A B C D

1990年12月18日 第4種郵便物認可 ISSN 0914-5818 2014 VOL. NO. 28 1 C 2014 T VOL. 28 NO. 1 IN (公開用) O ACTINOMYCETOLOGICA

M

Y

C

E

T

O L

O

G

日 本 I 放 C 線 菌 学 http://www. actino.jp/ 会 日本放線菌学会誌 第28巻 1 号 誌 Published by ACTINOMYCETOLOGICA VOL.28 NO.1, 2014 The Society for Actinomycetes Japan

SAJ NEWS

Vol. 28, No. 1, 2014

Contents Outline of SAJ: Activities and Membership S 2 List of new scientific names and nomenclatural changes in the phylum validly published in 2013 S 4 Award Lecture S 25 55th Regular Colloquium S 39 Online access to The Journal of Antibiotics for SAJ members S 40

S1 Outline of SAJ: Activities and Membership

The Society for Actinomycetes Japan (SAJ) searchers in foreign countries are welcome to join was established in 1955 and authorized as a scien- SAJ. For application of SAJ membership, please tific organization by Science Council of Japan in contact the SAJ secretariat (see below). Annual 1985. The Society for Applied Genetics of Actino- membership fees are currently 5,000 yen for active mycetes, which was established in 1972, merged in members, 3,000 yen for student members and SAJ in 1990. SAJ aims at promoting actinomycete 20,000 yen or more for supporting members (mainly researches as well as social and scientific exchanges companies), provided that the fees may be changed between members domestically and internationally. without advance announcement. The Activities of SAJ have included annual and regular scientific meetings, workshops and publica- The current members (April 2014 - March 2016) tions of The Journal of Antibiotics (the official jour- of the Board of Directors are: Hiroyuki Osada nal, joint publication with Japan Antibiotics Re- (Chairperson; RIKEN), Haruo Ikeda (Vice Chair- search Association), Actinomycetologica (Newslet- person; Kitasato Univ.), Tomohiko Tamura (Secre- ter) and laboratory manuals. Contributions to Inter- tary General; NITE), Takayuki Kajiura (Ajinomoto national Streptomyces Project (ISP) and Interna- Co., Inc.), Kenji Ueda (Nihon Univ.), Yojiro Anzai tional Symposium on Biology of Actinomycetes (Toho Univ.), Koji Ichinose (Musashino Univ.), Jun (ISBA) have also been SAJ's activities. In addition, Ishikawa (NIID), Takashi Sakai (Eisai Co., Ltd.), SAJ have occasional special projects such as the Kenji Arakawa (Hiroshima Univ.), Tohru Dairi publication of books related to actinomycetes: “At- (Hokkaido Univ.), Yasuhiro Onaka (Tokyo Univ.), las of Actinomycetes, 1997”, “Identification Manual Masahiro Sota (Nagase & Co., Ltd.), and Takuji of Actinomycetes, 2001” and “Digital Atlas of Ac- Kudo (RIKEN). tinomycetes, 2002” (http://www.actino/ DigitalAt- The members of the Advisory Board are: Yoko las/). These activities have been planned and orga- Takahashi, Kunimoto Hotta, Kozo Ochi, Yuzuru nized by the board of directors with association of Mikami, and Akira Yokota. executive committees consisting of active members who belong to academic and nonacademic organiza- Copyright: The copyright of the articles pub- tions. lished in Actinomycetologica is transferred from the authors to the publisher, The Society for Actinomy- The SAJ Memberships comprise active mem- cetes Japan, upon acceptance of the manuscript. bers, student members, supporting members and honorary members. Currently (as of Mar. 31, The SAJ Secretariat 2012), SAJ has about 413 active members including c/o Resource Collection Division (NBRC), student members, 22 oversea members, 11 honorary NITE Biological Resource Center, members, 5 oversea honorary members, 1 special National Institute of Technology and Evaluation member and 12 supporting members. The SAJ 2-5-8, Kazusakamatari, Kisarazu, members are allowed to join the scientific and social Chiba 292-0818, Japan meetings or projects (regular and specific) of SAJ on Phone: +81-438-20-5763 a membership basis and to browse The Journal of Antibiotics from a link on the SAJ website and will Fax: +81-438-52-2329 receive each issue of Actinomycetologica, currently E-mail: [email protected] published in June and December. Actinomycete re-

S2 List of new scientific names and nomenclatural changes in the phylum Actinobacteria validly published in 2013

NEW CLASS

Acidimicrobiia Norris 2013, class. nov. teria), part B, Springer New York, 2012, pp. Type order: Acidimicrobiales Stackebrandt et al. 2000-2001; Validation List no. 151 [Int. J. Syst. 1997. Evol. Microbiol., 2013, 63: 1577-1580, Reference: Bergey's Manual of Systematic Bac- doi:10.1099/ijs.0.052571-0]. teriology, second edition, vol. 5 (The Actinobac- teria), part B, Springer New York, 2012, p. 1968; Rubrobacteria Suzuki 2013, class. nov. Validation List no. 151 [Int. J. Syst. Evol. Mi- Type order: Rubrobacterales Rainey et al. 1997. crobiol., 2013, 63: 1577-1580, Reference: Bergey's Manual of Systematic Bac- doi:10.1099/ijs.0.052571-0]. teriology, second edition, vol. 5 (The Actinobac- teria), part B, Springer New York, 2012, pp. Coriobacteriia König 2013, class. nov. 2004-2005; Validation List no. 151 [Int. J. Syst. Type order: Coriobacteriales Stackebrandt et al. Evol. Microbiol., 2013, 63: 1577-1580, 1997. doi:10.1099/ijs.0.052571-0]. Reference: Bergey's Manual of Systematic Bac- teriology, second edition, vol. 5 (The Actino- Thermoleophilia Suzuki and Whitman 2013, ), part B, Springer New York, 2012, p. class. nov. 1975; Validation List no. 151 [Int. J. Syst. Evol. Type order: Thermoleophilales Reddy and Gar- Microbiol., 2013, 63: 1577-1580, cia-Pichel 2009. doi:10.1099/ijs.0.052571-0]. Reference: Bergey's Manual of Systematic Bac- teriology, second edition, vol. 5 (The Actinobac- Nitriliruptoria Ludwig et al. 2013, class. nov. teria), part B, Springer New York, 2012, p. 2010; Type order: Nitriliruptorales Sorokin et al. 2009. Validation List no. 151 [Int. J. Syst. Evol. Mi- Reference: Bergey's Manual of Systematic Bac- crobiol., 2013, 63: 1577-1580, teriology, second edition, vol. 5 (The Actinobac- doi:10.1099/ijs.0.052571-0].

NEW ORDER

Eggerthellales Gupta et al. 2013, ord. nov. 63: 3379-3397, doi:10.1099/ijs.0.048371-0. Type : Eggerthella Wade et al. 1999. A member of the class Coriobacteriia. Reference: Int. J. Syst. Evol. Microbiol., 2013,

NEW FAMILY

Atopobiaceae Gupta et al. 2013, fam. nov. Type 63: 3379-3397, doi:10.1099/ijs.0.048371-0. A genus: Atopobium Collins and Wallbanks, 1993. member of the order Coriobacteriales. Reference: Int. J. Syst. Evol. Microbiol., 2013,

S3 Eggerthellaceae Gupta et al. 2013, fam. nov. Motilibacteraceae Lee 2013, fam. nov. Type genus: Eggerthella Wade et al. 1999. Type genus: Motilibacter Lee 2012 emend. Lee Reference: Int. J. Syst. Evol. Microbiol., 2013. 2013, 63: 3379-3397, Reference: Int. J. Syst. Evol. Microbiol., doi:10.1099/ijs.0.048371-0. 2013, 63: 3818-3822, A member of the order Eggerthellales. doi:10.1099/ijs.0.052357-0. A member of the suborder Frankineae.

NEW GENUS

Allonocardiopsis Du et al. 2013, gen. nov. N-acetyl Mur. Type : Allonocardiopsis opalescens Du et Whole-cell sugar: Gal, Glc. al. 2013. Fatty acid: a-C17:0, a-C17:1ω9c.

Reference: Int. J. Syst. Evol. Microbiol., 2013, Isoprenoid quinone: MK-8(H4). 63: 900-904, doi:10.1099/ijs.0.041491-0. Polar lipid: DPG, PG, PI, PGL, PL, GLs. A Gram-stain-positive, aerobic actinomycete. A member of the family Dermacoccaceae.

Cell wall: meso-A2pm. Whole-cell sugar: Gal. Flaviflexus Du et al. 2013, gen. nov.

Fatty acid: i-C16:0, a-C15:0, i-C15:0. Type species: Flaviflexus huanghaiensis Du et al. Isoprenoid quinone: MK-9, MK-11, MK-12. 2013. Polar lipid: PG, DPG. Reference: Int. J. Syst. Evol. Microbiol., 2013, A member of the suborder Streptosporangineae. 63: 1863-1867, doi:10.1099/ijs.0.042044-0. Gram-stain-positive, non-motile, straight to Aquihabitans Jin et al. 2013, gen. nov. slightly curved rods and facultatively anaerobic. Type species: Aquihabitans daechungensis Jin et : type A5α al. 2013. (L-Lys-L-Ala-L-Lys-D-Glu).

Reference: Int. J. Syst. Evol. Microbiol., 2013, Fatty acid: C18:1ω9c, C16:0, C14:0, C18:0, C16:1ω9c.

63: 2970-2974, doi:10.1099/ijs.0.046060-0. Isoprenoid quinone: MK-9(H4). Gram-stain-positive, non-motile short rods with Polar lipid: PG, PL, PGLs. cilia. A member of the family Actinomycetaceae.

Fatty acid: C16:1ω5c, C16:0, C17:1ω8c, C18:1ω9c.

Isoprenoid quinone: MK-9(H6). Jatrophihabitans Madhaiyan et al. 2013, gen. Polar lipid: DPG, PI, PIM, PL. nov. A member of the family Iamiaceae. Type species: Jatrophihabitans endophyticus Madhaiyan et al. 2013. Barrientosiimonas Lee et al. 2013, gen. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type species: Barrientosiimonas humi Lee et al. 63: 1241-1248, doi:10.1099/ijs.0.039685-0. 2013. Gram-stain-positive, aerobic, non-motile, Reference: Int. J. Syst. Evol. Microbiol., 2013, non-spore-forming rods.

63: 241-248, doi:10.1099/ijs.0.038232-0. Cell wall: type A1γ (meso-A2pm); N-glycolyl A Gram-stain-positive, aerobic, irregular cocci Mur. and short rods. Fatty acid: i-C16:0, C18:1ω9c, a-C17:0, C-17:1ω8c.

Cell wall: type A4α (L-Lys-L-Ser-D-Asp); Isoprenoid quinone: MK-9(H4).

S4 Polar lipid: DPG, PLs, GL, ALs. Polar lipid: DPG, PG, DMG, PL, GL. A member of the suborder Frankineae. A member of the family Microbacteriaceae.

Longimycelium Xia et al. 2013, gen. nov. Parvibacter Clavel et al. 2013, gen. nov. Type species: Longimycelium tulufanense Xia et Type species: Parvibacter caecicola Clavel et al. al. 2013. 2013. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2813-2818, doi:10.1099/ijs.0.044222-0. 63: 2642-2648, doi:10.1099/ijs.0.045344-0. An aerobic, Gram-stain-positive, non-acid-fast Aerotolerant, Gram-stain-positive rods that grow actinomycete forming abundant aerial mycelia only under strictly anoxic conditions. with spherical sporangia containing one to sev- Cell wall: meso-A2pm. eral spores. Whole-cell sugar: Gal, Glc, Rib.

Cell wall: meso-A2pm. Fatty acid: C16:0, C15:0 ISO. Whole-cell sugar: Xyl, Gal, Rib. Isoprenoid quinone: MMK-6.

Fatty acid: i-C16:0, a-C17:0. Polar lipid: DPG, PG, PLs, GLs.

Isoprenoid quinone: MK-9(H4), MK-9(H6), A member of the family Coriobacteriaceae (→

MK-9(H10). the family Eggerthellaceae). Polar lipid: PE, PC, DPG, PI, PIM. A member of the family Pseudonocardiaceae. Pontimonas Jang et al. 2013, gen. nov. Type species: Pontimonas salivibrio Jang et al. Lysinimonas Jang et al. 2013, gen. nov. 2013. Type species: Lysinimonas soli Jang et al. 2013. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2124-2131, doi:10.1099/ijs.0.043661-0. 63: 1403-1410, doi:10.1099/ijs.0.042945-0. Vibrio-shaped, Gram-stain-positive, strictly Aerobic, Gram-stain-positive, aerobic, non-spore-forming and non-motile. non-spore-forming, non-motile rods. Cell wall: A2bu, Ala, Gly, Glu.

Cell wall: type B1δ (Lys, A2bu). Fatty acid: a-C15:0, i-C16:0, i-C15:0, i-C14:0.

Fatty acid: a-C15:0, i-C16:0. Isoprenoid quinone: MK-9, MK-10.

Isoprenoid quinone: MK-12(H2), MK-11(H2). A member of the family Microbacteriaceae. Polar lipid: DPG, PG, GLs. DNA G+C content: 67-74 mol%. Rudaeicoccus Kim et al. 2013, gen. nov. A member of the family Microbacteriaceae. Type species: Rudaeicoccus suwonensis Kim et al. 2013. Naasia Weon et al. 2013, gen. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type species: Naasia aerilata Weon et al. 2013. 63: 1291-1296, doi:10.1099/ijs.0.043455-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, Aerobic, Gram-stain-positive, 63: 2436-2441, doi:10.1099/ijs.0.046599-0. non-spore-forming coccoids. Aerobic, Gram-stain-positive, Cell wall: type A4α (L-Lys-L-Thr-D-Glu) with a non-spore-forming rods. glycine residue bound to the α-carboxy group of

Cell wall: type B1 (A2bu); N-acetyl Mur. D-Glu in position 2.

Fatty acid: a-C15:0, i-C16:0, a-C17:0. Whole-cell sugar: Glc, Rib.

Isoprenoid quinone: MK-10, MK-14, MK-13, Fatty acid: a-C17:0, 10Me-C18:0, 10Me-C17:0.

MK-12. Isoprenoid quinone: MK-8(H4), MK-8(H6).

S5 Polar lipid: DPG, PI, PLs, APLs, AL. Fatty acid: i-C16:0, i-C16:1 H, a-C17:1ω9c.

A member of the family Dermacoccaceae. Isoprenoid quinone: MK-8(H4). Polar lipid: DPG, PG, PI, PL. Rudaibacter Kim et al. 2013, gen. nov. A member of the family Dermacoccaceae. Type species: Rudaibacter terrae Kim et al. 2013. Tersicoccus Vaishampayan et al. 2013, gen. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type species: Tersicoccus phoenicis 63: 4052-4057, doi:10.1099/ijs.0.049817-0. Vaishampayan et al. 2013. Gram-stain-positive, aerobic, mesophilic, Reference: Int. J. Syst. Evol. Microbiol., 2013, non-motile rods. 63: 2463-2471, doi:10.1099/ijs.0.047134-0. Cell wall: type B2γ (D-Ala, D-Glu, Gly, Gram-stain-positive, non-spore-forming,

DL-A2bu); N-acetyl Mur. non-motile cocci.

Fatty acid: C18:1ω7c and/or C18:1ω6c, a-C17:0, Cell wall: Lys-Ser-Ala2. a-C15:0. Fatty acid: a-C15:0, a-C17:0, i-C15:0.

Isoprenoid quinone: MK-13, MK-12. Isoprenoid quinone: MK-8(H2), MK-9(H2). Polar lipid: DPG, PG, GLs. Polar lipid: DPG, PG, PI, PL, GLs. A member of the family Microbacteriaceae. DNA G+C content: ca. 71 mol%. A member of the family . Spelaeicoccus Lee 2013, gen. nov. Type species: Spelaeicoccus albus Lee 2013. Tonsilliphilus Azuma et al. 2013, gen. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type species: Tonsilliphilus suis Azuma et al. 63: 3958-3963, doi:10.1099/ijs.0.050732-0. 2013. Aerobic, Gram-stain-positive, Reference: Int. J. Syst. Evol. Microbiol., 2013, non-spore-forming, non-motile cocci that occur 63: 2545-2552, doi:10.1099/ijs.0.045237-0. singly, in pairs, in chains or in cluster. A Gram-stain-positive, aerotolerant anaerobe.

Cell wall: meso-A2pm. Cell wall: meso-A2pm.

Fatty acid: a-C15:0, a-C17:0, i-C15:0, cyclohexyl Whole-cell sugar: Gal, Glc, Mad, Man.

C17:0. Fatty acid: C15:0, C16:0, C17:0, C18:0 (C17:1).

Isoprenoid quinone: MK-9(H2). Isoprenoid quinone: MK-8(H4). Polar lipid: PG, PI, GLs. Polar lipid: PI, PG, DPG. A member of the family Brevibacteriaceae. A member of the family .

Tamlicoccus Lee 2013, gen. nov. Xiangella Wang et al. 2013, gen. nov. Type species: Tamlicoccus marinus Lee 2013. Type species: Xiangella phaseoli Wang et al. Reference: Int. J. Syst. Evol. Microbiol., 2013, 2013. 63: 1951-1954, doi:10.1099/ijs.0.043117-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, Aerobic, Gram-stain-positive, 63: 2138-2145, doi:10.1099/ijs.0.045732-0. non-spore-forming, non-motile cocci that occur An aerobic, Gram-stain-positive, non-acid-fast singly or in pairs. actinomycete. Forms extensively branched sub- Cell wall: type A4α (L-Lys, Ala, Asp, Glu, Gly, strate mycelia that carry singly unevenly Ser). warty-surfaced spores.

Whole cell sugar: Gal, Glc, Man, Xyl, Ara, Rib, Cell wall: meso-A2pm; N-glycolyl Mur. Rha. Whole-cell sugar: Man, Gal, Glc.

S6 Fatty acid: C16:0, C18:0, C17:1ω7c, i-C15:0, C17:0. Polar lipid: PME, PE, PC, PI, PIM (type PIII).

Isoprenoid quinone: MK-9(H4), MK-9(H6). A member of the family Micromonosporaceae.

NEW SPECIES

Acrocarpospora phusangensis Niemhom et al. 62415. 2013, sp. nov. Reference: Extremophiles, 2012, 16: 771-776, Type strain: strain PS33-18 = BCC 46906 = doi:10.1007/s00792-012-0473-9; Validation List DSM 45867 = NBRC 108782. no. 150 [Int. J. Syst. Evol. Microbiol., 2013, 63: Reference: Int. J. Syst. Evol. Microbiol., 2013, 797-798, doi:10.1099/ijs.0.050948-0]. 63: 2174-2179, doi:10.1099/ijs.0.046227-0. Actinopolyspora lacussalsi Guan et al. 2013, sp. Actinoallomurus acanthiterrae Tang et al. 2013, nov. sp. nov. Type strain: strain TRM 40139 = CCTCC AA Type strain: strain 2614A723 = CCTCC AA 201202 = KCTC 19657. 2012001 = DSM 45727. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3009-3013, doi:10.1099/ijs.0.047167-0. 63: 1874-1879, doi:10.1099/ijs.0.043380-0. Actinopolyspora mzabensis Meklat et al. 2013, Actinokineospora bangkokensis Intra et al. sp. nov. 2013, sp. nov. Type strain: strain H55 = DSM 45460 = CCUG Type strain: strain 44EHW = BCC 53155 = 62965. DSM 46700 = NBRC 108932. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3787-3792, doi:10.1099/ijs.0.046649-0. 63: 2655-2660, doi:10.1099/ijs.0.047928-0. Actinopolyspora saharensis Meklat et al. 2013, Actinomadura xylanilytica Zucchi et al. 2013, sp. nov. sp. nov. Type strain: strain H32 = DSM 45459 = CCUG Type strain: strain BK147 = KACC 20919 = 63367 = MTCC 11557. NCIMB 14771 = NRRL B-24852. Reference: Antonie van Leeuwenhoek, 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 103: 771-776, 10.1007/s10482-012-9859-z; 63: 576-580, doi:10.1099/ijs.0.042325-0. Validation List no. 152 [Int. J. Syst. Evol. Mi- crobiol., 2013, 63: 2365-2367, Actinoplanes siamensis Suriyachadkun et al. doi:10.1099/ijs.0.054650-0]. 2013, sp. nov. Type strain: strain A-T 6646 = BCC 46194 = Actinotalea ferrariae Li et al. 2013, sp. nov. NBRC 109076. Type strain: strain CF5-4 = CCTCC AB Reference: Int. J. Syst. Evol. Microbiol., 2013, 2012198 = KCTC 29134. 63: 3037-3042, doi:10.1099/ijs.0.048017-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3398-3403, doi:10.1099/ijs.0.048512-0. Actinopolyspora algeriensis Meklat et al. 2013, sp. nov. Allokutzneria multivorans Cao et al. 2013, sp. Type strain: strain H19 = DSM 45476 = CCUG nov.

S7 Type strain: strain YIM 120521 = DSM 45532 = Reference: Antonie van Leeuwenhoek, 2013, JCM 17342. 103, 673-681, doi:10.1007/s10482-012-9851-7; Reference: Int. J. Syst. Evol. Microbiol., 2013, Validation List no. 151 [Int. J. Syst. Evol. Mi- 63: 4254-4258, doi:10.1099/ijs.0.054411-0. crobiol., 2013, 63: 1577-1580, doi:10.1099/ijs.0.052571-0]. Allonocardiopsis opalescens Du et al. 2013, sp. nov. Angustibacter aerolatus Kim et al. 2013, sp. Type strain: strain I10A-01259 = CPCC 203428 nov. = DSM 45601. Type strain: strain 7402J-48 = KACC 15527 = Reference: Int. J. Syst. Evol. Microbiol., 2013, NBRC 108730. 63: 900-904, doi:10.1099/ijs.0.041491-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 610-615, doi:10.1099/ijs.0.042218-0. Alloscardovia macacae Killer et al. 2013, sp. nov. Angustibacter peucedani Lee 2013, sp. nov. Type strain: strain M8 = CCM 7944 = DSM Type strain: strain RS-50 = DSM 45329 = 24762. KCTC 19628. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4439-4446, doi:10.1099/ijs.0.051326-0. 63: 744-750, doi:10.1099/ijs.0.042275-0.

Amnibacterium soli Jin et al. 2013, sp. nov. Aquihabitans daechungensis Jin et al. 2013, sp. Type strain: strain PB243 = JCM 19015 = nov. KCTC 33147. Type strain: strain CH22-21 = DSM 27986 = Reference: Int. J. Syst. Evol. Microbiol., 2013, JCM 17787 = KCTC 19849. 63: 4750-4753, doi:10.1099/ijs.0.052506-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2970-2974, doi:10.1099/ijs.0.046060-0. Amycolatopsis cihanbeyliensis Tatar et al. 2013, sp. nov. Arcanobacterium phocisimile Hijazin et al. Type strain: strain BNT52 = DSM 45679 = 2013, sp. nov. KCTC 29065 = NRRL B-24886. Type strain: strain 2698 = CCM 8430 = DSM Reference: Int. J. Syst. Evol. Microbiol., 2013, 26142 = LMG 27073. 63: 3739-3743, doi:10.1099/ijs.0.050963-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2019-2024, doi:10.1099/ijs.0.045591-0. Amycolatopsis magusensis Camas et al. 2013, sp. nov. Arsenicicoccus dermatophilus Gobeli et al. Type strain: strain KT2025 = DSM 45510 = 2013, sp. nov. KCTC 29056. Type strain: strain KM 894/11 = CCOS 690 = Reference: Int. J. Syst. Evol. Microbiol., 2013, CCUG 62181 = DSM 25571. 63: 1254-1260, doi:10.1099/ijs.0.042770-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4046-4051, doi:10.1099/ijs.0.048546-0. Amycolatopsis umgeniensis Everest et al. 2013, sp. nov. Arthrobacter siccitolerans SantaCruz-Calvo et Type strain: strain UM16 = DSM 45272 = al. 2013, sp. nov. NRRL B-24724. Type strain: strain 4J27 = CECT 8257 = DSM

S8 28024 = LMG 27359. Reference: Int. J. Syst. Evol. Microbiol., 2013, ammoniilyticum Kim et al. 63: 4174-4180, doi:10.1099/ijs.0.052902-0. 2013, sp. nov. Type strain: strain A1 = JCM 17537 = KACC Asanoa siamensis Niemhom et al. 2013, sp. nov. 15558 = KEMC 41-098. Type strain: strain PS7-2 = BCC 41921 = DSM Reference: Int. J. Syst. Evol. Microbiol., 2013, 45793 = NBRC 107932. 63: 1111-1118, doi:10.1099/ijs.0.039305-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 66-71, doi:10.1099/ijs.0.038851-0. Brevibacterium daeguense Cui et al. 2013, sp. nov. Barrientosiimonas humi Lee et al. 2013, sp. Type strain: strain 2C6-41 = DSM 27938 = JCM nov. 17458 = KCTC 19800. Type strain: strain 39 = CGMCC 4.6864 = DSM Reference: Int. J. Syst. Evol. Microbiol., 2013, 24617 = JCM 19663. 63: 152-157, doi:10.1099/ijs.0.038141-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 241-248, doi:10.1099/ijs.0.038232-0. Brevibacterium jeotgali Choi et al. 2013, sp. nov. Bifidobacterium crudilactis Delcenserie et al. Type strain: strain SJ5-8 = JCM 18571 = KACC 2013, sp. nov. 16911. Type strain: strain FR62/b/3 = LMG 23609 = Reference: Int. J. Syst. Evol. Microbiol., 2013, CNCM I-3342. 63: 3430-3436, doi:10.1099/ijs.0.049197-0. Reference: Syst. Appl. Microbiol., 2007, 30: 381-389, doi:10.1016/j.syapm.2007.01.004; Brevibacterium senegalense Kokcha et al. 2013, Validation List no. 153 [Int. J. Syst. Evol. Mi- sp. nov. crobiol., 2013, 63: 3131-3134, Type strain: strain JC43 = CSUR P155 = DSM doi:10.1099/ijs.0.056101-0]. 25783. Reference: Stand. Genomic Sci., 2012, 7: Blastococcus endophyticus Zhu et al. 2013, sp. 233-245, doi:10.4056/sigs.325667; Validation nov. List no. 153 [Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain YIM 68236 = CCTCC AA 63: 3131-3134, doi:10.1099/ijs.0.056101-0]. 209045 = DSM 45413 = JCM 17896 = KCTC 19998. Brevibacterium siliguriense Kumar et al. 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, sp. nov. 63: 3269-3273, doi:10.1099/ijs.0.049239-0. Type strain: strain MB18 = DSM 23676 = LMG 25772. Branchiibius cervicis Tomida et al., sp. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain PAGU 1247 = DSM 24166 = 63: 511-515, doi:10.1099/ijs.0.038281-0. NBRC 106593. Reference: Syst. Appl. Microbiol., 2011, 34: Brevibacterium yomogidense Tonouchi et al. 503-507, doi:10.1016/j.syapm.2011.08.003; 2013, sp. nov. Validation List no. 150 [Int. J. Syst. Evol. Mi- Type strain: strain MN-6-a = DSM 24850 = crobiol., 2013, 63: 797-798, JCM 17779. doi:10.1099/ijs.0.050948-0]. Reference: Int. J. Syst. Evol. Microbiol., 2013,

S9 63: 516-520, doi:10.1099/ijs.0.039008-0. List no. 154 [Int. J. Syst. Evol. Microbiol., 2013, 63: 3931-3934, doi:10.1099/ijs.0.058222-0]. Cellulomonas marina Zhang et al. 2013, sp. nov. Cryobacterium levicorallinum Liu et al. 2013, Type strain: strain FXJ8.089 = CGMCC 4.6945 sp. nov. = DSM 24960. Type strain: strain Hh34 = CGMCC 1.11211 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 28143 = NBRC 107883. 63: 3014-3018, doi:10.1099/ijs.0.048876-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2819-2822, doi:10.1099/ijs.0.046896-0. Cellulomonas oligotrophica Hatayama et al. 2013, sp. nov. Dactylosporangium siamense Thawai and Su- Type strain: strain Kc5 = DSM 24482 = JCM riyachadkun 2013, sp. nov. 17534 = NBRC 109435. Type strain: strain MW4-36 = BCC 34901 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 46705 = JCM 15934 = NBRC 106093. 63: 60-65, doi:10.1099/ijs.0.038364-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4033-4038, doi:10.1099/ijs.0.052092-0. Cellulomonas soli Hatayama et al. 2013, sp. nov. Demequina flava Hamada et al. 2013, sp. nov. Type strain: strain Kc1 = DSM 24484 = JCM Type strain: strain HR08-7 = DSM 24865 = 17535 = NBRC 109434. NBRC 105854. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 60-65, doi:10.1099/ijs.0.038364-0. 63: 249-253, doi:10.1099/ijs.0.039297-0.

Corynebacterium frankenforstense Wiertz et al. Demequina sediminicola Hamada et al. 2013, 2013, sp. nov. sp. nov. Type strain: strain ST18 = CCUG 63371 = DSM Type strain: strain HR08-43 = DSM 24867 = 45800. NBRC 105855. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4495-4501, doi:10.1099/ijs.0.050757-0. 63: 249-253, doi:10.1099/ijs.0.039297-0.

Corynebacterium lactis Wiertz et al. 2013, sp. Flaviflexus huanghaiensis Du et al. 2013, sp. nov. nov. Type strain: strain RW2-5 = CCUG 63372 = Type strain: strain H5 = CICC 10486 = DSM DSM 45799. 24315. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4495-4501, doi:10.1099/ijs.0.050757-0. 63: 1863-1867, doi:10.1099/ijs.0.042044-0.

Corynebacterium uterequi Hoyles et al. 2013, Friedmanniella flava Zhang et al. 2013, sp. nov. sp. nov. Type strain: strain W6 = CGMCC 4.6856 = Type strain: strain VM 2298 = CCUG 61235 = DSM 27985 = JCM 17701. DSM 45634. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Vet. Microbiol., 2013, 165: 469-474, 63: 1771-1775, doi:10.1099/ijs.0.043984-0. doi:10.1016/j.vetmic.2013.03.025; Validation

S10 Geodermatophilus africanus Montero-Calasanz crobiol., 2013, 63: 1577-1580, et al. 2013, sp. nov. doi:10.1099/ijs.0.052571-0]. Type strain: strain CF11/1 = DSM 45422 = CCUG 62969 = MTCC 11556. Geodermatophilus soli Jin et al. 2103, sp. nov. Reference: Antonie van Leeuwenhoek, 2013, Type strain: strain PB34 = KCTC 19880 = DSM 104: 207-216, 10.1007/s10482-013-9939-8; 45843 = JCM 17785. Validation List no. 154 [Int. J. Syst. Evol. Mi- Reference: Int. J. Syst. Evol. Microbiol., 2013, crobiol., 2013, 63: 3931-3934, 63: 2625-2629, doi:10.1099/ijs.0.048892-0. doi:10.1099/ijs.0.058222-0]. Geodermatophilus taihuensis Qu et al. 2013, sp. Geodermatophilus arenarius Montero-Calasanz nov. et al. 2013, sp. nov. Type strain: strain 3-wff-81 = CGMCC 1.12303 Type strain: strain CF5/4 = DSM 45418 = = DSM 45962 = NBRC 109416. MTCC 11413 = CCUG 62763. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Extremophiles, 2012, 16: 903-909, 63: 4108-4112, doi:10.1099/ijs.0.049460-0. doi:10.1007/s00792-012-0486-4; Validation List no. 150 [Int. J. Syst. Evol. Microbiol., 2013, 63: Geodermatophilus telluris Montero-Calasanz et 797-798, doi:10.1099/ijs.0.050948-0]. al. 2013, sp. nov. Type strain: strain CF9/1/1 = CCUG 62764 = Geodermatophilus normandii Monte- DSM 45421. ro-Calasanz et al. 2013, sp. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain CF5/3 = CCUG 62814 = 63: 2254-2259, doi:10.1099/ijs.0.046888-0. DSM 45417 = MTCC 11412. Reference: Int. J. Syst. Evol. Microbiol., 2013, Geodermatophilus terrae Jin et al. 2013, sp. 63: 3437-3443, doi:10.1099/ijs.0.051201-0. nov. Type strain: strain PB26 = KCTC 19881 = DSM Geodermatophilus saharensis Monte- 45844 = JCM 17786. ro-Calasanz et al. 2013, sp. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain CF5/5 = CCUG 62813 = 63: 2625-2629, doi:10.1099/ijs.0.048892-0. DSM 45423 = MTCC 11416. Reference: Arch. Microbiol., 2013, 195: Geodermatophilus tzadiensis Montero-Calasanz 153-159, doi:10.1007/s00203-012-0860-8; Vali- et al. 2013, sp. nov. dation List no. 151 [Int. J. Syst. Evol. Microbiol., Type strain: strain CF5/2 = CCUG 62762 = 2013, 63: 1577-1580, DSM 45416 = MTCC 11411. doi:10.1099/ijs.0.052571-0]. Reference: Syst. Appl. Microbiol., 2013, 36: 177-182, doi:10.1016/j.syapm.2012.12.005; Geodermatophilus siccatus Montero-Calasanz Validation List no. 154 [Int. J. Syst. Evol. Mi- et al. 2013, sp. nov. crobiol., 2013, 63: 3931-3934, Type strain: strain CF6/1 = CCUG 62765 = doi:10.1099/ijs.0.058222-0]. DSM 45419 = MTCC 11414. Reference: Antonie van Leeuwenhoek, 2013, Georgenia sediminis You et al. 2013, sp. nov. 103: 449-456, doi:10.1007/s10482-012-9824-x; Type strain: strain SCSIO 15020 = DSM 25884 Validation List no. 151 [Int. J. Syst. Evol. Mi- = NBRC 108941.

S11 Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4243-4247, doi:10.1099/ijs.0.051714-0. Jatrophihabitans endophyticus Madhaiyan et al. 2013, sp. nov. Gordonia alkaliphila Cha and Cha 2013, sp. Type strain: strain S9-650 = DSM 45627 = nov. KACC 16232 = NBRC 109967. Type strain: strain CJ10 = JCM 18077 = KACC Reference: Int. J. Syst. Evol. Microbiol., 2013, 16561 = NBRC 109776. 63: 1241-1248, doi:10.1099/ijs.0.039685-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 327-331, doi:10.1099/ijs.0.039289-0. Kribbella albertanoniae Everest et al. 2013, sp. nov. Gordonia phosphorivorans Kämpfer et al. 2013, Type strain: strain BC640 = DSM 26744 = sp. nov. NRRL B-24917. Type strain: strain Ca8 = CCM 7957 = CCUG Reference: Int. J. Syst. Evol. Microbiol., 2013, 61533 = DSM 45630 = LMG 26648. 63: 3591-3596, doi:10.1099/ijs.0.050237-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 230-235, doi:10.1099/ijs.0.037093-0. Kribbella endophytica Kaewkla and Franco 2013, sp. nov. Humibacter antri Lee 2013, sp. nov. Type strain: strain PIP 118 = DSM 23718 = Type strain: strain D7-27 = KCTC 33009=DSM NRRL B-24812. 25738. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 1249-1253, doi:10.1099/ijs.0.041343-0. 63: 4315-4319, doi:10.1099/ijs.0.050708-0. Kribbella shirazensis Mohammadipanah et al. Ilumatobacter coccineus Matsumoto et al. 2013, 2013, sp. nov. sp. nov. Type strain: strain UTMC 693 = CCUG 61792 = Type strain: strain YM16-304 = NBRC 103263 DSM 45490. = KCTC 29153. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3369-3374, doi:10.1099/ijs.0.046847-0. 63: 3404-3408, doi:10.1099/ijs.0.047316-0. Kutzneria buriramensis Suriyachadkun et al. Ilumatobacter nonamiensis Matsumoto et al. 2013, sp. nov. 2013, sp. nov. Type strain: strain A-T 1846 = BCC 29373 = Type strain: strain YM16-303 = NBRC 109120 DSM 45791 = NBRC 107931. = KCTC 29139. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 47-52, doi:10.1099/ijs.0.036533-0. 63: 3404-3408, doi:10.1099/ijs.0.047316-0. Lechevalieria nigeriaca Camas et al. 2013, sp. Janibacter cremeus Hamada et al. 2013, sp. nov. nov. Type strain: strain NJ2035 = DSM 45680 = Type strain: strain HR08-44 = DSM 26154 = KCTC 29057 = NRRL B-24881. NBRC 107693. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3750-3754, doi:10.1099/ijs.0.052266-0. 63: 3687-3690, doi:10.1099/ijs.0.051532-0.

S12 Longimycelium tulufanense Xia et al. 2013, sp. saccharophilum Ohta et al. nov. 2013, sp. nov. Type strain: strain TRM 46004 = CGMCC Type strain: strain K-1 = DSM 28107 = NBRC 4.5737 = NBRC 107726. 108778 = NCIMB 14782. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2813-2818, doi:10.1099/ijs.0.044222-0. 63: 2765-2769, doi:10.1099/ijs.0.047258-0.

Luteimicrobium album Hamada et al. 2013, sp. Microbacterium sediminis Yu et al. 2013, sp. nov. nov. Type strain: strain RI148-Li105 = NBRC Type strain: strain YLB-01 = ylb-01 = CCTCC 106348 = DSM 24866. AB 2010363 = DSM 23767 = JCM 19554 = Reference: J. Antibiot. (Tokyo), 2012, 65: MCCC 1A06153. 427-431, doi:10.1038/ja.2012.45; Validation List Reference: Int. J. Syst. Evol. Microbiol., 2013, No. 149 [Int. J. Syst. Evol. Microbiol., 2013. 63: 63: 25-30, doi:10.1099/ijs.0.029652-0. 1-5, doi:10.1099/ijs.0.049312-0]. Micrococcus cohnii Rieser et al. 2013, sp. nov. Lysinimonas soli Jang et al. 2013, sp. nov. Type strain: strain WS4601 = DSM 23974 = Type strain: strain SGM3-12 = KACC 13362 = LMG 26183. NBRC 107106. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 80-85, doi:10.1099/ijs.0.036434-0. 63: 1403-1410, doi:10.1099/ijs.0.042945-0. Micromonospora avicenniae Li et al. 2013, sp. Microbacterium lemovicicum Mondani et al. nov. 2013, sp. nov. Type strain: strain 268506 = CCTCC AA Type strain: strain ViU22 = ATCC BAA-2396 = 2012010 = DSM 45758. CCUG 62198 = DSM 25044. Reference: Antonie van Leeuwenhoek, 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 103: 1089-1096, 63: 2600-2606, doi:10.1099/ijs.0.048454-0. doi:10.1007/s10482-013-9888-2; Validation List no. 154 [Int. J. Syst. Evol. Microbiol., 2013, 63: Microbacterium neimengense Gao et al. 2013, 3931-3934, doi:10.1099/ijs.0.058222-0]. sp. nov. Type strain: strain 7087 = ACCC 03008 = DSM Micromonospora equina Everest and Meyers 24985 = JCM 19553. 2013, sp. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain Y22 = DSM 45644 = NRRL 63: 236-240, doi:10.1099/ijs.0.038166-0. B-24859. Reference: Int. J. Syst. Evol. Microbiol., 2013, Microbacterium oryzae Kumari et al. 2013, sp. 63: 879-885, doi:10.1099/ijs.0.042929-0. nov. Type strain: strain MB10 = JCM 16837 = DSM Micromonospora halotolerans Carro et al. 2013, 23396. sp. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain CR18 = CECT 7890 = DSM 63: 2442-2449, doi:10.1099/ijs.0.046870-0. 45598. Reference: Antonie van Leeuwenhoek, 2013,

S13 103: 1245-1254, 2012002 = DSM 45709. doi:10.1007/s10482-013-9903-7; Validation List Reference: Int. J. Syst. Evol. Microbiol., 2013, no. 153 [Int. J. Syst. Evol. Microbiol., 2013, 63: 63: 2389-2395, doi:10.1099/ijs.0.045476-0. 3131-3134, doi:10.1099/ijs.0.056101-0]. Modestobacter roseus Qin et al. 2013, sp. nov. Micromonospora kangleipakensis Nimaichand Type strain: strain KLBMP 1279 = DSM 45764 et al. 2013, sp. nov. = KCTC 19887 = NBRC 108673. Type strain: strain MBRL 34 = DSM 45612 = Reference: Int. J. Syst. Evol. Microbiol., 2013, JCM 17696. 63: 2197-2202, doi:10.1099/ijs.0.044412-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4546-4551, doi:10.1099/ijs.0.052746-0. Motilibacter rhizosphaerae Lee 2013, sp. nov. Type strain: strain RS-16 = DSM 45622 = Micromonospora maritima Songsumanus et al. KACC 16209. 2013, sp. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain D10-9-5 = JCM 17013 = 63: 3818-3822, doi:10.1099/ijs.0.052357-0. NBRC 108767 = PCU 322 = TISTR 2000. Reference: Int. J. Syst. Evol. Microbiol., 2013, Mycetocola miduiensis Zhu et al. 2013, sp. nov. 63: 554-559, doi:10.1099/ijs.0.039180-0. Type strain: strain MD-T1-10-2 = CGMCC 1.11101 = NBRC 107877. Micromonospora schwarzwaldensis Gurovic et Reference: Int. J. Syst. Evol. Microbiol., 2013, al. 2013, sp. nov. 63: 2661-2665, doi:10.1099/ijs.0.047985-0. Type strain: strain HKI0641= CIP 110415 = DSM 45708. Mycetocola zhadangensis Shen et al. 2013, sp. Reference: Int. J. Syst. Evol. Microbiol., 2013, nov. 63: 3812-3817, doi:10.1099/ijs.0.051623-0. Type strain: strain ZD1-4 = CGMCC 1.12042 = JCM 18131 = KACC 16570. Micromonospora sediminicola Supong et al. Reference: Int. J. Syst. Evol. Microbiol., 2013, 2013, sp. nov. 63: 3375-3378, doi:10.1099/ijs.0.047159-0. Type strain: strain SH2-13 = BCC 45601 = DSM 45794 = NBRC 107934. Mycobacterium arabiense Zhang et al. 2013, sp. Reference: Int. J. Syst. Evol. Microbiol., 2013, nov. 63: 570-575, doi:10.1099/ijs.0.041103-0. Type strain: strain YIM 121001 = DSM 45768 = JCM 18538. Micromonospora sonneratiae Li et al. 2013, sp. Reference: Int. J. Syst. Evol. Microbiol., 2013, nov. 63: 4081-4086, doi:10.1099/ijs.0.050567-0. Type strain: strain 274745 = CCTCC AA 2012003 = DSM 45704. Mycobacterium bourgelatii Guérin-Faublée et Reference: Int. J. Syst. Evol. Microbiol., 2013, al. 2013, sp. nov. 63: 2383-2388, doi:10.1099/ijs.0.043570-0. Type strain: strain MLB-A84 = CIP 110557 = DSM 45746. Micromonospora wenchangensis Ren et al. Reference: Int. J. Syst. Evol. Microbiol., 2013, 2013, sp. nov. 63: 4669-4674, doi:10.1099/ijs.0.051979-0. Type strain: strain 2602GPT1-05 = CCTCC AA

S14 Mycobacterium engbaekii Tortoli et al. 2013, sp. Type strain: strain 299 = DSM 45575 = KCTC nov. 19818. Type strain: strain ATCC 27353 = DSM 45694. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2301-2308, doi:10.1099/ijs.0.045070-0. 63: 401-411, doi:10.1099/ijs.0.038737-0. Mycobacterium sediminis Zhang et al. 2013, sp. Mycobacterium fragae Ramos et al. 2013, sp. nov. nov. Type strain: strain YIM M13028 = DSM 45643 Type strain: strain HF8705 = Fi- = JCM 17899 = KCTC 19999. ocruz-INCQS/CMRVS P4051 = DSM 45731. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4081-4086, doi:10.1099/ijs.0.050567-0. 63: 2583-2587, doi:10.1099/ijs.0.046862-0. Mycobacterium yongonense Kim et al. 2013, sp. Mycobacterium heraklionense Tortoli et al. nov. 2013, sp. nov. Type strain: strain 05-1390 = DSM 45126 = Type strain: strain GN-1 = CECT 7509 = LMG KCTC 19555. 24735 = NCTC 13432. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 192-199, doi:10.1099/ijs.0.037465-0. 63: 401-411, doi:10.1099/ijs.0.038737-0. Naasia aerilata Weon et al. 2013, sp. nov. Mycobacterium iranicum Shojaei et al. 2013, sp. Type strain: strain 5116S-4 = KACC 15517 = nov. NBRC 108725. Type strain: strain M05 = DSM 45541 = CCUG Reference: Int. J. Syst. Evol. Microbiol., 2013, 62053 = JCM 17461. 63: 2436-2441, doi:10.1099/ijs.0.046599-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 1383-1389, doi:10.1099/ijs.0.043562-0. Nesterenkonia suensis Govender et al. 2013, sp. nov. Mycobacterium longobardum Tortoli et al. Type strain: strain Sua-BAC020 = DSM 22748 2013, sp. nov. = JCM 19557 = NCCB 100309. Type strain: strain FI-07034 = CCUG 58460 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 45394. 63: 41-46, doi:10.1099/ijs.0.035006-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 401-411, doi:10.1099/ijs.0.038737-0. Nocardia aciditolerans Golinska et al. 2013, sp. nov. Mycobacterium minnesotense Hannigan et al. Type strain: strain CSCA68 = DSM 45801 = 2013, sp. nov. KACC 17155 = NCIMB 14829. Type strain: strain DL49 = DSM 45633 = JCM Reference: Antonie van Leeuwenhoek, 2013, 17932 = NCCB 100399. 103: 1079-1088, Reference: Int. J. Syst. Evol. Microbiol., 2013, doi:10.1007/s10482-013-9887-3; Validation List 63: 124-128, doi:10.1099/ijs.0.037291-0. no. 152 [Int. J. Syst. Evol. Microbiol., 2013, 63: 2365-2367, doi:10.1099/ijs.0.054650-0]. Mycobacterium parakoreense Kim et al. 2013, sp. nov. Nocardia amikacinitolerans Ezeoke et al. 2013,

S15 sp. nov. = DSM 24552 = KCTC 29022. Type strain: strain W9988 = CCUG 59655 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 45539 = NBRC 108937. 63: 1068-1072, doi:10.1099/ijs.0.044982-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 1056-1061, doi:10.1099/ijs.0.039990-0. Nocardioides psychrotolerans Liu et al. 2013, sp. nov. Nocardioides albertanoniae Alias-Villegas et al. Type strain: strain RHLT2-1 = CGMCC 1.11156 2013, sp. nov. = DSM 27452 = NBRC 108563. Type strain: strain CD40127 = CECT 8014 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 25218. 63: 129-133, doi:10.1099/ijs.0.038091-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 1280-1284, doi:10.1099/ijs.0.043885-0. Nocardioides salsibiostraticola Cho et al. 2013, sp. nov. Nocardioides conyzicola Han et al. 2013, sp. Type strain: strain PAMC 26527 = JCM 18743 = nov. KCTC 29158. Type strain: strain HWE 2-02 = JCM 18531 = Reference: Int. J. Syst. Evol. Microbiol., 2013, KCTC 29121. 63: 3800-3806, doi:10.1099/ijs.0.051037-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4730-4734, doi:10.1099/ijs.0.054619-0. Nocardioides szechwanensis Liu et al. 2013, sp. nov. Nocardioides daeguensis Cui et al. 2013, sp. Type strain: strain RHLT1-17 = CGMCC nov. 1.11147 = DSM 27403 = JCM 19669 = NBRC Type strain: strain 2C1-5 = JCM 17460 = KCTC 108562. 19799. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 129-133, doi:10.1099/ijs.0.038091-0. 63: 3727-3732, doi:10.1099/ijs.0.047043-0. Nonomuraea jabiensis Camas et al. 2013, sp. Nocardioides endophyticus Han et al. 2013, sp. nov. nov. Type strain: strain A4036 = DSM 45507 = Type strain: strain MWE 3-5 = JCM 18532 = KCTC 19870. KCTC 29122. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 212-218, doi:10.1099/ijs.0.039362-0. 63: 4730-4734, doi:10.1099/ijs.0.054619-0. Nonomuraea solani Wang et al. 2013, sp. nov. Nocardioides marinquilinus Cho et al. 2013, sp. Type strain: strain NEAU-Z6 = CGMCC 4.7037 nov. = DSM 45729. Type strain: strain CL-GY44 = KCCM 90109 = Reference: Int. J. Syst. Evol. Microbiol., 2013, JCM 18459. 63: 2418-2423, doi:10.1099/ijs.0.045617-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2594-2599, doi:10.1099/ijs.0.047902-0. Nonomuraea thailandensis Sripreechasak et al. 2013, sp. nov. Nocardioides perillae Du et al. 2013, sp. nov. Type strain: strain KC-061 = JCM 18408 = Type strain: strain I10A-01402 = CPCC 203382 KCTC 29074 = PCU 327.

S16 Reference: J. Antibiot. (Tokyo), 2013, 66, 79-84, Reference: Int. J. Syst. Evol. Microbiol., 2013, doi:10.1038/ja.2012.96; Validation List no. 151 63: 989-994, doi:10.1099/ijs.0.041699-0. [Int. J. Syst. Evol. Microbiol., 2013, 63: 1577-1580, doi:10.1099/ijs.0.052571-0]. Planobispora siamensis Ngaemthao et al. 2013, sp. nov. Ornithinimicrobium murale Kämpfer et al. Type strain: strain A-T 4600 = BCC 39469 = 2013, sp. nov. DSM 46704 = NBRC 107568. Type strain: strain 01-Gi-040 = CCM 7610 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 22056. 63: 2649-2654, doi:10.1099/ijs.0.046946-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 119-123, doi:10.1099/ijs.0.035873-0. Planosporangium thailandense Thawai et al. 2013, sp. nov. Ornithinimicrobium tianjinense Liu et al. 2013, Type strain: strain HSS8-18 = BCC 41917 = sp. nov. JCM 17129. Type strain: strain B2 = CGMCC 1.12160 = Reference: Int. J. Syst. Evol. Microbiol., 2013, JCM 18464. 63: 1051-1055, doi:10.1099/ijs.0.043539-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4489-4494, doi:10.1099/ijs.0.052514-0. Pontimonas salivibrio Jang et al. 2013, sp. nov. Type strain: strain CL-TW6 = JCM 18206 = Paraoerskovia sediminicola Hamada et al. 2013, KCCM 90105. sp. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain H25-14 = DSM 25477 = 63: 2124-2131, doi:10.1099/ijs.0.043661-0. NBRC 108565. Reference: Int. J. Syst. Evol. Microbiol., 2013, Pseudonocardia antitumoralis Tian et al. 2013, 63: 2637-2641, doi:10.1099/ijs.0.043745-0. sp. nov. Type strain: strain SCSIO 01299 = CCTCC M Parvibacter caecicola Clavel et al. 2013, sp. 2011255 = DSM 45322. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain NR06 = DSM 22242 = 63: 893-899, doi:10.1099/ijs.0.037135-0. CCUG 57646. Reference: Int. J. Syst. Evol. Microbiol., 2013, Pseudonocardia hispaniensis Cuesta et al. 2013, 63: 2642-2648, doi:10.1099/ijs.0.045344-0. sp. nov. Type strain: strain PA3 = CCM 8391 = CECT Patulibacter medicamentivorans Almeida et al. 8030. 2013, sp. nov. Reference: Antonie van Leeuwenhoek, 2013, Type strain: strain I11 = DSM 25962 = CECT 103: 135-142, doi:10.1007/s10482-012-9792-1; 8141. Validation List no. 150 [Int. J. Syst. Evol. Mi- Reference: Int. J. Syst. Evol. Microbiol., 2013, crobiol., 2013, 63: 797-798, 63: 2588-2593, doi:10.1099/ijs.0.047522-0. doi:10.1099/ijs.0.050948-0].

Phycicoccus badiiscoriae Lee 2013, sp. nov. Rhodococcus canchipurensis Nimaichand et al. Type strain: strain Sco-B23 = KACC 15111 = 2013, sp. nov. KCTC 19807 = DSM 23987 = NBRC 107918. Type strain: strain MBRL 353 = JCM 17578 =

S17 KCTC 19851. NBRC 108754. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 114-118, doi:10.1099/ijs.0.036087-0. 63: 4052-4057, doi:10.1099/ijs.0.049817-0.

Rhodococcus cerastii Kämpfer et al. 2013, sp. Saccharomonospora amisosensis Veyisoglu et nov. al. 2013, sp. nov. Type strain: strain C5 = CCM 7906 = LMG Type strain: strain DS3030 = DSM 45685 = 26203. KCTC 29069 = NRRL B-24885. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 1024-1029, doi:10.1099/ijs.0.044958-0. 63: 3782-3786, doi:10.1099/ijs.0.051516-0.

Rhodococcus trifolii Kämpfer et al. 2013, sp. Saccharopolyspora lacisalsi Guan et al. 2013, nov. sp. nov. Type strain: strain T8 = CCM 7905 = LMG Type strain: strain TRM 40133 = KCTC 19987 26204. = CCTCC AA 2010012. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Extremophiles, 2011, 15: 373-378, 63: 1024-1029, doi:10.1099/ijs.0.044958-0. doi:10.1007/s00792-011-0369-0; Validation List no. 149 [Int. J. Syst. Evol. Microbiol., 2013, 63: Rothia endophytica Xiong et al. 2013, sp. nov. 1-5, doi:10.1099/ijs.0.049312-0]. Type strain: strain YIM 67072 = DSM 26247 = JCM 18541. Saccharothrix hoggarensis Boubetra et al. 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, sp. nov. 63: 3964-3969, doi:10.1099/ijs.0.052522-0. Type strain: strain SA181 = CCUG 60214 = DSM 45457. Rubrobacter bracarensis Jurado et al. 2013, sp. Reference: Int. J. Syst. Evol. Microbiol., 2013, nov. 63: 549-553, doi:10.1099/ijs.0.039099-0. Type strain: strain VF70612_S1 = CECT 7924 = DSM 24908. Saccharothrix saharensis Boubetra et al. 2013, Reference: Syst. Appl. Microbiol., 2012, 35, sp. nov. 306-309, doi:10.1016/j.syapm.2012.04.007; Type strain: strain SA152 = CCUG 60213 = Validation List no. 151 [Int. J. Syst. Evol. Mi- DSM 45456. crobiol., 2013, 63: 1577-1580, Reference: Int. J. Syst. Evol. Microbiol., 2013, doi:10.1099/ijs.0.052571-0]. 63: 3744-3749, doi:10.1099/ijs.0.051839-0.

Rudaeicoccus suwonensis Kim et al. 2013, sp. Spelaeicoccus albus Lee 2013, sp. nov. nov. Type strain: strain D3-40 = DSM 26341 = Type strain: strain HOR6-4 = DSM 19560 = KCTC 29141. KACC 12637. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3958-3963, doi:10.1099/ijs.0.050732-0. 63: 1291-1296, doi:10.1099/ijs.0.043455-0. Streptomonospora nanhaiensis Zhang et al. Rudaibacter terrae Kim et al. 2013, sp. nov. 2013, sp. nov. Type strain: strain 5GHs34-4 = KACC 15523 = Type strain: strain 12A09 = CCTCC AB

S18 2013140 = KCTC 29145. Type strain: strain RC 1830 = DSM 42072 = Reference: Int. J. Syst. Evol. Microbiol., 2013, JCM 18411. 63: 4447-4455, doi:10.1099/ijs.0.052704-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2757-2764, doi:10.1099/ijs.0.046284-0. Streptomonospora sediminis Zhang et al. 2013, sp. nov. Streptomyces chlorus Kim et al. 2013, sp. nov. Type strain: strain YIM M11335 = CCTCC AB Type strain: strain BK125 = CGMCC 4.5798 = 2012051 = DSM 45723. DSM 42079 = JCM 19672 = KACC 20902. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4447-4455, doi:10.1099/ijs.0.052704-0. 63: 1728-1733, doi:10.1099/ijs.0.045906-0.

Streptomyces abietis Fujii et al. 2013, sp. nov. Streptomyces deserti Santhanam et al. 2013, sp. Type strain: strain A191 = DSM 42080 = NBRC nov. 109094. Type strain: strain C63 = CGMCC 4.6997 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 42091= JCM 19673 = KACC 15425. 63: 4754-4759, doi:10.1099/ijs.0.053025-0. Reference: Antonie van Leeuwenhoek, 2012, 101: 575-581, doi:10.1007/s10482-011-9672-0; Streptomyces aidingensis Xia et al. 2013, sp. Validation List no. 151 [Int. J. Syst. Evol. Mi- nov. crobiol., 2013, 63: 1577-1580, Type strain: strain TRM 46012 = CGMCC doi:10.1099/ijs.0.052571-0]. 4.5739 = NBRC 108211. Reference: Int. J. Syst. Evol. Microbiol., 2013, Streptomyces endophyticus Li et al. 2013, sp. 63: 3204-3208, doi:10.1099/ijs.0.049205-0. nov. Type strain: strain YIM 65594 = CCTCC AA Streptomyces bullii Santhanam et al. 2013, sp. 209036 = DSM 41984. nov. Type strain: strain C2 = CGMCC 4.7019 = DSM Reference: Int. J. Syst. Evol. Microbiol., 2013, 42131 = JCM 19671 = KACC 15426. 63: 224-229, doi:10.1099/ijs.0.035725-0. Reference: Antonie van Leeuwenhoek, 2013, 103: 367-373, doi:10.1007/s10482-012-9816-x; Streptomyces erringtonii Santhanam et al. 2013, Validation List no. 151 [Int. J. Syst. Evol. Mi- sp. nov. crobiol., 2013, 63: 1577-1580, Type strain: strain I36 = CGMCC 4.7016 = doi:10.1099/ijs.0.052571-0]. DSM 42088 = KACC 15424. Reference: Antonie van Leeuwenhoek, 2013, Streptomyces chiangmaiensis Promnuan et al. 103: 79-87, 10.1007/s10482-012-9788-x; Vali- 2013, sp. nov. dation List no. 151 [Int. J. Syst. Evol. Microbiol., Type strain: strain TA4-1 = DSM 42092 = JCM 2013, 63: 1577-1580, 16577 = TISTR 1981. doi:10.1099/ijs.0.052571-0]. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 1896-1901, doi:10.1099/ijs.0.045930-0. Streptomyces halophytocola Qin et al. 2013, sp. nov. Streptomyces chilikensis Ray et al. 2013, sp. Type strain: strain KLBMP 1284 = KCTC 19890 nov. = NBRC 108770.

S19 Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2770-2775, doi:10.1099/ijs.0.047456-0. Streptomyces lannensis Promnuan et al. 2013, sp. nov. Streptomyces harbinensis Liu et al. 2013, sp. Type strain: strain TA4-8 = DSM 42093 = JCM nov. 16578 = TISTR 1982. Type strain: strain NEAU-Da3 = CGMCC Reference: Int. J. Syst. Evol. Microbiol., 2013, 4.7047 = DSM 42076. 63: 1896-1901, doi:10.1099/ijs.0.045930-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3579-3584, doi:10.1099/ijs.0.050088-0. Streptomyces tsukubensis Muramatsu and Na- gai 2013, sp. nov. Streptomyces heilongjiangensis Liu et al. 2013, Type strain: strain 9993 = NBRC 108919 = sp. nov. DSM 42081. Type strain: strain NEAU-W2 = ATCC Reference: J. Antibiot. (Tokyo), 2013, 66: 251– BAA-2424 = CGMCC 4.7004 = DSM 42073 = 254, doi:10.1038/ja.2012.116; Validation List no. JCM 19675. 153 [Int. J. Syst. Evol. Microbiol., 2013, 63: Reference: Int. J. Syst. Evol. Microbiol., 2013, 3131-3134, doi:10.1099/ijs.0.056101-0]. 63: 1030-1036, doi:10.1099/ijs.0.041483-0. Streptomyces viridis Kim et al. 2013, sp. nov. Streptomyces hundungensis Nimaichand et al. Type strain: strain BK199 = CGMCC 4.6824 = 2013, sp. nov. DSM 42078 = JCM 19681 = KACC 21003. Type strain: strain MBRL 251 = JCM 17577 = Reference: Int. J. Syst. Evol. Microbiol., 2013, KCTC 29125. 63: 1728-1733, doi:10.1099/ijs.0.045906-0. Reference: J. Antibiot. (Tokyo), 2013, 66: 205– 209, doi:10.1038/ja.2012.119; Validation List no. Streptomyces wuyuanensis Zhang et al. 2013, 153 [Int. J. Syst. Evol. Microbiol., 2013, 63: sp. nov. 3131-3134, doi:10.1099/ijs.0.056101-0]. Type strain: strain FX61 = CGMCC 4.7042 = DSM 42132 = KCTC 29112. Streptomyces kaempferi Santhanam et al. 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, sp. nov. 63: 2945-2950, doi:10.1099/ijs.0.047050-0. Type strain: strain I37 = CGMCC 4.7020 = DSM 42089 = KACC 15428. Streptomyces yaanensis Zheng et al. 2013, sp. Reference: Antonie van Leeuwenhoek, 2013, nov. 103: 79-87, 10.1007/s10482-012-9788-x; Vali- Type strain: strain Z4 = CGMCC 4.7035 = dation List no. 151 [Int. J. Syst. Evol. Microbiol., KCTC 29111. 2013, 63: 1577-1580, Reference: Int. J. Syst. Evol. Microbiol., 2013, doi:10.1099/ijs.0.052571-0]. 63: 4719-4723, doi:10.1099/ijs.0.054734-0.

Streptomyces kebangsaanensis Mohd et al. Streptomyces ziwulingensis Lin et al. 2013, sp. 2013, sp. nov. nov. Type strain: strain SUK12 = DSM 42048 = Type strain: strain F22 = CCNWFX 0001 = NRRL B-24860. ACCC41875 = JCM 18081. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3733-3738, doi:10.1099/ijs.0.047878-0. 63: 1545-1549, doi:10.1099/ijs.0.043026-0.

S20 Reference: Int. J. Syst. Evol. Microbiol., 2013, Streptosporangium sandarakinum Kämpfer et 63: 3970-3974, doi:10.1099/ijs.0.050906-0. al. 2013, sp. nov. Type strain: strain GW-12028 = LMG 27062 = Verrucosispora fiedleri Goodfellow et al. 2013, DSM 45763. sp. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain MG-37 = NCIMB 14794 = 63: 2484-2489, doi:10.1099/ijs.0.048504-0. NRRL B-24892. Reference: Antonie van Leeuwenhoek, 2013, Tamlicoccus marinus Lee 2013, sp. nov. 103: 493-502, doi:10.1007/s10482-012-9831-y; Type strain: strain MSW-24 = DSM 21415 = Validation List no. 152 [Int. J. Syst. Evol. Mi- JCM 19562 = KCTC 19485. crobiol., 2013, 63: 2365-2367, Reference: Int. J. Syst. Evol. Microbiol., 2013, doi:10.1099/ijs.0.054650-0]. 63: 1951-1954, doi:10.1099/ijs.0.043117-0. Williamsia sterculiae Fang et al. 2013, sp. nov. Tersicoccus phoenicis Vaishampayan et al. 2013, Type strain: strain CPCC 203464 = DSM 45741 sp. nov. = KCTC 29118. Type strain: strain 1P05MA = NRRL B-59547 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 30849. 63: 4158-4162, doi:10.1099/ijs.0.052688-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2463-2471, doi:10.1099/ijs.0.047134-0. Xiangella phaseoli Wang et al. 2013, sp. nov. Type strain: strain NEAU-J5 = CGMCC 4.7038 Tonsilliphilus suis Azuma et al. 2013, sp. nov. = DSM 45730 = JCM 19683. Type strain: strain W254 = ATCC 35846 = CCM Reference: Int. J. Syst. Evol. Microbiol., 2013, 3774 = DSM 21880 = JCM 15727. 63: 2138-2145, doi:10.1099/ijs.0.045732-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2545-2552, doi:10.1099/ijs.0.045237-0. Zhihengliuella flava Hamada et al. 2013, sp. nov. Verrucosispora andamanensis Supong et al. Type strain: strain H85-3=NBRC 109021=DSM 2013, sp. nov. 26152. Type strain: strain SP03-05 = BCC 45620 = Reference: Int. J. Syst. Evol. Microbiol., 2013, DSM 46721 = NBRC 109075. 63: 4760-4764, doi:10.1099/ijs.0.053272-0

NEW COMBINATION

Alloscardovia criceti (Okamoto et al. 2007) Lysinimonas kribbensis (Dastager et al. 2009) Killer et al. 2013, comb. nov. Jang et al. 2013, comb. nov. Type strain: strain OMB105 = DSM 17774 = Type strain: strain MSL-13 = DSM 19272 = JCM 13493 = LMG 24385. JCM 16015 = KACC 21108 = KCTC 19267 = Basonym: Metascardovia criceti Okamoto et al. NBRC 108894. 2007. Basonym: Leifsonia kribbensis Dastager et al. Reference: Int. J. Syst. Evol. Microbiol., 2013, 2009. 63: 4439-4446, doi:10.1099/ijs.0.051326-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 1403-1410, doi:10.1099/ijs.0.042945-0.

S21 Basonym: Nocardiopsis arabia Hozzein and Streptomonospora arabica (Hozzein and Good- Goodfellow 2008. fellow 2008) Zhang et al. 2013, comb. nov. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type strain: strain S186 = CGMCC 4.2057 = 63: 4447-4455, doi:10.1099/ijs.0.052704-0 DSM 45083 = JCM 16007.

EMENDATION OF GENUS

Luteimicrobium Hamada et al. 2010 emend. 2003 emend. Everest et al. 2013. Hamada et al. 2012. Type species: Kribbella flavida Park et al. 1999. Type species: Luteimicrobium subarcticum Reference: Int. J. Syst. Evol. Microbiol., 2013, Hamada et al. 2010. 63: 3591-3596, doi:10.1099/ijs.0.050237-0. Reference: J. Antibiot. (Tokyo), 2012, 65, A member of the family Nocardioidaceae. 427-431, doi:10.1038/ja.2012.45; List of Changes in Taxonomic Opinion no. 17 [Int. J. Kutzneria Stackebrandt et al. 1994 emend. Su- Syst. Evol. Microbiol., 2013, 63: 8-9, riyachadkun et al. 2013. doi:10.1099/ijs.0.049320-0]. Type species: Kutzneria viridogrisea (Okuda et A member of the family Micrococcineae. al. 1966) Stackebrandt et al. 1994. Reference: Int. J. Syst. Evol. Microbiol., 2013, Actinotalea Yi et al. 2007 emend. Li et al. 2013. 63: 47-52, doi:10.1099/ijs.0.036533-0. Type species: Actinotalea fermentans (Bagnara A member of the family Pseudonocardiaceae. et al. 1985) Yi et al. 2007. Reference: Int. J. Syst. Evol. Microbiol., 2013, Modestobacter Mevs et al. 2000 emend. Qin et 63: 3398-3403, doi:10.1099/ijs.0.048512-0. al. 2013. A member of the family Cellulomonadaceae. Type species: Modestobacter multiseptatus Mevs et al. 2000. Alloscardovia Huys et al. 2007 emend. Killer et Reference: Int. J. Syst. Evol. Microbiol., 2013, al. 2013. 63: 2197-2202, doi:10.1099/ijs.0.044412-0. Type species: Alloscardovia omnicolens Huys et A member of the family Geodermatophilaceae. al. 2007. Reference: Int. J. Syst. Evol. Microbiol., 2013, Motilibacter Lee 2012 emend. Lee 2013. 63: 4439-4446, doi:10.1099/ijs.0.051326-0. Type species: Motilibacter peucedani Lee 2012. A member of the family Bifidobacteriaceae. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 3818-3822, doi:10.1099/ijs.0.052357-0. Humibacter Vaz-Moreira et al. 2008 emend. Lee A member of the family Motilibacteraceae. 2013. Type species: Humibacter albus Vaz-Moreira et Nakamurella Tao et al. 2004 emend. Kim et al. al. 2008. 2012. Reference: Int. J. Syst. Evol. Microbiol., 2013, Type species: Nakamurella multipartita (Yoshi- 63: 4315-4319, doi:10.1099/ijs.0.050708-0. mi et al. 1996) Tao et al. 2004. A member of the family Microbacteriaceae. Reference: Syst. Appl. Microbiol., 2012, 35: 291-296, doi:10.1016/j.syapm.2012.05.002; List Kribbella Park et al. 1999 emend. Sohn et al. of Changes in Taxonomic Opinion no. 17 [Int. J.

S22 Syst. Evol. Microbiol., 2013, 63: 8-9, doi:10.1099/ijs.0.049320-0]. Streptomonospora Cui et al. 2001 emend. Li et al. 2003 emend. Zhang et al. 2013. Paraoerskovia Khan et al. 2009 emend. Schu- Type species: Streptomonospora salina Cui et al. mann et al. 2013 emend. Hamada et al. 2013. 2001. Type species: Paraoerskovia marina Khan et al. Reference: Int. J. Syst. Evol. Microbiol., 2013, 2009. 63: 4447-4455, doi:10.1099/ijs.0.052704-0. Reference: Int. J. Syst. Evol. Microbiol., 2013, A member of the family Nocardiopsaceae. 63: 2637-2641, doi:10.1099/ijs.0.043745-0. Zhihengliuella Zhang et al. 2007 emend. Tang Paraoerskovia Khan et al. 2009 emend. Schu- et al. 2009 emend. Hamada et al. 2013. mann et al. 2013. Type species: Zhihengliuella halotolerans Zhang Type species: Paraoerskovia marina Khan et al. et al. 2007. 2009. Reference: Int. J. Syst. Evol. Microbiol., 2013, Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 4760-4764, doi:10.1099/ijs.0.053272-0. 63: 219-223, doi:10.1099/ijs.0.040600-0. A member of the family Micrococcaceae. A member of the family Cellulomonadaceae.

EMENDATION OF SPECIES

Corynebacterium propinquum Riegel et al. Reference: Antonie van Leeuwenhoek, 2012, 1994 emend. Bernard et al. 2013. 102: 695-701, doi:10.1007/s10482-012-9768-1; Type strain: strain B 77159 = ATCC 51488 = List of Changes in Taxonomic Opinion no. 17 CCUG 33048 = CIP 103792 = DSM 44285 = [Int. J. Syst. Evol. Microbiol., 2013, 63: 8-9, JCM 12106 = LMG 19069. doi:10.1099/ijs.0.049320-0]. Reference: Int. J. Syst. Evol. Microbiol., 2013, 63: 2146-2154, doi:10.1099/ijs.0.046979-0. Paraoerskovia marina Khan et al. 2009 emend. Schumann et al. 2013. Nocardioides salarius Kim et al. 2008 emend. Type strain: strain CTT-37 = DSM 21750 = Hwang et al. 2012. NBRC 104352. Type strain: strain CL-Z59 = DSM 18239 = Reference: Int. J. Syst. Evol. Microbiol., 2013, KCCM 42320. 63: 219-223, doi:10.1099/ijs.0.040600-0.

SYNONYM

S23 Bifidobacterium stercoris Kim et al. 2010 pro 63: 219-223, doi:10.1099/ijs.0.040600-0. synon. Bifidobacterium adolescentis Reuter 1963. Nocardioides basaltis Kim et al. 2009 pro synon. Reference: Int. J. Syst. Evol. Microbiol., 2013, Nocardioides salarius Kim et al. 2008. 63: 4350-4353, doi:10.1099/ijs.0.054957-0. Reference: J. Antibiot. (Tokyo), 2012, 65: 427-431, doi:10.1038/ja.2012.45; List of Koreibacter algae Lee and Lee 2010 pro synon. Changes in Taxonomic Opinion no. 17 [Int. J. Paraoerskovia marina Khan et al. 2009. Syst. Evol. Microbiol., 2013, 63: 8-9, Reference: Int. J. Syst. Evol. Microbiol., 2013, doi:10.1099/ijs.0.049320-0].

S24 Publication of Award Lecture

The Society for Actinomycetes Japan Hamada Award 2011,

Dr. Misa Otoguro *

“Analysis of the distribution of actinomycetes in Indonesia, Vietnam, and Japan using a newly developed isolation method for motile actinomycetes” Actinomycetologica (2014) 28, S26-S31.

Biological Resource Center, National Institute of Technology and Evaluation 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan

*Current address The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu, Yamanashi 400-0005, Japan

S25 Award Lecture

Analysis of the distribution of actinomycetes in Indonesia, Vietnam, and Japan using a newly developed isolation method for motile actinomycetes

Misa Otoguro*

Biological Resource Center, National Institute of Technology and Evaluation 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan (Received April 24, 2014/ Accepted May 22, 2014/ Published June 25, 2014) *Current address The Institute of Enology and Viticulture, University of Yamanashi, 1-13-1 Kitashin, Kofu, Yamanashi 400-0005, Japan

INTRODUCTION pollen and hair (Couch, 1954). Subsequently, Palleroni developed a simple chemotactic method, which was For the screening of natural products from microbes, based on accumulating zoospores in glass capillaries the most effective method is the collection of many dif- containing chemoattractants (Palleroni, 1980). This bait- fered microorganisms from various natural substrates. ing or chemotactic method has resulted in the successful Much research focused on discovery of novel products isolation of particular genera, including Actinoplanes, has been devoted to studies of actinomycetes, especially Catenuloplanes, and Dactylosporangium. However, the genus Streptomyces, which is the most abundant and these techniques are laborious, time-consuming, and re- recoverable actinomycetes group in the soil. Extensive quire a steady hand, and special equipment. screening of this taxon has led to the discovery of many Taxonomic and ecological studies of actinomycetes novel strains that produce useful secondary metabolites have been reported in many Asian countries, such as (Tanaka & Omura, 1990). Although Streptomyces spp. China (Xu et al., 1996), Vietnam (Hop et al, 2011) , Sin- continue to provide new bioactive products, reliable gapore (Wang et al., 1999), Malaysia (Muramatsu et al., methodologies are required to isolate rare and unusual 2003) and Japan (Muramatsu et al., 2011; Hayakawa et actinomycetes, to reduce the re-isolation of strains pro- al., 2010). Hayakawa et al. revealed that there was little ducing known bioactive compounds, and to improve the taxonomic overlap between cool-temperate areas and quality of the natural products screened (Goodfellow & subtropical areas of Japan (Hayakawa et al., 2010). Williams, 1986; Otoguro et al., 2001). Here, I describe the development of a simple enrich- Members of a wide range of actinomycetes taxa, in- ment technique that enables the rapid and selective isola- cluding sporangiate genera, such as Actinoplanes and tion of diverse zoosporic actinomycete genera directly Dactylosporangium, arthrospore-bearing genera, such as from soil and plant litter (Hayakawa et al., 2000). To Actinokineospora and Actinosynnema, and even an aleu- elucidate the efficacy of the technique, termed the rehy- riospore forming genus, Kineosporia, share the same dration and centrifugation (RC) method, the RC method ability to release flagellated zoospores at a certain stage was used to isolate motile actinomycetes from many in their life cycle (Goodfellow & Cross, 1984; Hayakawa types of natural samples taken from various regions of et al., 2000). It has become increasingly apparent that Asia. A total of 2,173 strains of actinomycetes were iso- motile actinomycetes can produce a variety of antibiotics lated from Indonesia, Vietnam, and Japan. For generic and other bioactive compounds or be used for biochemi- identification, 16S rRNA gene sequences of all isolates cal conversion of complex compounds (Hasegawa, 1991; were determined. This is the first report of ecological and Vobis, 1992; Miyadoh, 1995). However, motile actino- taxonomical studies focused on motile actinomycetes mycetes typically represent a minor element of the mi- isolated from different countries. crobiota in natural ecosystems, and it is often difficult to isolate these organisms from soil and plant litter. Hence Development and improvement of the RC method selective isolation of minor components from diverse In this study, I improved the method of Makker and habitats would help our understanding of their role in Cross and incorporated a centrifugation technique that nature and would also be of value in the identification of separated zoosporic actinomycetes from streptomycetes novel strains that have pharmaceutical and industrial and other non-motile actinomycete associates (Makkar & applications. Isolation of these zoosporic, motile actino- Cross, 1982). This technique, designated the RC method, mycetes can be accomplished using a variety of recog- consisted of 2 steps. First step was immersion of the nized isolation methodologies designated to eliminate air-dried source material in 10 mM phosphate buffer nonfilamentous bacteria from the substrates or to sup- containing 10% soil extract, incubation at 30°C for 90 press their growth. Couch developed a widely distributed min, and finally centrifugation of the solution at 1,500 × enrichment technique by baiting these organisms with g for 20 min. The first rehydration step contributed to the

S26 release of many zoospores upon subsequent rehydration, soils and 257 leaf-litter samples were used in this study. while the centrifugation step served to eliminate strep- Between 2002 and 2008, 2,173 actinomycetes strains tomycetes and other non-motile actinomycetes from the were isolated in Indonesia, Japan and Vietnam (Table 1). supernatant, thereby facilitating selective growth of mo- tile actinomycetes on the isolation plates following inoc- Table 1. Genus diversity of actinomycetes isolated from Japan, Indonesia, and ulation. The RC method consistently achieved preferen- Vietnam using RC method tial isolation of motile actinomycetes in all samples, ac- Country Total Number Number counting for 37%–86% of the total microbial population number of of motile recovered. The genera Actinoplanes, Dactylosporangium, of genera genera and Catenuloplanes were successfully isolated from nat- isolates (number ural samples. Depending on the substrate of the samples of iso- examined, Actinosynnema, Actinokineospora and Kine- lates) osporia strains were mainly recovered from litter sam- Indonesia 1,170 47 11 (645) ples; these genera are rarely isolated by the general dilu- Vietnam 706 41 11 (423) tion method. Japan 297 32 9 (118) Next, I attempted to increase the isolation ratio of Actinokineospora strains, which are very rare, by com- These isolates were tentatively identified by analysis of bining the RC method with HV agar containing highly 16S rRNA gene sequences. Indonesian actinomycetes selective agents for exploiting their bioactivity with re- (1,170 strains) belonged to 47 genera, including 11 zoo- spect to antibiotic synthesis. The newly developed sporic genera. Japanese isolates consisted of 32 genera, method (Otoguro et al., 2001) consisted of 2 enrichment including 9 zoosporic genera, and were composed of 297 stages followed by plating on selective medium. The soil strains. Vietnamese actinomycetes were distributed sample was initially incubated under moist conditions at among 41 genera, including 11 zoosporic genera. A total 28°C for 10 days with calcium carbonate to increase the of 63 genera and new genus candidates were found population of Actinokineospora spp. and was then among the samples from Indonesia, Vietnam and Japan. air-dried. The second stage consisted of the RC method. Of these, 38 (59.4%) genera were detected within sam- Portions of the supernatant enriched with zoospores were ples from 2 countries or samples from all 3 countries. plated on humic acid-vitamin agar supplemented with fradiomycin (40 mg/L), kanamycin (40 mg/L), nalidixic acid (10 mg/L) and trimethoprim (20 mg/L). I examined 39 soil and plant litter samples taken from cultivated fields, forests, and stream banks. The method consistent- ly enriched and selectively isolated Actinokineospora spp. in 17 samples (15 soils and 2 leaf-litter materials). The integrated method selectively isolated Actinokineospora spp., constituting 4%–86% of the total microbial popula- tion recovered. Among the samples examined, the most favorable isolation sources for Actinokineospora spp. were forest soils that were rich in humus and not too acidic.

A comparative study of actinomycetes in Indonesia, Fig. 1 A map of the sampling area in Indonesia, Japan and Vietnam. Sam- Japan and Vietnam ple collection was carried out from 2002 to 2008. Filled circles indicate sampling sites in Indonesia. Black triangles indicate sampling sites in For the ecological study of motile actinomycetes, I Japan. Black squares indicate sampling sites in Vietnam. attempted to isolate actinomycetes from various regions of Indonesia, Japan and Vietnam by the RC method on The most frequently isolated genus was Actinoplanes. humic acid-vitamin agar. Two hundred thirty-two soils Seven motile genera, Cryptosporangium, Kineosporia, and 141 leaf-litter samples were collected from Indonesia Actinoplanes, Catenuloplanes, Couchioplanes, Dactylo- between 2003 and 2008. Similarly, 99 soils and 23 sporangium and Virgisporangium, were found in samples leaf-litter samples were collected from Japan between from all countries (Table 2). Until now, the genus Vir- 2002 and 2008. One hundred and nine soils and 93 gisporangium included three recognized species that leaf-litter samples collected from Vietnam between 2005 isolated in sub-tropical areas in Japan (Tamura et al., and 2008. The sampling sites for Indonesia and Vietnam 2001; Otoguro et al., 2010). In this study, 4 Japanese were located in the tropical to subtropical area, while the Virgisporangium strains were isolated in sub-tropical sampling sites for Japan were located in cool-temperate, area (Iriomote Island). Similar tendency was observed subtropical and temperate regions (Fig. 1). A total of 440 among the genus Cryptosporangium. Two Japanese

S27 Table 2 Taxonomic diversity of actinomycetes isolated from Indonesia, isolates of Cryptosporangium recovered from only Vietnam and Japan using RC method sub-tropical area. This result suggested that the genera Virgisporangium and Cryptosporangium prefer tropical region than temperate area.

Diversity of the genus Actinoplanes isolated in three countries The genus Actinoplanes was first proposed by Couch (Couch, 1950). The genus produced spherical, subspher- ical cylindrical or very irregular sporangia arising from vegetative mycelia. The spores released from sporangia under moist conditions exhibited motility by means of polar or peritrichous flagella. At the time of writing this manuscript, the genus comprised 32 species. Additionally, Yamamura et al. identified a newly proposed species, Actinoplanes rishiriensis RI50-RCA114T (Yamamura et al., 2012a). According to the Genome Online Database (GOLD), whole genome analysis of 2 strains of the ge- nus has been completed and that of 3 more strains is on- going (Schwientek et al., 2012; Yamamura et al., 2012b). I determined almost all 16S rRNA gene sequences of Actinoplanes isolates from leaf litter samples collected in Indonesia, Japan and Vietnam. 16S rRNA gene sequenc- es were compared with type strain sequences of previ- ously identified species in EMBL/GenBank/DDBJ and the ExTaxon-e databases using a BLAST search. From this result, Actinoplanes isolates showing less than 98% similarity were selected for the study of species diversity in the genus. The 16S rRNA gene sequences obtained were aligned with reference sequences of known species in the genus using the MEGA ver. 5.1 software package (Tamura et al., 2011). A phylogenetic tree was con- structed using Clustal X by neighbour-joining (Saitou & Nei, 1987) from Knuc values. The topology of the phylo- genetic tree was evaluated by bootstrap re-sampling as described by Felsenstein26 with 1000 replicates (Felsen- stein, 1985). Sequences with identities of 98.7% or higher were assumed to belong to the same operational taxonomic unit (OTU). The criteria for definition of OTU were based on the study by Stackebrandt and Ebers (Stackebrandt & Ebers, 2006). For those isolates that were sufficiently similar to any reference species to be classified using a BLAST search of the sequence, the OTU was inferred from the phylogenetic tree analysis (Fig. 2) and was defined as equal to the species. Among Actinoplanes isolates, I selected 109 strains from Indonesia, 13 strains from Japan, and 39 strains from Vietnam. The isolates were assigned to 67 OTUs on the basis of their 16S rRNA gene sequences (Table 3). Thirty six OTUs consisted of only Indonesian isolates, 17 OTUs were composed of only Vietnamese isolates, and 7 OTUs were comprised of only Japanese isolates. Five OTUs were comprised of Indonesian and Vietnam- ese isolates. Interestingly, 1 OTU contained isolates from all 3 countries (OTU-40). One OTU was

S28

Table 3 List of the genus Actinoplanes OTUs generated using a 16S RNA percent identity value of 98.7% or higher

identified that was composed of Indonesian and Japanese isolates. OTUs including both Japanese and Vietnamese isolates were not recognized. The phylogenetic and OTU analyses revealed that there was little taxonomic overlap among these 3 countries and that the genus Actinoplanes exhibited substantial diversity at the intrageneric level. The use of the RC method enabled the recovery of various motile actinomycetes. Hop et al. reported the isolation of many strains belonging to the family Mi- cromonosporaceae in Vietnam by the RC method (Hayakawa et al., 2000). In this study, I focused on the genus Actinoplanes. Diversity analysis of other repre- sentative genera of motile actinomycetes, such as Caten- Fig. 2 Phylogenetic tree of the isolates that belong to the genus Actinoplanes uloplanes, Cryptosporangium, Kineosporia, and Dacty- based on nearly complete 16S rRNA gene sequences. Bootstrap values losporangium are needed in order to make conclusions (>50%) based on 1000 resamplings are shown at the branches. on the variety of indigenous strains in these countries and

S29 regions. (Eds) The Biology of the Actinomycetes (pp.7–164). The results of this study suggested that species and Academic Press, London. strain diversities correlated with differences in climates. Hasegawa, T. (1991). Studies on motile arthro- Indonesia and Vietnam have tropical climates, while Ja- spore-bearing rare actinomycetes. Actinomycetologica pan has a more temperate climate, except in the northern 5, 64–71. and southern regions. In this study, almost all Japanese Hayakawa, M., Otoguro, M., Takeuchi, T., Yamazaki, strains selected were isolated from samples that were T. & Iimura, Y. (2000). Application of a method in- collected in temperate regions. Climatic and other eco- corporating differential centrifugation for selective logical factors, such as humidity, pH, and organic con- isolation of motile actinomycetes in soil and plant lit- tents of the substrate, affect the microbial flora. There- ter. Antonie Van Leeuwenhoek 78, 171–185. fore, it is reasonable that little taxonomic overlap was Hayakawa, M., Yamamura, H., Sakuraki, Y., Ishida, observed between Japan and the other countries. Y., Hamada, M., Otoguro, M. & Tamura, T. (2010). Diversity analysis of actinomycetes assemblages iso- CONCLUSION lated from soils in cool-temperate and subtropical are- as of Japan. Actinomycetologica 24, 1–11. In this study, I successfully constructed a selective Hop, D.V., Sakiyama, Y., Binh, C.T.T., Otoguro, M., isolation method for motile actinomycetes using an effi- Hang, D.T., Miyadoh, S., Luong, D.T. & Ando, K. cient isolation methodology, termed the RC method. To (2011). Taxonomic and ecological studies of test the efficacy of this RC method, I used this method to actinomycetes from Vietnam: isolation and isolate bacteria from many types of samples collected in genus-level diversity. J. Antibiot. 64, 599–606. Southeast Asian countries. A total of 2,173 isolates, be- Makkar, N.S. & Cross, T. (1982). Actinoplanes in soil longing to over 64 genera, were recovered (Table 2). and on plant-litter from freshwater habitats. J. Appl. Thus the data presented here demonstrated that the RC Bacteriol. 52, 209–218. method was an effective isolation technique for motile Miyadoh, S. (1995). Research activity on antibiotic actinomycetes and various other taxonomic groups. screening in Japan over the last 12 years (in Japanese). Biosci. & Bioindust. 53, 40–47. ACKNOWLEDGEMENTS Muramatsu, H., Shahab, N., Tsurumi, Y. & Hino, M. (2003). A comparative study of Malaysian and Japa- It is my great honor to have received the SAJ Hama- nese actinomycetes using a simple identification da Award for 2011. A part of this work was funded and method based on partial 16S rDNA sequence. Actino- conducted under a joint research project between the mycetologica 17, 33–43. Indonesian Institute of Sciences (LIPI) representing the Muramatsu, H., Murakami, R., Ibrahim, Z.H., Mu- Indonesian Government Research Institute, Indonesia or rakami, K., Shahab, N. & Nagai, K. (2011). Phylo- the Institute of Microbiology and Biotechnology, Vi- genetic diversity of acidophilic actinomycetes from etnam National University, Hanoi, Vietnam Malaysia. J. Antibiot. 64, 621–624. (VNUH-IMBT) and the Biological Resource Center, Otoguro, M., Hayakawa, M. Yamazaki, T. & Iimura, Y. National Institute of Technology and Evaluation (NBRC), (2001). An integrated method for the enrichment and Japan. I am most grateful to numerous collaborators in selective isolation of Actinokineospora spp. in soil and LIPI, VNUH-IMBT and NBRC. I would like to express plant litter. J. Appl. Microbiol. 91, 118–130. my thanks to my former supervisor Prof. Masayuki Otoguro, M., Ishida, Y., Tamura, T., Yamamura, H., Hayakawa for constant help and suggestions. Suzuki, K. I. & Hayakawa, M. (2010). Virgisporan- gium aliadipatigenens sp. nov., isolated from soil in REFERENCES Iriomote Island and emended description of the genus Virgisporangium. Actinomycetologica 24, 39-44. Couch, J.N. (1954). The genus Actinoplanes and its rela- Palleroni, N.J. (1980). A chemotactic method for the tives. Trans. N.Y. Acad. Sci. 16, 315–318. isolation of Actinoplaneceae Arch. Microbiol. 128, Couch, J.N. (1950). Actinoplanes, a new genus of the 53–55. , J. Elisha Mitchell Sci. Soc. 66, 87– Saitou, N. & Nei, M. (1987). The neighbor-joining 92. method: a new method for reconstructing phylogenetic Felsenstein, J. (1985). Confidence limits on phyloge- trees. Mol. Biol. Evol. 4, 406–425. nies: an approach using the bootstrap. Evolution 39, Schwientek, P. et al. (2012). The complete genome se- 783–791. quence of the acarbose producer Actinoplanes sp. Goodfellow, M. & Williams, E. (1986). New strategies SE50/110. BMC Genomics 13, 112. for the selective isolation of industrially important Stackebrandt, E. & Ebers, J. (2006). Taxonomic pa- bacteria. Biotechnol. Genet. Eng. Rev. 4, 213–262. rameters revised: tarnished gold standards. Microbiol. Goodfellow, M. & Cross, M. (1984). Classification. in Today 33, 152–155. Goodfellow, M., Mordarski, M. & Williams, S.T. Tamura, K., Peterson, D., Peterson, N., Stecher, G.,

S30 Nei, M., and Kumar, S. (2011). MEGA5: molecular 1060). Springer Verlag, Berlin. evolutionary genetics analysis using maximum like- Wang, Y., Zhang, J.S., Ruan, J.S., Wang Y.M. & Ali, lihood, evolutionary distance, and maximum par- S.M. (1999). Investigation of actinomycete diversity in simony methods. Mol. Biol. Evol. 28, 2731–2739. the tropical rainforests of Singapore, J. Ind. Microbiol. Tamura, T., Hayakawa, M. & Hatano, K. (2001). A Biotechnol. 23, 178–187. new genus of the order Actinomycetales, Virgosporan- Xu, L.H., Li, Q.R. & Jiang, C.L. (1996). Diversity of gium gen. nov., with descriptions of Virgosporangium soil actinomycetes in Yunnan, China. Appl. Environ. ochraceum sp. nov. and Virgosporangium aurantiacum Microbiol. 62, 244–248. sp. nov. Int. J. Syst. Evol. Microbiol. 51, 1809-1816. Yamamura, H., Otoguro, M., Tamura, T. & Hayakawa, Tanaka, Y. & Omura, S. (1990). Metabolism and prod- M. (2012a). Actinoplanes rishiriensis sp. nov., a novel ucts of Actinomycetes-an introduction. Actinomyce- motile actinomycete isolated by rehydration and cen- tologica 4, 13–14. trifugation method. J. Antibiot. 65, 249–253. Vobis, G. (1992). The genus Actinoplanes and related Yamamura, H. et al. (2012b). Complete genome se- genera. In: Balows, A., Trűper, H.G., Dworkin, M., quence of the motile actinomycetes Actinoplanes mis- Harder, W. & Schleifer, K-H. (Eds) The Prokaryotes, souriensis 431T (=NBRC 102363T). Stand. Genomic Second Edition A handbook on the biology of bacteria: Sci. 7, 294-303 ecophysiology isolation, applications-Vol 2 (pp1029–

S31 Publication of Award Lecture

The Society for Actinomycetes Japan Hamada Award 2013,

Dr. Mamoru Komatsu

“Development of the versatile Streptomyces host for heterologous expression of biosynthetic gene cluster for secondary metabolites” Actinomycetologica (2014) 28, S33-S38.

Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.

S32 Award Lecture

Development of the versatile Streptomyces host for heterologous expression of biosynthetic gene cluster for secondary metabolites

Mamoru Komatsu

Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan. (Received May 30, 2014/ Accepted June 3, 2014/ Published June 25, 2014)

INTRODUCTION such as ATP and NAD(P)H, successful production of A member of genus Streptomyces possesses the the desired product requires an optimum relationship ability to produce a wide variety of secondary me- of timing and flux between primary and secondary tabolites, including antibiotics and other biologically cellular metabolism. active compounds of proven value in human and Recently, there has been considerable interest in veterinary medicine and agriculture; they are also the development of engineered bacterial strains for useful as biochemical tools. These pharmaceutical the efficient heterologous production of secondary compounds collectively express not only antibacteri- metabolites (Pfeifer et al., 2002; Martinez et al., al, antifungal, antiviral, and antitumor activities but 2004; Feng et al., 2009). S. avermitilis is the indus- also antihypertensive and immunosuppressant prop- trial microorganism used for production of the an- erties. Streptomyces have been a rich source of thelmintic agent avermectin. This microorganism has structurally diverse compounds in which common already proven to be a highly efficient producer of cellular intermediates, including amino acids, sugars secondary metabolites. Since this strain has been and fatty acids, are combined to give more complex optimized for the efficient supply of primary meta- structures through defined biochemical pathways. bolic precursors and biochemical energy to support Genomic analysis of three species of Streptomyces, S. multistep biosynthesis, it is an attractive host for the avermitilis (Omura et al., 2001; Ikeda et al., 2003), S. heterologous production of secondary metabolites. coelicolor A3(2) (Bentley et al., 2002), and S. Here I summarize the construction of a versatile host griseus (Ohnishi et al., 2008), revealed that these for the efficient production of natural products by the microorganisms have large linear chromosomes that controlled minimization of the genome of the S. harbor over 20 gene clusters encoding the biosynthe- avermitilis (Komatsu et al., 2010). sis of secondary metabolites such as: polyketides and peptides synthesized by polyketide synthases (PKSs) Construction of Large-Deletion Mutants and nonribosomal peptide synthetases (NRPSs) re- Comparative analysis of three taxonomically dis- spectively, lantibiotics, terpenoids, shikimate-derived tinct Streptomyces genomes, S. avermitilis, S. coeli- metabolites, aminoglycosides, and other natural color A3(2), and S. griseus, revealed a conserved products (Nett et al., 2009). core region of ~6.28–6.50 Mb in which the majority The identification and characterization of biosyn- of the genes, including genes essential for growth, thetic gene clusters have proved to be invaluable are conserved with a high degree of synteny (Ohnishi tools for the elucidation of the biosynthesis of sec- et al., 2008). Among these three species, only the ondary metabolites as well as a potentially rich genome of S. avermitilis was asymmetric in structure. source of information on cryptic metabolites encoded Although both S. coelicolor A3(2) and S. griseus by silent biosynthetic pathways. Controlled genetic have ~1 Mb subtelomeric regions at both end of their engineering of these biosynthetic gene clusters will linear chromosomes, the subtelomeric regions of S. allow the production of analogs by combinatorial avermitilis have two different sizes, 2 Mb and 0.5 biosynthesis. A critical requirement for such applica- Mb located on the left and right chromosomal ends, tions is the availability of the biosynthetic gene clus- respectively (Ikeda et al., 2003). These subtelomeric ters controlling the production of a secondary metab- regions contain strain-specific genes as well as genes olites of interest as well as appropriate genetic sys- encoding secondary metabolite biosynthesis and tems for the in vivo manipulation of the correspond- non-essential genes. Deletion of the large left sub- ing genes in heterologous hosts. Furthermore, be- telomeric region of S. avermitilis would, therefore, cause all secondary metabolites are ultimately de- not be expected to affect either growth or primary rived from primary metabolic building blocks and metabolism that is essential for the supply of precur- require an adequate source of energy as well as re- sors for secondary metabolism. ducing equivalents derived from primary metabolism We used two complementary strategies to delete a

S33 >1.4-Mb segment from the left subtelomeric region (Fig. 1A). The desired mutants should have a dele- of the S. avermitilis genome (Fig. 1). The first ap- tion of 1,487,159 bp spanning the region from sav6 proach used general homologous recombination in- to sav1205. This large deletion event turned out to volving two homologous segments located near the have taken place at extremely low frequency, and left end of the genome and the 1.4-Mb region of the almost all of the progeny that were generated by this chromosome using the S. avermitilis ΔolmA mutant homologous recombination strategy also contained irregular deletions. Only two correct deletion mu- tants, designated SUKA2 (Δ7,734–1,494,898 nt), were isolated from three trial experiments and were confirmed by clamped homogeneous electrical field (CHEF) electrophoresis and Southern hybridization analysis using sav7 and sav1204 genes as probes. The second and most efficient approach involved site-specific recombination using Cre-loxP (Fig. 1B). Two loxP sequences were first introduced in the same orientation into the S. avermitilis wild-type strain at 79,454 nt and 1,595,564 nt, respectively, by stepwise homologous recombination. The desired deletion mutants were efficiently generated after induction of cre expression, and all the 24 resultant progeny that were tested harbored the identical 1,516,020-bp dele- tion between sav70 and sav1287, which was con- firmed by PCR (using primer pair, forward for 79,156–79,174 nt in sav70 and reverse for 1,595,769–1,595,787 nt in sav1287) and CHEF elec- trophoresis. These desirable large deletion mutants were designated as SUKA3 (Δ79,455–1,595,563 nt). All deletion mutants could grow on the minimum medium without any supplements, suggesting that no essential genes were in the large left subtelomeric Fig.1 The strategy for construction of large-deletion mutants SUKA2 (A) and SUKA3 (B) of S. avemitilis. region.

Fig. 2. AseI physical maps of S. avermitilis wild type and its large-deletion mutants. The genotype of large-deletion mutants were as follows: SUKA2,Δ(7,7341– 1,494,898 nt) ΔolmA (Δ3,557,725–3,594,005 nt); SUKA3, Δ(79,455–1,595,563 nt)::loxP; SUKA4, SUKA2 Δ(olmA4-olmC)::mut-loxP (Δ3,536,700–3,634,730 nt); SUKA5, SUKA3 Δ(olmA4-olmC)::mut-loxP (Δ3,536,700–3,634,730 nt); SUKA6, SUKA2 Δ(8,886,025–8,925,414 nt)::loxP (containing cyp28 and fdxH); SUKA7, SUKA5 Δ(8,886,025–8,925,414 nt)::loxP; SUKA10, SUKA4 Δ(gap1-ptlL)::ermE (Δ3,745,502–3,758,936 nt); SUKA11, SUKA5 Δ(gap1-ptlL)::ermE (Δ3,745,502– 3,758,936 nt); SUKA12, SUKA10 Δ(8,886,025–8,925,414 nt)::loxP; SUKA13, SUKA11 Δ(8,886,025–8,925,414 nt)::loxP; SUKA15, SUKA12 ΔgeoA::aadA; SU- KA16, SUKA13 ΔgeoA::aadA; and SUKA17, SUKA13 Δ(2,633,682–2,641,994 nt)::mut-loxP. The right column indicates the percentage of the genome size com- pared with that of the wild type. Shaded boxes [D’; Δ(8,886,025–8,925,414 nt):: loxP, K’; ΔolmA, K”; Δ(olmA4-olmC)::mut-loxP, N’; Δ(gap1-ptlL)::ermE,O’; Δge- oA::aadA, O” Δ(2,633,682–2,641,994 nt)::mut-loxP, P’; Δ(79,455–1,595,563 nt)::loxP and W’; Δ(7,7341–1,494,898 nt)] on the physical maps indicate the introduc- tion of deletion(s). Thick bars at the top and bottom of the physical maps correspond to the central core region. Open arrows and filled triangles indicate the replica- tion origin and 16S-23S-5S rRNA operon, respectively. S34 large-deletion derivatives were fully sporulated and Avermectins and the related polyketides, the oli- formed abundant spores. Since the development of gomycins and filipins, are normally major endoge- morphological differentiation in large-deletion deriv- nous secondary metabolites produced by wild-type S. atives was faster than that of the wild-type strain, their avermitilis. The gene clusters encoding both aver- growth rates were compared. The growth rate on mectin and filipin biosynthesis are located in the re- liquid complex medium was not clearly different, gions that have been removed in both large-deletion while the growth characteristics of large-deletion mutants, SUKA2 and SUKA3. In addition, the entire derivatives obviously differed from the wild-type set of genes involved in oligomycin biosynthesis strain in liquid minimum medium (Fig. 3). The were deleted by site-specific recombination using growth rate between large-deletion derivatives SU- Cre/loxP, giving rise two olm− derivatives, SUKA4 KA4, 5, and 17 until 24 h incubation was similar and and SUKA5, obtained from SUKA2 and SUKA3, faster than that of the wild-type strain. Interestingly, respectively. These two prototype mutants could the biomass of the wild-type strain increased until 24 each be further modified by the deletion of specific h, however large-deletion derivatives continued to regions of the genome or by the addition of useful grow until 44 h and their biomass contents were about marker genes (Fig. 2). HPLC-MS analysis of 1.7-fold higher than that of the wild-type strain, im- whole-broth EtOAc extracts of such mutants con- plying that large-deletion derivatives had the ability to firmed the absence of endogenous metabolites (Ko- grow faster and increase their biomass (Komatsu et matsu et al., 2010). The derived SUKA16 and SU- al., 2013). KA17 mutants, from which the genes encoding the biosynthesis of the terpene compounds geosmin, Heterologeous Expression of Exogenous Gene neopentalenolactone, and carotenoid has been delet- Clusters for Secondary Metabolism. ed, no longer produce any of these endogenous ter- Analysis of the S. avermitilis genome revealed that pene metabolites (Komatsu et al., 2010). although the microorganism harbored several bio- Since all of the large-deletion derivatives of S. synthetic gene clusters, no gene clusters for amino- avermitilis were constructed to remove more than a glycoside antibiotic biosynthesis could be located. 1.4-Mb region from the 9.03-Mb linear chromosome, Analysis of the genome of the aminoglycoside strep- their growth characteristics were examined. All of the tomycin producer S. griseus IFO 13350 (Ohnishi et large-deletion derivatives (SUKA1-17) grew well on al., 2008) indicated that at least 27 genes the sporulation medium and their morphological de- (sgr5914-sgr5940) are concerned with the regulation, velopment on the medium was slightly faster than that self-resistance, and streptomycin biosynthesis. To of the wild-type strain (Komatsu et al., 2013). The move these genes to S. avermitilis, a ~41.2-kb frag- wild-type strain formed aerial hyphae and started ment containing the entire set of genes for strepto- sporulation after 3 days of growth, but all of the mycin biosynthesis was inserted into the integrating cosmid vector pKU465cos to generate pSM1, which was used to transform both wild-type S. avermitilis and the large-deletion mutants, SUKA4 and SUKA5 (Komatsu et al., 2010). In contrast to wild-type S. avermitilis, which was sensitive to streptomycin (0.1 μg/mL), the transformants carrying pSM1 were re- sistant to more than 10 μg/mL of streptomycin (Ko- matsu et al., 2010). These transformants also pro- duced streptomycin (Fig. 4), suggesting that both the regulatory gene strR (sgr5931), whose gene product acts as positive regulator for the expression of the self-resistance gene (sgr5932), and the suite of genes for streptomycin biosynthesis were expressed in transformed strains of S. avermitilis and its deriva- tives, SUKA4 and SUKA5. The identity of the anti- biotic produced by the transformants was confirmed by direct comparison with authentic streptomycin. Some production media were examined for the opti- mal production of streptomycin in S. avermiti-

Fig.3. Growth of S. avermitilis wild-type and its large-deletion mutants, lis/pSM1. Examination of a variety of production SUKA4, SUKA5 and SUKA17, in liquid culture. Spores were cultured on media revealed that maximum production of strep- TSB at 30ºC for 48 h. Vegetative culture was diluted to 100-fold by TSB and incubated with shaking for 24 h at 30ºC. A 0.4 mL portion of the culture was tomycin by the pSM1 was obtained by culturing in inoculated into 20 mL of MM liquid medium supplemented with 1% glucose an avermectin production medium rather than the and 0.1% yeast extract and incubated at 28ºC with shaking (180 rpm). usual streptomycin production medium, which is

S35 preferred by S. griseus IFO 13350. The streptomycin disruptant by complementation with S. griseus adpA productivity of SUKA5 (pSM1) was higher than that (Komatsu et al., 2010). In like fashion, streptomycin of the S. avermitilis wild-type strain carrying pSM1 production in the adpA disruptant of S. griseus was (Fig. 4). Because the deletion mutants lack the bio- similarly restored by introduction of bdpA from S. synthetic gene clusters for the principal endogenous avermitilis, although it is not clear whether or not natural products of S. avermitilis, the natural precur- ArpA controls gene expression of the exogenous bdpA sors and biochemical energy of the host are appar- in S. griseus. ently efficiently used in the biosynthesis of strepto- We also examined whether or not it was possible to mycin. Interestingly, the productivity of streptomy- control strR expression using alternative promoter(s) cin in the large-deletion mutant SUKA5 carrying in S. avermitilis. An strR expression cassette that pSM1 was higher than that of the wild-type strain of used the rpsJ (sav4925) or aveR (sav935) (Kitani et S. griseus under optimum production condition (Fig. al., 2009) promoter was introduced using a second 4). actinophage-based (K38-1; AB251919) integrating vector pKU493hph (Komatsu et al., 2010), becauase the streptomycin biosynthetic gene cluster has been integrated using a C31-based integrating vector. Although the productivity in SUKA5 (pSM1) was improved slightly using the aveR promoter for the expression of strR, the rpsJ promoter had no effect on streptomycin productivity. However, introduction of an extra copy of strR under control of the aveR promoter restored streptomycin production in SU- KA5 ΔbdpA (pSM1) (Fig.4). The major endogenous secondary metabolites of wild-type S. avermitilis are the polyketide com- pounds (avermectins, filipins, and oligomycin), each of which is synthesized by a modular PKS. This mi- croorganism has the ability to synthesize polyketide compounds at the industrial production level, making Fig.4. Production of streptomycin in S. avermitilis wild type carrying pSM1, its large-deletion mutants SUKA5 (pSM1), and the original produc- S. avermtilis a particularly attractive host for the het- er S. griseus. All strains were grown in production medium at 28 °C. Quan- erologous expression of modular PKS genes. Pladi- titative analysis of streptomycin in the culture broth was carried out by the agar-diffusion method using B. subtilis as an indicator microorganism. The enolides, metabolites of S. platensis Mer-11107 (Sa- strRp, rpsJp, and aveRp indicate that strR was expressed by its own pro- kai et al., 2004; Mizui et al., 2004), are antitumor moter or the promoters, rpsJ and aveR, in S. avermitilis, respectively. ΔbdpA indicates disruption mutants of bdpA (sav5261). SGR, S. griseus macrocyclic polyketides with an unusual mode of IFO 13350; SAV, S. avermitilis wild-type. action (Kotake et al., 2007). The gene cluster for The regulatory network for streptomycin biosyn- pladienolide biosynthesis has been cloned and char- thesis in S. griseus has been elucidated in detail acterized (Machida et al., 2008). We used a recom- (Ohnishi et al., 1999; Ohnishi et al., 2005; Tomono binant BAC clone (pPLD30) carrying the 75-kb en- et al., 2005). The expression of the positive regula- tire gene cluster for pladienolide biosynthesis to in- tory gene, strR, in streptomycin biosynthesis is con- troduce the pathway into both wild-type S. avermtilis trolled by AraC-family regulatory protein AdpA, for and the SUKA5 by conjugation (Komatsu et al., which gene (sgr4742) expression is also regulated by 2010). Unfortunately, none of the exoconjugants A–factor receptor protein ArpA (SGR3731). Among produced pladienolides in either pladienolide or 26 putative AraC family transcriptional regulatory avermectin production media (Fig. 5). Real-time genes in S. avermitilis, the predicted amino acid se- PCR analysis revealed that pldR, the transcriptional quence of the gene product of sav5261 (bdpA) was activator for the pladienolide biosynthetic genes, was highly similar to AdpA with 87% identity and 89% not expressed, suggesting that the appropriate regu- positive matches, suggesting that BdpA is most likely lator proteins to activate the pldR expression might a homolog of AdpA. To examine the role of BdpA, a not be present in the heterologous S. avermitilis host. bdpA-disrupted mutant of SUKA5 (pSM1) was con- Indeed, when we introduced an extra copy of pldR structed by homologous recombination (Komatsu et under control of the ermE promoter, we could ob- al., 2010). The resultant bdpA disruptant completely serve production of pladienolide B and failed to produce streptomycin (Fig. 4), whereas 18,19Δ-pladienolide B along with other, currently streptomycin production could be restored to the bdpA unidentified, pladienolide components. Pladienolide disruptant by introduction of a copy of bdpA under production in SUKA5 carrying both pPLD30 and control of its own promoter, thereby suggesting that ermEp::pldR was remarkably improved to levels BdpA activates the transcription of strR. Interestingly, more than 20-fold higher than that of the wild-type S. streptomycin formation was also restored to the bdpA avermitilis host carrying pPLD30 and ermEp::pldR

S36

Fig. 5. HPLC-MS analysis of products from S. avermitilis wild type carrying pPLD30 (A) and wild type carrying pPLD30 and pKU493aad::ermEp-pldR (B). Each culture filtrate was extracted with EtOAc, and the organic layer was concentrated 10-fold under reduced pressure. The culture filtrate (5 μL) of SUKA5 carrying pPLD30 (C) and SUKA5 carrying pPLD30 and pKU493aad::ermEp-pldR (D) was directly analyzed by HPLC-MS. Analytical conditions for HPLC were as follows: octadodecylsilyl silica-HPLC (3 μm; 2.0  x 100 mm), detection (240 nm), mobile phase (40–90% linear gradient of acetonitrile in water), flow rate (0.2 mL/min). Two peaks that eluted at 10.15 (m/z 559 [M+Na]) and 17.45 min (m/z 543 [M+Na]) were identical to authentic samples of pladienolide B and Δ18,19-pladienolide B, respectively, and the peaks from wild-type exoconjugants, which eluted after 22.5 min, were also identical to authentic samples of avermectins (AVMs) and oligomycin. . CONCLUSION (Fig. 5). These observed differences might be ex- plained by the likely competition between pladi- In this paper, I summarized the construction of a enolide biosynthesis and avermectin biosynthesis for series of the large-deletion mutants of S. avermiti- common acyl-CoA precursors that serve as build- lis. The feasibility of using the large-deletion mu- ing-block units for their respective polyketide back- tants as a heterologous host has been shown by the bones. We have reported similar observations for the effective expression of gene clusters for strepto- balance of avermectin and oligomycin production in mycin and pladienolide biosynthesis. Furthermore, wild-type S. avermitilis. Thus, a biosynthetically we have already investigated the heterologous blocked mutant of aveA1 encoding the avermectin expression more than 20 exogenous biosynthetic PKS in which avermectin production was completely gene clusters in the large-deletion mutants of S. abolished displayed a greater than 10-fold increase in avermitilis and these large-deletion mutants have oligomycin production (Tanaka et al., 2009). proved to be versatile and effective hosts for ex- Active PKS holo-enzymes must be generated from pression of heterologous gene cluster governing the nascent translated apo-polypeptides by modifica- the production of a variety of secondary metabo- tion of the constituent acyl carrier protein (ACP) lites, including aminoglycosides, nucleosides, ri- domains mediated by a suitable PptA. There are no bosomal and non-ribosomal peptides, shikimate- pptA genes located in pladienolide biosynthetic gene derived metabolites, and terpenes (Komatsu et al., clusters. The required posttranslational modifications 2008; Komatsu et al., 2013; Ikeda et al., 2014). might be carried out by one or more of the endoge- Almost all expression of heterologous biosynthetic nous PptAs (SAV1748, SAV2905, SAV3193, and gene clusters in the large-deletion mutants was SAV3637) of S. avermitilis. Moreover, in the pladi- efficiently observed. In many cases, the productiv- enolide biosynthesis, the hydroxylation at C6 cata- ity of exogenous metabolites by heterologous ex- lyzed by cytochrome P450 encoded by pldB, require pression of intact biosynthetic gene cluster in the the electron-transport proteins, ferredoxin and ferre- large-deletion mutants, was improved in compari- doxin reductase (Machida et al., 2008). These redox son with those of original producing microorgan- partners that support pladienolide biosynthesis are isms. Because the large- deletion mutants of S. apparently supplied by the endogenous gene product avermitilis no longer produced major endogenous of fdxB-G and fprB-F in the S. avermitilis strains. metabolites, primary metabolism seemed to be efficiently exploited to generate precursors of ex-

S37 ogenous biosynthetic gene clusters. Although of secondary metabolism. Proc. Natl. Acad. Sci. some Streptomyces strains have previously been USA. 107:2646-2651. examined for use as model heterologous hosts, Komatsu, M., et al. (2013). Engineered Streptomyes they have not proven to be sufficiently flexible or avermitilis host for heterologous expression of bi- vigorous producers of foreign secondary metabo- osynthetic gene cluster for secondary metabolites. ACS synth. biol. 19:384-396 lites (Pfeifer et al., 2002; Martinez et al., 2004; Kotake, Y., et al. (2007). Splicing factor SF3b as a Feng et al., 2009). S. avermitilis is also attractive target of the antitumor natural product pladienolide. as a host for heterologous expression, because the Nat. Chem. Biol. 3:570–575. availability of the complete genome sequence Machida, K., et al. (2008). Organization of the bio- makes possible analysis of global transcription synthetic gene cluster for the polyketide antitumor using DNA microarrays. The constructed macrolide, pladienolide, in Streptomyces platensis large-deletion mutants of S. avermitilis could be Mer-11107. Biosci. Biotechnol. Biochem. 72:2946– applicable to use as heterologous hosts not only 2952. for the production of exogenous secondary metab- Martinez, A., et al. (2004). Genetically modified olites derived from cultivable and uncultivable bacterial strains and novel bacterial artificial chro- microorganisms but also for the production of un- mosome shuttle vectors for constructing environ- mental libraries and detecting heterologous natural natural metabolites by combinatorial biosynthesis products in multiple expression hosts. Appl. Envi- using two or more metabolic pathways. ron. Microbiol. 70:2452–2463. Mizui, Y., et al. (2004). Pladienolides, new sub- ACKNOWLEDGMENTS stances from culture of Streptomyces platensis Mer-11107. III. In vitro and in vivo antitumor ac- It is my great honor to receive the Hamada tivities. J. Antibiot. (Tokyo) 57: 188–196. Award of the Society for Actinomycetes Japan Nett, M., et al. (2009). Genomic basis for natural (SAJ) in 2013. I am most grateful to Prof. Haruo product biosynthetic diversity in the actinomycetes. Ikeda and Prof. emeritus Satoshi Omura for their Nat. Prod. Rep. 26:1362–1384. insightful guidance. I would like to express my Ohnishi, Y., et al. (1999). The A–factor regulatory appreciation for support during this work to all cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target members of the Laboratory of Microbial Engi- gene of the A–factor receptor. Mol. Microbiol. neering in Kitasato Institute for Life Sciences, 34:102–111. Kitasato University. Finally, I would like to thank Ohnishi, Y., et al. (2005). AdpA, a central transcrip- the members of the SAJ for their continuing inter- tional regulator in the A–factor regulatory cascade est and support. that leads to morphological development and sec- ondary metabolism in Streptomyces griseus. Biosci. REFERENCES Biotechnol. Biochem. 69:431–439. Ohnishi, Y., et al. (2008). Genome sequence of the Bentley, SD., et al. (2002). Complete genome se- streptomycin-producing microorganism Strepto- quence of the model actinomycete Streptomyces myces griseus IFO 13350. J. Bacteriol. 190:4050– coelicolor A3(2). Nature 417: 141–147. 4060. Feng, Z., et al. (2009). Engineered production of Omura, S., et al. (2001). Genome sequence of an iso-migrastatin in heterologous Streptomyces hosts. industrial microorganism Streptomyces avermitilis: Bioorg. Med. Chem. 17: 2147–2153. Deducing the ability of producing secondary me- Ikeda, H., et al. (2003). Complete genome sequence tabolites. Proc. Natl. Acad. Sci. USA. 98:12215– and comparative analysis of the industrial micro- 12220. organism Streptomyces avermitilis. Nat. Biotechnol. Pfeifer, B., et al. (2002). Process and metabolic 21:526–531. strategies for improved production of Escherichia Ikeda, H., et al. (2014). Genome mining of the coli-derived 6-deoxyerythron- olide B. Appl. Envi- Streptomyces avermitilis genome and development ron. Microbiol. 68:3287–3292. of genome-minimized hosts for heterologous ex- Sakai, T., et al. (2004). Pladienolides, new sub- pression of biosynthetic gene clusters. J. Ind. Mi- stances from culture of Streptomyces platensis crobiol. Biotechnol. 41: 233-250. Mer-11107. I. , fermentation, isolation Kitani, S., et al. (2009). Characterization of a regu- and screening. J. Antibiot. (Tokyo) 57:173–179. latory gene, aveR, for the biosynthesis of avermec- Tanaka, Y., et al. (2009). Antibiotic overproduction tin in Streptomyces avermitilis. Appl. Microbiol. by rpsL and rsmG mutants of various actinomy- Biotechnol. 82:1089–1096. cetes. Appl. Environ. Microbiol. 75:4919–4922. Komatsu, M., et al. (2008). Identification and func- Tomono, A., et al. (2005). Transcriptional control tional analysis of genes controlling biosynthesis of by A–factor of strR, the pathway- specific tran- 2-methylisoborneol. Proc. Natl. Acad. Sci. USA. scriptional activator for streptomycin biosynthesis 105:7422-7427. in Streptomyces griseus. J. Bac Komatsu, M., et al. (2010). Genome- minimized Streptomyces host for the heterologous expression

S38

55 th Regular Colloquim Date: Feb. 14 (Fri.), 2014 Keiko SHIMIZU, Hiroaki KASAI (Kamaishi Place: Tokyo Senju Campus, Tokyo Denki lab., Kitasato Univ.) University 3. “Production of dream medicine RNA by Program: engineered bacteria” 1. “The glutaminase genes of Aspergillus Yo KIKUCHI, So UMEKAGE (Toyohashi sojae involved in glutamate production dur- University of Technology, Dept. Environmental ing soy sauce fermentation” and Life Sciences) Kotaro ITO (Noda Institute for Scientific Re- search) 4. “Bioindustry in Japan ~ Current Status and Prospects of Open Innovation Era ~” 2. “Diversity of epibiont species in the gut of Eikoh SHIMIZU (Japan Bioindustry Associa- chum salmon fries and their food organisms tion) in Sanriku sea area”

S39 Online access to The Journal of Antibiotics for SAJ members

Eligible members of SAJ can access to online issues of The Journal of Antibiotics (JA) by taking following steps;

1. Open the SAJ official website (URL: http://www.actino/) and click the banner of JA. 2. To register, enter your Membership number (10-digit figures starting with 154), First name, Last name, and E-mail address to receive a password and click 'Send'. You can find your Membership number on the envelope from SAJ. 3. Then, you will receive your password from SAJ. 4. Open the SAJ official website (URL: http://www.actino/) and click the banner of JA again. To access the JA website, enter Membership number and password and click 'Login'. 5. Upon recognition of Membership number and password, SAJ site relays the access to the journal's website on nature.com 6. In the journal's website on nature.com, contents are freely available. Members can find the article from current issue table of contents, or archive issues list. Click 'PDF' or 'HTML' link of each article to read full contents.

Please note; Unique set of Membership number and password is issued and provided to each eligible members of SAJ. Members are not allowed to distribute this information to the third person or third parties. Depending on the network environment there's a case where access to full contents is not permitted even though Membership number and password is correct. In such case please con- tact us by email for alternative access method. When contacting please provide your mem- bership number and password, and specify name and version of your Internet browser.

RBA Helpdesk- The Journal of Antibiotics E-mail : [email protected]

S40

日本放線菌学会誌

会 報

第28 巻1号

— 目 次 —

報告 大西康夫先生の日本学術振興会賞ご受賞を祝して・・・・・・・・・・・・・・・・・・・・・・・・・・・・1 受賞論文掲載のおしらせ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2 2014 年度日本放線菌学会授賞者の決定について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3 第 55 回日本放線菌学会学術講会 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3 The Journal of Antibiotics の Web 閲覧開始のお知らせ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 11 「Digital Atlas of Actinomycetes」改定のお知らせ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 12 ご寄付のお礼とお願い ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13 日本放線菌学会賛助会員 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 14 著作権について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 14

報告 大西康夫先生の日本学術振興会賞ご受賞を祝して

我が国の科学研究と学術を先導する優れた若手研究者に 贈られる、栄えある日本学術振興会賞に、本会によって推 薦された大西康夫先生(東京大学大学院農学生命科学研究 科教授)が輝かれました。ここに祝意をもってお知らせい たします。 大西先生は、本会会長を務められた故堀之内末治先生の 後を継いで 2010 年に教授に昇任され、新たな研究体制をも って精力的に研究を展開してこられました。『放線菌の遺 伝子発現制御機構と二次代謝産物生合成に関する研究』の 課題に対する本賞の授与は、放線菌を対象とする学問領域 における先生の卓越した研究力と指導力を称えるもので、 本会会員一同にとって大きな喜びとするところです。授賞 式は、本年2月10日(月)に日本学士院(東京都台東区 上野公園)において、秋篠宮同妃両殿下のご臨席のもと厳 かに執り行われました。 大西先生ならびに共同研究者の皆様のますますのご発展 をお祈りいたします。

1

受賞論文掲載のおしらせ

2011 年度浜田賞受賞 乙黒 美彩 博士

山梨大学大学院医学工学総合研究部

「運動性放線菌の選択分離方法の構築とアジア地域における生態学的研究」

“Analysis of the distribution of actinomycetes in Indonesia, Vietnam, and Japan using a newly developed isolation method for motile actinomycetes”

Dr. Misa Otoguro

Actimomycetologica (2014) 28, S26-S31.

2013年度浜田賞受賞 小松 護 博士

北里大北里生命科学研究所

「放線菌汎用宿主の開発と物質生産への応用」

Dr. Mamoru Komatsu

“Development of the versatile Streptomyces host for heterologous expression of biosynthetic gene cluster for secondary metabolites”

Actimomycetologica (2014) 28, S33-S38.

2

2014 年度日本放線菌学会授賞者の決定について

2014 年 6 月 11 日 会長 長田 裕之

日本放線菌学会は、下記のように2014 年度日本放線菌学会授賞者を決定しましたので以下にご報 告いたします。 日本放線菌学会賞および日本放線菌学会功績功労賞候補者については、理事、評議員、監事および 理事評議員監事経験者が推薦することができます。日本放線菌学会浜田賞候補者については、自薦 も含めてすべての正会員が推薦できることになっておりますので、今後も、積極的なご推薦をお願 い申し上げます。

【学会賞】 仁平 卓也 氏(大阪大学 生物工学国際交流センター 分子生物学 教授) 「放線菌二次代謝を制御する分子機構の解明とその応用」

【功績功労賞】 馬目 太一 氏(いわき明星大学 薬学部 客員教授) 「放線菌育種、メバロチン生産管理および学会活動への貢献」

【浜田賞】以下の3名(五十音順) 北川 航 氏(独立行政法人産業技術総合研究所 生物プロセス研究部門 主任研究員) 「ロドコッカス属放線菌による難分解性化合物分解と抗生物質合成に関する研究」

田口 貴章 氏(武蔵野大学 薬学研究所 講師) 「放線菌二次代謝モデル抗生物質アクチノロジンの生合成経路解明」

橋爪 秀樹 氏(公益財団法人微生物化学研究所 生物活性研究部 主任研究員) 「放線菌をはじめとする土壌細菌由来の有用抗菌抗生物質の探索と作用機序解析」

以上

報告 第 55 回日本放線菌学会学術講演会

催:日本放線菌学会 1 .『 しょうゆのグルタミン酸生成に寄与 日時:平成 26 年 2 月 14 日(金)13:30 する麹菌グルタミナーゼ遺伝子』 ~17:10 伊藤 考太郎(公益財団法人 野田産業科 場所:東京電機大学 東京千住キャンパ 学研究所) ス 2 .『 水産魚種や海産無脊椎動物に共存す 100 周年ホール る細菌の多様性』 笠井 宏朗(北里大学 感染制御研究機 プログラム 構)

3

3 .『 夢の薬 RNA を微生物に作らせる』 が深く関わっていることが知られている。 菊池 洋(豊橋技術科学大学大学院 環 麹菌のグルタミナーゼは、生産量が低く、 境・生命工学系) 菌体に結合しており、かつ、タンパク質分 4 .『 日本のバイオインダストリー 〜オ 解能の高い麹菌から、酵素を精製すること ープンイノベーション時代の課題と展望 がとても困難であったため、タンパク質側 〜』 からしょうゆ醸造に寄与するグルタミナ 清水 栄厚(一般財団法人 バイオインダ ーゼを探すアプローチは難しい状況にあ ストリー協会) った。 近年、麹菌A. oryzae およびA. sojaeのゲノ ム解析が報告され、遺伝子配列情報の全容 しょうゆのグルタミン酸生成に寄与す が明らかとなった。また、麹菌における遺 る麹菌グルタミナーゼ遺伝子 伝子破壊などの分子生物学的な研究手法 The glutaminase genes of Aspergillus が進歩し、遺伝子レベルの研究が活発に行 sojae involved in glutamate production われるようにもなっている。そこで我々は、 during soy sauce fermentation ゲノム情報を活用し、真にしょうゆ醸造に 伊藤 考太郎 Kotaro ITO 寄与するグルタミナーゼを遺伝子側から (公益財団法人 野田産業科学研究所) 明らかにするアプローチで研究を行った。

1.はじめに 2.麹菌ゲノム配列情報からのグルタミナ 麹菌(Aspergillus oryzae, Aspergillus sojae) ーゼ遺伝子の探索 は、日本の伝統的な発酵食品であるしょう 麹菌ゲノム配列情報が明らかとなったた ゆ、味噌などの醸造に広く使用されている。 め、既知のグルタミナーゼと相同な遺伝子 麹菌での生産が知られているグルタミナ をin silicoで探索した。その結果、麹菌A. ーゼはグルタミンをグルタミン酸とアン sojae NBRC4239のゲノムには、我々が見出 モニアに加水分解する酵素である。しょう したCryptococcus nodaensis由来の新規な ゆの旨味の中心的な役割を果すグルタミ 耐塩性グルタミナーゼ1)と相同性のある ン酸は、以下の2つの経路から生成される。 TypeI(gahタイプ)、B. subtilis由来のグル (1)原料タンパク質がプロテアーゼ、ペ タミナーゼ活性を持つγグルタミルトラン プチダーゼによって分解され、直接遊離す スペプチダーゼと相同性のあるTypeII(ggt る経路。(2)原料タンパク質の分解により タイプ)、麹菌のグルタミナーゼであると 生じたグルタミンがグルタミナーゼによ 初めて報告されたgtaA遺伝子2)と相同性の ってグルタミン酸に変換される経路。グル あるTypeIII(gtaタイプ)、M. luteus由来の タミンは、非酵素的な反応によって、比較 耐塩性グルタミナーゼと相同性のある 的速やかに旨味のないピログルタミン酸 TypeIV(glsタイプ)の4つのタイプに分か へと変換する。そのため、高いグルタミン れ、それぞれ複数のホモログ遺伝子が存在 酸量を得るには、後者の経路が重要であり、 したため、計10個のグルタミナーゼ遺伝子 しょうゆ醸造では、麹菌のグルタミナーゼ が存在した。

4

の試醸を行った。その結果、GahBまたは 3.A. sojaeのグルタミナーゼ遺伝子とそ GahAが残存するΔgahA-ΔggtA-Δglsおよび、 の破壊株によるしょうゆの試醸5) ΔgahB-ΔggtA-Δglsの3重遺伝子破壊株では 次に、どのグルタミナーゼがしょうゆ醸造 グルタミン酸含量の低下は観察されなか に効果があるのかを明らかにするため、各 ったが、ΔgahA-ΔgahBの2重破壊株では 遺伝子の単独破壊株を作製した。各グルタ 20-30%のグルタミン酸含量の低下が観察 ミナーゼ破壊株のグルタミナーゼ活性を された。これら2種には共通した性質をも 測定した結果、TypeIのgahB遺伝子を破壊 つことが推測されたため、酵素を精製し、 するとグルタミナーゼ活性が1/10以下に 諸性質を決定した。その結果、これらの酵 低下した3)。しかし、この破壊株を用いて 素には、遊離のグルタミンだけでなく、ペ 試醸したしょうゆのグルタミン酸含量は プチドのグルタミンにも作用するペプチ 低下しなかった。これら10個の遺伝子は全 ドグルタミナーゼ活性があり3, 4)、しょう てグルタミナーゼ活性をもつと予想され ゆ醸造で高いグルタミン酸含量を得るに るため、単独遺伝子破壊では、その他の遺 は、この反応が重要であることが明らかと 伝子由来のグルタミナーゼにより補完さ なった。 れる可能性が考えられた。 今回、ゲノム情報を活用することで、真に そこで、10個のグルタミナーゼ遺伝子につ しょうゆ醸造でのグルタミン酸生成に寄 いて、多重遺伝子破壊株を作製した。TypeI、 与する酵素を明らかにすることができた。 TypeIIおよびTypeIVを同時に破壊した7重 今後は、様々な酵素に対して、しょうゆ醸 遺伝子破壊株および全グルタミナーゼ遺 造で真に作用する酵素遺伝子を明らかに 伝子破壊株は、グルタミナーゼ活性が し、必要な酵素を必要量つくる理想的な麹 1/100以下に低下し、それらを用いたしょ 菌の育種を目指していきたい。 うゆでは、グルタミン酸含量が60%低下し、 同時にピログルタミン酸含量が上昇した。 参考文献 このグルタミン酸の減少量は、我々が推定 1) Ito K et al. Biosci. Biotechnol. Biochem., したグルタミナーゼ反応により生成され 75, 1317-1324 (2011) る量(第2経路)とほぼ一致した。さらに、 2) Koibuchi K et al. Appl Microbiol Bio- 7遺伝子の中から様々な組み合わせで多重 technol. 54, 59-68 (2000) に破壊した株を作製した結果、TypeI の 3) Ito K et al. Appl. Microbiol. Biotechnol., gahA, gahB、TypeIIのggtAおよびTypeIVの 97, 8581-8590 (2013) glsの4遺伝子を同時に破壊すると同様の 4) Ito K et al. Appl. Environ. Microbiol. 結果が得られたため、しょうゆ醸造のグル 78: 5182-5188 (2012) タミン酸生成には、これら4つのグルタミ 1) Ito K et al. Biosci. Biotechnol. Biochem., ナーゼが相補的かつ相互に関わっている 77, 1832-1840 (2013) ことが明らかとなった。 さらに、この4つのグルタミナーゼの中で2 重、3重遺伝子破壊株を作製し、しょうゆ 水産魚種や海産無脊椎動物に共存する細

5

菌の多様性 ぼ決まるとされている(2)。 Diversity of epibiont species in the gut of 近年、ヒト、マウス等において、腸内細 chum salmon fries and their food organ- 菌の宿主への影響、及び、そのメカニズ isms in Sanriku sea area ムが明らかにされつつある。そこで、我々 清水 恵子、笠井 宏朗 は、ふ化場及び沿岸生活期のサケ稚魚を Keiko SHIMIZU, Hiroaki KASAI 採集し、腸内の細菌種の多様性と魚体サ (北里大学 感染制御研究機構) イズの関係を調査した。その結果、淡水 1. 回遊に伴う水産魚種腸内の優占種の から海水、また人工配合飼料から天然飼 変遷 料へと飼育環境が変化するに伴って、腸 岩手県では、県内 43 ヶ所(沿岸 30 ヶ所、 内に検出された優占細菌種は大きく変化 北上川水系 13 ヶ所)の、さけ・ます人工 しており、比較的魚体の大きいサケ稚魚 ふ化場で毎年 4 億尾前後の稚魚を飼育、 の腸内には乳酸菌が優占していた。また、 放流されている。放流年に対して 4 年後 また、実験室内でも、サケ稚魚を飼育し、 の回帰尾数から算出される回帰率は、平 異なる飼料で飼育したサケ稚魚の肝臓の 均回帰率は 3%台となっているが、ここ 代謝産物を網羅的に分析すると共に、腸 数年の回帰率は低迷していた。更に、三 内細菌相を分析し、腸内細菌と宿主の代 年前の東日本大震災によって沿岸のふ化 謝との関連性についても解析している。 場のほとんどが被災し、沿岸業者の重要 な収入源となるイクラの生産や水産加工 2. 海産魚介類に共存する Actinobacteria 用のシロサケ(Oncorhynchus keta)の供 の多様性 給が危ぶまれた(1)。我々は、東日本大震 三陸沿岸に生息する水産魚介類の腸内、 災の被災地に位置する研究機関として、 表層の菌相解析から低頻度(総リード数 地元の研究機関と連携して、サケ資源の の 0.002 ~ 1.4%) ではあるが、 回復に寄与するべく、サケ稚魚の腸内細 Actinobacteria が検出された。乳酸菌の優 菌に着目し、健苗生産に貢献するための 先が見られた稚魚の腸内には 基礎研究を開始した。 Bifidobacterium 属細菌も検出された。 サケの生活史は、次のとおりである。春 ここでは、我々が、最近分離培養に成功 季に産卵床から浮上し内部栄養から外部 し、新種記載した Ilumatobacter 属の細菌 栄養へ移行した直後に雪解け増水中の河 由来と考えられる塩基配列に注目した。 川から海へ下り、沿岸で 1~3 ヶ月生育し Ilumatobacter 属細菌は、Actinobacteria 綱、 て内部骨格の形成がほぼ終了し、遊泳力 Acidimicrobiales 目、Acidimicrobiaceae 科 と摂餌能力が備わった時点で親塩等の冷 に分類される細菌で、分離培養された株 水が離岸する前までに沿岸から沖合に移 はほとんどなかったが、我々が 2008 年に 動する。その後、幼魚はオホーツク海に 旧海洋バイオテクノロジー研究所から継 入り、夏までオホーツク海で過ごしてか 承した海洋微生物ライブラリー(MBI ラ ら、秋季には北西亜寒帯環流へ移動し越 イブラリー)に 10 株含まれていた。それ 冬する。生残率は、この越冬期までにほ らは、16S rRNA 遺伝子に基づく系統解析

6

によって二つのグループを形成した。比 1) Fujinami et al., Stand Genomic Sci 8, 較的生育の早い株が含まれるグループに 430-440 (2013) ついて、多相的分類解析を行ったところ、 夢の薬 RNA を微生物に作らせる 本グループは、一つの属としてまとめる Production of dream medicine RNA by ことができると考えられたため、 engineered bacteria Ilumatobacter 属として 3 新種を提唱した 菊池 洋、梅影 創 (3,4)、また、全ゲノム解析を行い代謝系 Yo KIKUCHI, So UMEKAGE の特徴を考察した(5)。 (豊橋技術科学大学大学院 環境・生命 Ilumatobacter 属は、カイメン、サンゴ、 工学系) 海水、底泥等から類似の 16S rRNA 遺伝 子の塩基配列が検出されている。今回実 古典分子生物学において、遺伝情報が 施した三陸産の水産物の消化管内細菌及 DNA からタンパク質へ流れる際の単な び表層細菌の 16S rRNA 遺伝子の網羅的 る仲介役としかみられていなかった 分析から、特に、表層の動物プランクト RNA は、今、時代の寵児のごとく分子生 ンから見いだされた Actinobacteria に分 物学の主役に躍り出た感がある。特に 類される塩基配列のうち、約 1/3 は non-coding RNA(ncRNA)は遺伝子発現 Ilumatobacter 属と同定可能な塩基配列で のすべての段階を支配しているようにみ あることがわかった。又、同様の配列が、 える。このことから ncRNA をうまく利 同じ時期に漁獲されたサケ稚魚の腸内か 用すると遺伝子発現が関係するあらゆる らも検出されたことから、Ilumatobacter 難病を治療できる可能性があり RNA 創 属細菌は、サケ稚魚の餌料生物に共存し 薬の研究も盛んになっている。一方、抗 ていることが示唆された。今後は、MBI 体のような働きをする RNA アプタマー ライブラリーに含まれる Ilumatobacter 属 も医薬として期待され、実際に加齢性黄 細菌の分離株の解析を進めると共に、サ 斑変性症の治療薬も市場に出ている。夢 ケ稚魚の餌料生物と共存している株につ の薬 RNA は現実のものとなりつつある。 いても分離培養し、その役割の解明を試 しかし、現在、これら RNA は、酵素合 みる。 成または有機化学合成で生産されており、 莫大な製造コストがかかり、現実化させ 参考論文 る上で大きな問題となっている。本講演 1) 小川&清水、日本水産学会誌 78, では、イントロダクションとして私たち 1040-1043 (2012) が行ってきた機能性人工 RNA(アプタマ 2) 帰山、サケ学入門 35-57 北海道大学 ー)について簡単に触れたのち、製造の 出版会 (2009) 低コスト化が期待できる微生物による人 3) Matsumoto et al., J Gen Appl Microbiol 工 RNA 生産の技術開発二つ[以下1)、 55, 201-205 (2009) 2)] を紹介したい。 4) Matsumoto et al., Int J Syst Evol Micro- biol 63, 3404-3408 (2013) 1)大腸菌を使った環状 RNA の生産

7

大腸菌を使ってタンパク質を生産させる 菌体外(液体培地中)に自身の核酸を溶 方法は、すでに長い歴史があり、現在、 けた形で放出する。私たちは、この現象 多くのタンパク質の効率的生産が可能で を利用し本菌の培養上清に機能性人工 ある。これに対し、RNA を大量に効率よ RNA を生産させる技術を開発した。本菌 く生産させる技術は、大腸菌の強い は、RNA をフロック形成に利用するため RNase 活性のため一般に困難である。私 か、培地中に(おそらく細胞内でも) たちは、RNA を環状化すると大腸菌細胞 RNase を生産しない(RNA の分解が起こ 内で安定に存在させることができ、高効 らない)。RNA 生産には大変都合のよい 率で生産できることを発見した。開発し 菌であり、生産する RNA を環状化など た技術は、セルフスプライシングするグ する必要もなく直鎖状のままで生産でき ループ I イントロンを円順列置換で改変 る。私たちは、ストレプトアビジンに結 し、大腸菌により転写された目的の RNA 合する RNA アプタマーを本菌の菌体外 が環状化するコンストラクトを構築し、 に生産させることに成功した(3, 4)。 こ これをもつ大腸菌を培養するだけで環状 れは微生物を用いて菌体外に機能性人工 化 RNA を生産するというものである(1, RNA を生産させた初めての例である。菌 2)。 こ れまで、RNA 医薬の設計では、 体外に生産させているので培養を止めて RNase 耐性とするため、メチル化やフッ 集菌する必要がなく、培養装置を工夫す 素化、その他修飾された構造をもつ RNA ることにより機能性 RNA の連続生産が が作られてきた。これらは、製造の高コ 可能となる。これらの研究について紹介 スト化の原因でもあり、もともと生体に したい。 はないものであることから副作用も懸念 以上の様に、微生物に製造させること されてきた。微生物により生産される により圧倒的低コスト化をはかり、誰で RNA はもちろん生体の RNA と同じ未修 も最先端治療が受けられる医療の実現を 飾 RNA である。私たちは、環状化 RNA 目指している。 が大腸菌ばかりでなくヒト細胞中でも比 較的安定であることを示唆する結果を得 参考文献 ている。これらの技術と知見は、将来の 1) Umekage, S. and Kikuchi, Y., J. Bio- RNA 治療に大きな期待を抱かせる。 technol. 139, 265-272 (2009) 2) Umekage, S. and Kikuchi, Y., J. Biosci. 2)海洋性光合成細菌を使った RNA の Bioeng. 108, 354-356 (2009) 菌体外生産 3) Suzuki, H., Ando, T., Umekage, S., 海洋性紅色非イオウ光合成細菌の一種 Tanaka, T., and Kikuchi, Y., Appl. En- である Rhodovulum sulfidophilum はフロ viron. Microbiol. 76, 786-793 (2010) ック(細胞の凝集体)を形成する。この 4) Suzuki, H., Umekage, S., Tanaka, T., フロックは細胞外の DNA や RNA が細胞 and Kikuchi, Y., J. Biosci. Bioeng. 112, 間を連結することで保たれている。フロ 458-461 (2011) ックを形成しにくい培養条件のもとでは、

8

現代科学の進展に伴い、日本発の微生物 日本のバイオインダストリー ~オー を用いる発酵工業が発展して世界をリー プンイノベーション時代の課題と展望 ドしてきた。調味料用途のグルタミン酸 ~ 発酵法が確立され、次いで核酸発酵法、 Bioindustry in Japan ~ Current Status 飼料用や医薬用等に様々なアミノ酸発酵 and Prospects of Open Innovation Era ~ 法が開発され生産されてきた。今や世界 清水 栄厚 Eikoh SHIMIZU 各地でその大量生産と消費が行われるよ (一般財団法人 バイオインダストリー うになった。このことで、私たちの食生 協会) 活や健康医療分野での改善に貢献してき ている。 1.バイオテクノロジーとバイオインダ ストリー 3.オープンイノベーション時代のバイ バイオテクノロジーとは生命の仕組みや オ関連技術とバイオ関連産業 機能を解明して「生きる」(健康や医療)、 バイオに関連する 20 世紀最大の発明 「食べる」(食、農水林業)、「くらす」(環 の一つに、遺伝子 DNA の2重らせん構 境・エネルギー)を守り豊かにする技術 造の提唱(1973)、遺伝子組換え技術の確 である。バイオテクノロジーを用いる産 立(1976)等が挙げられている。これら 業(バイオインダストリー)は人類の夢 の発見は生命の解析と医療・創薬への適 を実現する大きな成長産業として発展し 用、食料生産等に飛躍的な発展と貢献を てきている。資源少国の日本はバイオの もたらした。 新産業を創出し、世界競争に勝ち抜いて、 21 世紀に入り、バイオ関連産業の現状 成長発展に積極的に貢献することが期待 と未来産業の可能性を考えてみたい。 されている。 1)生きる(健康・医療、医薬産業) 新産業の創出にはバイオやライフサイエ iPS 細胞の発見(2006)により、難病治療や ンスの技術革新(イノベーション)が必 再生医療への道を開く可能性が出てきた。 要だが、その成果を早く産業化するため また、生物由来の新バイオ医薬品は多く には高度な研究/技術やビジネス戦略を の病気に最先端治療の可能性が出てきた。 持って行う連携・異分野融合や、人・技 日本の 2012 年医薬品生産額は 7.0 兆円、 術・資金等の資源を外部にも求める等の 輸入 2.8 兆円と大幅な輸入超過となって オープンイノベーションを強力に推進す いる1)。医薬品の発見起源をみると、米 る必要がある。 国では約半分以上がバイテク(ベンチャ ー)企業や大学などで発見されてきてお 2.日本のバイオインダストリーの発展 り、日本でも最近の医薬品開発候補物質 概要 の約半数が大学やバイオベンチャー企業 日本におけるバイオテクノロジーの活 等からの導入品といわれている。創薬の 用は、古くは、味噌や醤油、酢や酒等の 開発は画期的な基礎・シーズ研究からそ 生産、イネや果樹等の育種があげられる。 の有効性の確認、次にステップを踏んだ

9

治験臨床研究、承認等で長く莫大な研究 開発投資が必要とされる。イノベーショ 4.日本のオープンイノベーションを促 ンの成果をより早く実現するために、グ 進する動き ローバルな視点で大学やベンチャーとの 日本のモダンバイオテクノロジー(遺 共同研究、アライアンス等が積極的に行 伝子組換えや細胞融合等)による市場規 われるようになってきた。 模は 2012 年 2.75 兆円で 2001 年基準 2)食べる(食料・機能性食品産業) (0%)からの成長率 107%と大きく成長 1996 年から遺伝子組換え作物の実用 している3)。また、日本のバイオベンチ 化栽培が開始され、2012 年には 28 ケ国、 ャー数は 2012 年末現在 552 社で医療・健 1 億 7030 ha の栽培面積に拡大してきて 康分野が約半数を占める4)。日本のバイ いる2)。多くは除草剤耐性、害虫抵抗性、 オベンチャーから創薬・医療分野のライ またはその組合せ(スタック形質)であ センス(導出契約)は年々増加傾向にあ り、日本は遺伝子組換えトウモロコシや り、かつ大型化してきている。 ダイズ等は搾油用おび飼料用として輸入 日本のバイオ関連団体がアジア最大のマ している。しかし、日本では実用栽培が ッチング(オープンイノベーション)の 行われていない。1996 年から日本はイネ 場として World Business Forum 、 「日本晴」の全ゲノム解読(2004)に大 “BioJapn”を開催している。各種セミナ きく貢献した。この成果は今後のイネや ー、展示、マッチング(アライアンス) その他の作物研究や育種改良に応用され を促進している。このような活動を通じ るものと期待されている。また、食の機 てバイオやライフサイエンス分野の新産 能性に着目した食品産業の健全な成長が 業を創出して日本の成長発展に貢献した 期待されている。 いと考えている。 3)くらす(環境とエネルギー) 化石資源からのエネルギーや化学素材の 参考文献 生産は地球温暖化等の課題も出てきてお 1) 厚生労働省 薬事工業生産動態統計 り、再生可能なバイオ燃料やバイオケミ 平成 24 年度 カルズの期待が高まっている。世界的な 2) Clive James, 国際アグリバイオ事業 規模では遺伝子組換えトウモロコシ等か 団(ISAAA) Brief 44-2012 らバイオエタノールの生産などが始まっ 3) バイオ年鑑、日経 BP 社(2012) たが、食料と競合する問題が起こってき 4) 2013 年バイオベンチャー統計・動向 た。日本では非可食性バイオマスからの 調査報告書」、一般財団法人バイオイ エタノール生産に関する研究や油を蓄積 ンダストリー協会(2013) する藻類などの研究が行われている。

10

The Journal of Antibiotics の Web 閲覧方法について

日本放線菌学会 会長 長田裕之

これまで Actinomycetologica などでお知らせしてきましたように、日本放線菌学会会員は、会 員サービスとして、学会のホームページ経由で、本学会の Official Journal である The Journal of Antibiotics(JA)のウェブサイトにアクセスし、全文閲覧が可能となりましたので、ご案内いた します。なお、Web 閲覧は、年会費を滞納していない会員に限定した会員サービスですのでご 了承下さい。

下記の要領でパスワードを取得後、JA にアクセスすることができます。

①【パスワードの取得方法】 1)学会 HP(http://www0.nih.go.jp/saj/index-j.html)にアクセスし、JA のバナーをクリック 2)ページ下半分のフォームに、会員番号(154 で始まる 10 桁の会員番号 154xxxxxxx)、名(ロ ーマ字)、姓(ローマ字)、パスワードを受け取るための電子メールアドレスを入力(会員番 号は学会からの封書の宛名欄に書いてあります) 3)入力した電子メールアドレスにパスワードが届く

②【JA へのアクセス方法】 1)学会 HP(http://www0.nih.go.jp/saj/index-j.html)にアクセスし、JA のバナーをクリック 2)会員番号とパスワードを入力 3)会員認証後、自動的に JA のトップページに移動する 4)Current Issue または、Archive のなかから見たい論文を探し、タイトルや「Full Text」「 PDF」 のリンクをクリックし、全文を開く

【注意事項】 1)アクセスに必要な会員番号とパスワードは、本学会会員の特典として、JA の個人的な閲覧・ 利用を可能にするために学会事務局より発行・配布されるものです。会員以外の者に上記の アクセス方法を教えること、会員番号とパスワードを第三者に譲渡すること、または複数の 利用者と共有すること、所属機関図書室等機関購読対象者に提供することは、出版元である Nature Publishing Group との契約により固く禁じられております。会員番号とパスワードのお 取り扱いにはなにとぞご注意くださいますようお願いいたします。 2)ご所属先のネットワークセキュリティ環境によっては、認証が行われない場合がございます。 上記方法で論文閲覧ができない場合には、下記にお問い合わせ下さい。 ネイチャー・アジア・パシフィック The Journal of Antibiotics アクセスヘルプ 浅井 様 Tel : 03(6809)1890 E-mail : [email protected]

11

「Digital Atlas of Actinomycetes」改定のお知らせ

2002 年本学会が作成し、学会 HP に公開し た書籍は世界的にも皆無でした。3 年かけて ている”Digital Atlas of Actinomycetes”を改定 10 カ国 120 人から放線菌画像を収集、その することになりました。会員のみなさん、ぜ うち 450 枚を選択し世界への情報発信の願 ひ、放線菌画像の自信作をこのサイトに投稿 いも込めて日本語と英語のバイリンガル編 してください。放線菌の多様な形態のおもし 集にしました。その後、2002 年、「放線菌図 ろさや美しさを相互に楽しみ合っていきま 鑑」の中から提供者の了解が得られた約 130 しょう。 枚の写真を選び、日本放線菌学会ホームペー まず、下に示した放線菌の写真を見てくださ ジのサイトに ”Digital Atlas of Actinomy- い。放線菌は、言うまでもなく、バクテリア cetes”として公開したのです。驚いたことに、 に所属する一分類群、即ち原核生物です。バ ネット公開の国際的な反響は、「放線菌図鑑」 クテリアの形態と言えば、球状か棒状、ある の比ではありませんでした。しかし、これら いは分岐のない糸状といった単純形態が一 は、もう、過去のことです。公開されている 般的です。なのに、どうして放線菌だけがこ 画像の大部分は 15-20 年前に撮影されたもの れほどまでに形態上の多様化を達成してき で、分類体系の変更に伴う学名の更新も必要 たのでしょうか。このテーマを考えるだけで です。現在のような、電子情報の時代、国際 も、放線菌に関わっていることを幸せに感じ 的に見ても”Digital Atlas of Actinomycetes” ま す( Ref. 宮道:生物工学会誌, 90, 32, 2012)。 の価値は、ますます高まっています。ぜひと 古今東西、放線菌を扱ってきた人たちは、放 もこのサイトの更新を進めましょう。会員の 線菌の形態に魅せられ、たくさんの写真を残 みなさんの積極的な放線菌画像の提供を期 してきました。 待しています。なお、画像提供の詳細につい まず、”Digital Atlas of Actinomycetes”を公 てはホームページ 開するに至った経緯を紹介します。発端は (http://www.actino.jp/DigitalAtlas/)をご覧いた 1997 年、学会から「放線菌図鑑、朝倉書店、 だくか、[email protected] にお問い合わせくだ ¥16,800(1997)」を出版したことです。専門 さい。 誌にはたくさんの写真が掲載されています 宮道慎二(NITE/NBRC 客員研究員) が、不思議なことに、図鑑としてまとめられ

放線菌の多様な形態(上 Streptomyces、下 non-Streptomyces) “Digital Atlas of Actinomycetes” より転載

12

ご寄付のお礼とお願い

日本放線菌学会では、引き続き、下記の趣旨で皆様にご支援をお願いして参ります。会員の皆 様には、今後とも、宜しくご協力下さいますようお願い申し上げます。

個人の寄付(賛助)金に関する事項

『学会の財政については、会費収入、広告収入など収入増を図る努力を続けておりますが、欧 米の学会でみられるような善意の寄付の受入れも大変重要です。本学会理事会は、個人の寄付(賛 助)金に関する下記の事項を決定いたしました。』 平成 18 年 4 月 28 日 理事会承認 記 個人の寄付(賛助)金に関し、以下のように取り扱う。 1.対象はご協力いただける名誉会員、終身会員、正会員とする。 2.寄付(賛助)金は、正会員の年会費相当額(5,000 円)を一口として一口以上とする。 3.寄付(賛助)金は、理事会の議を経て特別会計に繰り入れる。 4.振り込み先(寄付金受付専用口座を設けております): 郵便局 寄付金用口座 口座:日本放線菌学会(10190-49455441) 名前:ニホンホウセンキンガッカイ 他金融機関からの振込は ゆうちょ銀行、店名:〇一八(ゼロイチハチ)店、店番:018 預金種目:普通預金、口座番号 4945544 受取人名:ニホンホウセンキンガッカイ 5.問い合わせ先: 日本放線菌学会事務局長 田村朋彦 独立行政法人 製品評価技術基盤機構 バイオテクノロジーセンター 生物資源課(NBRC)内 〒292-0818 千葉県木更津市かずさ鎌足 2-5-8 TEL 0438-20-5763,FAX 0438-52-2329,E-mail [email protected]

以上

13

日本放線菌学会賛助会員

協和発酵キリン(株)研究本部 第一三共 RD ノバーレ(株)創薬基盤研究部 サントリービジネスエキスパート(株)品質保証本部 日本マイクロバイオファーマ(株)研究開発部 Meiji Seika ファルマ(株)足柄研究所 和光純薬工業(株)試薬開発部 富山化学工業(株)綜合研究所 微生物化学研究所 中外製薬(株)鎌倉研究所 長瀬産業(株)研究開発センター アステラス ファーマ テック(株)富山技術センター 味の素株式会社・イノベーション研究所

著作権について

本誌に掲載された論文、抄録、記事等の著作権は、日本放線菌学会に帰属します。これら著作物 の一部または全部をいかなる形式でもそのまま転載しようとするときは、学会事務局から転載許可 を得て下さい。

日本放線菌学会誌 第 28 巻 1 号 ACTINOMYCETOLOGICA 平成 26 年 6 月 25 日発行

編集兼発行 日本放線菌学会 〒292-0818 千葉県木更津市かずさ鎌足 2-5-8 独立行政法人 製品評価技術基盤機構 バイオテクノロジーセンター 生物資源課(NBRC)内 TEL 0438-20-5763 FAX 0438-52-2329 E-mail [email protected] 年間購読料 5,000 円(会員無料) http://www.actino.jp/

14

15

Pacific Biosciences 1

PacBio RS II 7 kb

GCrich

http://catalog.takara-bio.co.jp/jutaku/

TEL 077-543-6116

16

2040 2040

-

1 製品課 - 27 5 - 酵素 NCX

ご利用ください 3495, FAX: 0773 3495, FAX: 配合スポンジケーキ - 27 - 中央区日本橋小舟町 ☆卵をつかった製品に フードマテリアル部 RICH

東京都 TEL: 0773

3976, デナベイク - 卵の量を減らせます 老化を抑制します しっとり感が高まります べたつきを抑え作業性を改善します ↑     3665 - 酵素開発部

03 RICH : &ヘルスケア製品事業部

FAX

ライフ

会社 3780, - 生化学品本部

3665 - 産業株式 : 03

TEL 長瀬 詳細な資料やサンプルのご依頼は下記までご連絡ください。 細かくやわらかくなります 無添加スポンジケーキ ↑ が デナベイク ボリュームがアップします キメ 口どけが良く軽い食感になります バッターが安定化します

    製菓・製パン用酵素 お問い 合せ先 製造元

17 A B C D

1990年12月18日 第4種郵便物認可 ISSN 0914-5818 2014 VOL. 28

NO. 1 C 2014 T VOL. 27 NO. 1 IN (会員用) O AC

M TI N O

M Y Y C E

T

OLOGI C

C E

A

T

O L

O

G

日 本 I 放 線 C 菌 学 会 http://www0.nih.go.jp/saj/index-j.html 日本放線菌学会誌 第28巻 1 号 誌 Published by ACTINOMYCETOLOGICA VOL.28 NO.1, 2014 The Society for Actinomycetes Japan