum (Fife Cultural Trust) Kirkcaldy Galleries (Fife Cultural Trust) Falkirk Collections Centre (Falkirk Community Trust) 1 Stirling Smith Art Gallery and Museum Collection type: Independent Accreditation: 2016 Dumbarton Road, Stirling, FK8 2KR Contact: [email protected] Location of collections The Smith Art Gallery and Museum, formerly known as the Smith Institute, was established at the bequest of artist Thomas Stuart Smith (1815-1869) on land supplied by the Burgh of Stirling. The Institute opened in 1874. Fossils are housed onsite in one of several storerooms. Size of collections 700 fossils. Onsite records The CMS has recently been updated to Adlib (Axiel Collection); all fossils have a basic entry with additional details on MDA cards. Collection highlights 1. Fossils linked to Robert Kidston (1852-1924). 2. Silurian graptolite fossils linked to Professor Henry Alleyne Nicholson (1844-1899). 3. Dura Den fossils linked to Reverend John Anderson (1796-1864). Published information Traquair, R.H. (1900). XXXII.—Report on Fossil Fishes collected by the Geological Survey of Scotland in the Silurian Rocks of the South of Scotland.
    [Show full text]
  • A New Species of Ischnacanthiform Acanthodian from the Givetian of Mimerdalen, Svalbard
    NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 4 https://dx.doi.org/10.17850/njg99-4-5 A new species of ischnacanthiform acanthodian from the Givetian of Mimerdalen, Svalbard Michael J. Newman¹, Carole J. Burrow² & Jan L. den Blaauwen3 1Vine Lodge, Vine Road, Johnston, Haverfordwest, Pembrokeshire, SA62 3NZ, UK. ²Geosciences, Queensland Museum, 122 Gerler Road, Hendra, 4011 Queensland, Australia. ³University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands. E-mail corresponding author (Michael J. Newman): [email protected] A new ischnacanthiform acanthodian Serradentus armstrongi nov. gen. et sp. has been collected from the Middle Devonian (Givetian) Fiskekløfta Member, the upper member of the Tordalen Formation in the Mimerdalen Subgroup of Spitsbergen. The specimen comprises both pairs of upper and lower jaw bones, jaw cartilages, tooth or denticle whorls, dentition cones and spiky denticles. The latter two features have previously only been identified in Early Devonian ischnacanthiforms. The geology is consistent with a depositional environment of a brackish backwater lagoon with an anoxic bottom. The fish probably entered the lagoon during storm action and died due to the storm churning up bottom anoxic waters, or from being trapped and killed by hypersalinity. The fish possibly partially decomposed on the surface before the head detached and sank to the lagoon floor. The lack of scavengers due to the anoxic conditions prevented scattering of the individual elements, with denticles preserved along the labial surface of the dentigerous jaw bone, and jaw cartilage under the jaw bone. Keywords: Lagoon, Devonian, histology, Spitsbergen, Arctic, Serradentus Received 21. August 2019 / Accepted 02. December 2019 / Published online 14.
    [Show full text]
  • GY 112 Lecture Notes D
    GY 112 lecture notes D. Haywick (2006) 1 GY 112 Lecture Notes Evolution of the Chordates Lecture Goals: A) The first animals with backbones (conodonts) B) The fish family tree C) Other key chordate evolutionary events Textbook reference: Levin 7th edition (2003) Chapter 10; Levin 8th edition (2006) Chapter 12 A) The conodonts By now you should realize that there are still a lot of mysteries in Earth history. The same can be said about biology, chemistry and physics. Science does not have all the answers, nor will it ever find all the answers. However, every once in a while, a long standing mystery or problem is solved. I bet you're thinking that in order to do this, a clever scientist had to dedicate his or her entire life to finding the solution. He/She had to work non- stop, day and night, taking a break only to eat, sleep for a few hours, and, occasionally, pee. Yep, sometimes this is what's done. Other times, however, it's just blind luck. Such is the case with a formerly mysterious group of animal remains simply classified as the conodonts. These hard body parts (see scanning electron microscope image to the left from, http://earthnet-geonet.ca/earth/ranges_e.php?s=conodonts) are usually quite small (less than 1 mm), are composed of the mineral apatite [Ca5(PO4)3(OH,F)] and really look like tiny teeth. They have been long used for biostratigraphy and there are many well-know examples of conodont index fossils, but apart from the fact that they look like teeth, and that they are now all extinct, no one really knew what they were.
    [Show full text]
  • Newsletter Number 79
    The Palaeontology Newsletter Contents 79 Editorial 2 Association Business 3 News: awards and prizes 10 Association Meetings 16 From our correspondents Encore des Buffonades, mon cher … 20 PalaeoMath 101: Elliptic Fourier … 29 Future meetings of other bodies 44 Meeting Reports Silicofossil/Palynology joint meeting 50 Lyell Meeting 2011 53 55th PalAss Annual Meeting 2011 55 Obituary Arthur Cruickshank 64 Reporter: the Palaeontology of Pop 71 Sylvester-Bradley reports 75 Virtual Palaeontology 82 Book Reviews 88 Palaeontology vol 55 parts 1 & 2 101–102 Reminder: The deadline for copy for Issue no 80 is 11th June 2012. On the Web: <http://www.palass.org/> ISSN: 0954-9900 Newsletter 79 2 Editorial The publication of Newsletter 79 marks the end of the beginning of my new post as Newsletter editor. Many thanks to my predecessor Dr Richard Twitchett, who prepared a most useful guide to my editorial duties and tasks before moving to the even more demanding Council role of Secretary. Unlike the transition to editor in the world of journalism, I did not inherit an expenses account, tastefully furnished office and a PA, but I do now have the <[email protected]> account. That is how to contact me about Newsletter matters, send me articles, and let me, and Council, know what you want, and don’t want, from the Newsletter. The Newsletter has expanded greatly in the past decade and there is a great deal more copy and content, which you can check by investigating the Newsletter archive on the Association website. Such an expansion relies on a steady flow of copy from the membership and our regular columnists.
    [Show full text]
  • Nostolepis Scale Remains (Stem Chondrichthyes) from the Lower Devonian of Qujing, Yunnan, China
    Nostolepis scale remains (stem Chondrichthyes) from the Lower Devonian of Qujing, Yunnan, China Qiang Li1,2,3, Xindong Cui3,4, Plamen Stanislavov Andreev1,3, Wenjin Zhao3,4,5, Jianhua Wang1, Lijian Peng1 and Min Zhu3,4,5 1 Research Center of Natural History and Culture, Qujing Normal University, Qujing, China 2 Chongqing Institute of Geology and Mineral Resources, Chongqing, China 3 Key CAS Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), Beijing, China 4 University of Chinese Academy of Sciences, Beijing, China 5 CAS Center for Excellence in Life and Paleoenvironment, Beijing, China ABSTRACT Based initially on microfossils, Nostolepis is one of the first known `acanthodians', which constitute a paraphyletic assemblage of plesiomorphic members of the total group Chondrichthyes. Its wide distribution has potential implications for stratigraphic comparisons worldwide. Six species of Nostolepis have been reported in China, includ- ing one species from the Xitun Formation (Lochkovian, Lower Devonian) of Qujing, eastern Yunnan. Acid preparation of rock samples from the Xitun Formation has yielded abundant acanthodian remains. Based on both morphological and histological examinations, here we identify five species of Nostolepis, including two new species. N. qujingensis sp. nov. is characterized by thin scales devoid of the neck anteriorly and the dentine tubules rarely present in the anterior part of the crown. N. digitus sp. nov. is characterized by parallel ridges on anterior and lateral margins of the crown, and the neck constricted and ornamented with pore openings. We extend the duration of N. striata in China from the Pridoli of Silurian (Yulungssu Formation) to the Lower Devonian in Qujing and report the first occurrences of N.
    [Show full text]