Conductors and Electrical Connections

Total Page:16

File Type:pdf, Size:1020Kb

Conductors and Electrical Connections Modular Electronics Learning (ModEL) project * SPICE ckt v1 1 0 dc 12 v2 2 1 dc 15 r1 2 3 4700 r2 3 0 7100 .dc v1 12 12 1 .print dc v(2,3) .print dc i(v2) .end V = I R Conductors and Electrical Connections c 2017-2021 by Tony R. Kuphaldt – under the terms and conditions of the Creative Commons Attribution 4.0 International Public License Last update = 18 July 2021 This is a copyrighted work, but licensed under the Creative Commons Attribution 4.0 International Public License. A copy of this license is found in the last Appendix of this document. Alternatively, you may visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons: 171 Second Street, Suite 300, San Francisco, California, 94105, USA. The terms and conditions of this license allow for free copying, distribution, and/or modification of all licensed works by the general public. ii Contents 1 Introduction 3 2 Simplified Tutorial 5 3 Full Tutorial 7 3.1 Making and breaking connections ............................. 9 3.2 Connection resistance ................................... 10 3.3 Wire size and type ..................................... 13 3.4 Permanent connections ................................... 15 3.4.1 Mechanical splicing ................................. 16 3.4.2 Wire nuts ...................................... 18 3.4.3 Wire wrap ...................................... 19 3.4.4 Compression connectors .............................. 20 3.4.5 Terminal blocks ................................... 23 3.4.6 Solder ........................................ 28 3.5 Temporary connections .................................. 33 3.5.1 Alligator clips .................................... 34 3.5.2 Solderless breadboards ............................... 35 3.5.3 Plugs and sockets .................................. 36 3.5.4 Banana plugs and jacks .............................. 39 4 Derivations and Technical References 41 4.1 Derivation of electron drift velocity ............................ 42 4.2 Table of specific resistance values ............................. 44 5 Animations 45 5.1 Using a soldering iron ................................... 46 6 Questions 81 6.1 Conceptual reasoning .................................... 85 6.1.1 Reading outline and reflections .......................... 86 6.1.2 Foundational concepts ............................... 87 6.1.3 Switch contact size ................................. 88 6.1.4 Why use gold plating? ............................... 89 iii CONTENTS 1 6.1.5 Diagnostic thermal imaging ............................ 90 6.1.6 Soldering iron usage ................................ 91 6.1.7 Battery-lamp-switch circuit on a solderless breadboard ............. 92 6.2 Quantitative reasoning ................................... 93 6.2.1 Miscellaneous physical constants ......................... 94 6.2.2 Introduction to spreadsheets ........................... 95 6.2.3 Power losses over wires ............................... 98 6.2.4 Siemens model 3AP1/2 high-voltage circuit breaker .............. 100 6.2.5 Resistance of copper busbar ............................ 101 6.3 Diagnostic reasoning .................................... 102 6.3.1 Testing for a broken connection .......................... 103 6.3.2 Improper breadboard use ............................. 106 A Problem-Solving Strategies 109 B Instructional philosophy 111 C Tools used 117 D Creative Commons License 121 E References 129 F Version history 131 Index 132 2 CONTENTS Chapter 1 Introduction An essential step in constructing any electrical circuit is to make connections between component terminals (i.e. the metal tabs on components) and wires (i.e. conductors used to convey electrical charge carriers from one circuit component to another). A variety of methods exist to do this, each with its own set of advantages and disadvantages. This module describes many of these methods and seeks to explain why each method works as it does. Important concepts related to electrical connections includes the motion of charge carriers through conductors, switch action, wire resistance, opens versus shorts, wire gauge and area, safety standards, Joule’s Law, solid versus stranded wire, wire splicing, soldering, plugs and jacks, and printed circuit boards. Here are some good questions to ask of yourself while studying this subject: What universal properties do all “sound” electrical connections share? • What factors determine the end-to-end electrical resistance of a wire? • What determines the current-carrying capacity of a wire? • What type of wire must be used with compression-style connectors, and why? • How come there are so many different ways to connect wires together? • How is wire size measured? • How do solid and stranded wire types compare with each other? • Why do metal wires offer resistance to the flow of electric charge carriers? • Why does air and other gases offer great resistance to the flow of electric charge carriers? • What are the advantages and disadvantages of various connection methods? • How do terminal blocks function? • How does solder work to form an electrical connection between conductors? • 3 4 CHAPTER 1. INTRODUCTION What is a printed circuit board (PCB) and how do they work? • How are electrical connections made between components using a solderless breadboard? • What are some of the limitations of a solderless breadboard? • Chapter 2 Simplified Tutorial Electric circuits are formed by connecting wires and components with each other in specific configurations. Effective electrical connections are reliable and of low resistance to minimize energy dissipation and excessive heating as charge carriers pass through. Electrical connections are made by bringing the surfaces of electrical conductors into tight physical contact with each other. The ideal electrical connection has maximum area of contact with minimum length, for minimum resistance. Electrically conductive materials are rated for their resistive properties by a quantity called specific resistance. All other factors being equal, a material having less specific resistance will be a better conductor of electricity than a material having more specific resistance. End-to-end conductor resistance is a function of cross-sectional area, length, and specific resistance. The cross-sectional area of a wire may be expressed by a wire gauge number (with smaller numbers representing larger-area wire) or alternatively by units of area (e.g. circular mils). The ampacity of a wire is the maximum continuous current it may carry without exceeding prescribed temperature limits. Wire is manufactured in both solid and stranded forms, with stranded having superior flexibility. Permanent electrical connections may be formed in several different ways: Wire splices (twisting wire-ends together) • Wire nuts (a device used to augment a pigtail splice) • Wire wrap (thin-gauge wire wrapped around square metal pegs) • Compression connectors (thin-gauge flat metal wrapped and compressed onto a wire’s end) • Terminal blocks (screw- or spring-fastened clamp onto a wire’s end) • Solder (low-temperature welding of two or more wires) • A popular format for the construction of low-power circuits is the printed circuit board (PCB) which uses conductive copper pathways laid onto an insulating fiberglass substrate, components typically attached to those copper traces by soldering. 5 6 CHAPTER 2. SIMPLIFIED TUTORIAL Several methods also exist to temporarily form electrical connections: Alligator clips (spring-loaded clamps) • Solderless breadboards (plastic boards with tiny spring-clips for insertion of terminals) • Plugs and sockets • Chapter 3 Full Tutorial All atoms contains even smaller bits of matter called particles. Some of these particles possess an electrical charge, which means they experience a force when exposed to an electric field. Electrically- charged subatomic particles are found in two fundamental types: some of them negative and others positive. Electricity is the study of mobile electric charges, and the exchange of energy by those moving charges. Some substances easily permit electric charges to move within them, and we refer to these substances as conductors of electricity. Other substances lack mobile electric charges, and we call these substances insulators of electricity. The degree to which electric charges are impeded from moving within a substance is called electrical resistance. The amount of energy either gained or lost by a mobile charge between two different locations is called voltage, and is measured in the unit of the Volt (one Volt being equal to one Joule of energy per Coulomb1 of electric charges). The rate of motion for electric charges through a conductor is called current, and is measured in the unit of the Ampere (one Ampere being equal to one Coulomb of electric charges passing by a point per second of time). Metals are the most common group of conductors used to construct electric circuits, because the molecular structure of any metal is such that the outer-most electrons of its constituent atoms are free to leave those atoms and drift in the space between adjacent atoms. This makes electrons the predominant form of charge carrier 2 within metals, because these negatively-charged electrons are free to move within the solid volume of the metal. Within some non-metallic conductors, such as liquids, both negatively charged electrons and positively charged atomic nuclei are free to drift through the bulk of the material which means there are two types of charge carriers (drifting in opposite directions when exposed
Recommended publications
  • Wire & Cable Glossary AWG Abbreviation for American Wire
    Wire & Cable Glossary AWG Abbreviation for American Wire Gauge. AWM Designation for appliance wiring material. Alternating Current Electric current that continually reverses its direction. Is expressed in cycles per second (hertz or Hz). Ambient Temperature The temperature of the medium (gas, liquid or earth) surrounding an object. American Mustang A premium grade thermoset cord, UL listed as SOOW or SJOOW, CSA SOOW and SJOOW. American Wire Gauge (AWG) A standard system for designating wire diameter. Also referred to as the Brown and Sharpe (B&S) wire gauge. Ampacity See Current Carrying Capacity. Ampere The unit of current. One ampere is the current flowing through one ohm of resistance at one volt potential. Anneal Relief of mechanical stress through application of heat and gradual cooling. Annealing copper renders it soft and less brittle. Audio Frequency The range of frequencies audible to the human ear. Usually 20–20,000 Hz. Braid A fibrous or metallic group of filaments interwoven in cylindrical form to form a covering over one or more wires. Breakdown Voltage The voltage at which the insulation between two conductors breaks down. Bunch Stranding A group of wires of the same diameter twisted together without a predetermined pattern. Cabling The twisting together of two or more insulated conductors to form a cable. Capacitance The ability of a dielectric material between conductors to store electricity when a difference of potential exists between the conductors. The unit of measurement is the farad, which is the capacitance value that will store a charge of one coulomb when a one-volt potential difference exists between the conductors.
    [Show full text]
  • Wire Size and Ampacity
    Factsheet: Wire Size and Ampacity In terms of conducting electrical current, size matters: the size of the electrical conductor. Take a look at the following table regarding ampacity, the current carrying capacity of a conductor in amps. You’ll notice two things: the amount of current a wire can safely carry increases as the diameter (and area) of the wire increases and as the number of the wire size decreases. Welcome to the American Wire Gauge (AWG). AWG Copper Wire Table Copper Diameter Area Ampacity Ampacity as part of Wire size (mils) (Circular mils) in free air 3-conductor cable (AWG) 14 AWG 64.1 4109 20 Amps 15 Amps 12 AWG 80.8 6529 25 Amps 20 Amps 10 AWG 101.9 10,384 40 Amps 30 Amps 8 AWG 128.5 16,512 70 Amps 50 Amps But I don’t want to be an engineer... Hey, neither do I, but this stuff is important. Notice that a #8 wire is twice the diameter, but four times the area of a #14 wire. There are a couple of practical applications here. For one thing, the gauge of the wire determines the rating of a fuse or circuit breaker in amps. A circuit wired with #14 copper will get a 15 amp circuit breaker. A circuit with #12 copper can get a 20 amp breaker; #10 copper can be 30 amps, and so on. The second thing to consider is that it’s possible to create a fire hazard by overloading an extension cord. This occurs when too much current is flowing in a conductor that’s not heavy enough for the electrical load in amps.
    [Show full text]
  • Chapter 25 Resistance and Current
    Chapter 25 Resistance and Current Current in Wires • We define the Ampere (amp) to be one Coulomb of charge flow per second • A Coulomb is about 7 x 1018 electrons (or protons) of charge • For reference a “mole” is about 6.02 x 1023 units • Thus a “mole” of Copper 63.5 g/mole (z=29, A=63 (69.15% - 34 Neutrons, A=65 ( 30.85% - 36 Neutrons ) • Contains about 3 x 106 Coulombs BUT only outer electrons are free to move (4S1 state) – one electron per Cu atom in “valence band” • Density of Copper is about 8.9 g/cm3 • Density of free electrons in Cu ~ 1.4 x 104 Coul/cm3 • Or density of free electrons ~ 1023 e/cm3 A bit of History • chalkos (χαλκός) in Greek • Cyprium in Roman times as it was found in Cyprus • This was simplified to Cuprum in Latin and then • Copper in English • Copper mined in what is now Wisconsin 6000-3000 BCE • Copper plumbing found in Egyptian pyramid 3000 BCE • Small amount of Tin (Sn) helps in casting – Bronze (Cu-Sn) Ancient mine in Timna Valley – Negev Israel Current in wire • Lets assume a metal wire has n free charges/ vol • Assume the wire has cross sectional area A • Assume the charges (electrons) move at “drift speed” vd • Lets follow a section of charge q in length x • q = n*A*x (n*volume)e • Where e = electron charge • This volume move (drifts) at speed vd • This charge moves thru x in time • t = x/vd • The current is I= q/t = n*A*x*e/ (x/vd ) = nAvde , Wire gauges AWG – American Wire Gauge • Larger wire gauge numbers are smaller size wire • By definition 36 gauge = 0.005 inches diam • By definition 0000 gauge “4
    [Show full text]
  • Table of Wire Size and Amp Ratings
    Table Of Wire Size And Amp Ratings Saw concatenated aerobically. Reinhard is scurvily savage after aglitter Martino knew his doorstopper geopolitically. Which Rad supersede so craftily that Orin radiate her thought-reader? We hope that you can change in electricians, repeated bending or frequent disconnection. See our iskra meters allow readings to and size. The breaker is american standard. Meter Cards and Tokens can be purchased separately if required. Sizing Chart: Below you can find for various size of the SWG to amperage conversion. All of our Iskra meters can be programmed to only display the parameters required. The electrical friction and other electrical wire for that all of standard type of standardized system requires to wire size table of. The three voltage drop, and table of wire size, the utility distribution system for us for your experience while you! Wire Gauge Size Chart. Wire Size To Breaker Chart. Many will ask what protects the circuit in an overload condition between the MCA and MOCP ratings? Users of this information agree to hold Wireityourself. Flex will also need to take advice from your amp ratings properly sized electrical parameters in a licensed electricians, severe vibration and. Current carrying capacity varies depending on the type of insulation, current and use. Please click the estimated or conductors of wire size chart is time. Canada post and ratings for faults both gauge wire diameter and its content are no products in. Wire gauge and electrical current in not stocked or wire size and table of the type and flexes used. Nec rules wire size table.
    [Show full text]
  • Wires Gauge and Characteristics Electrical Wiring in Homes and Businesses Consist of Wires with a Circular Cross-Section
    Wires Gauge and Characteristics Electrical wiring in homes and businesses consist of wires with a circular cross-section. They come in a variety of sizes, often referred to as the wire gauge. The American Wire Gauge (AWG) is a standardized system for expressing the size of a round, solid, non-iron conducting wire. While most of the wires used in household circuits are 12-gauge and 14-gauge, wires of other sizes are used for hobby applications (e.g., train layouts, speaker wiring) and long-distance power transmission. The gauge of a wire indicates information about the diameter, cross- sectional area, and expected resistance. Table 1 illustrates these relationships for several gauges. Table 1 Diameter Area Copper Wire AWG (mm) (mm2) Resistance (Ω/m) 32 0.202 0.0320 0.538 28 0.321 0.0810 0.213 24 0.511 0.205 0.0842 22 0.644 0.326 0.0529 20 0.812 0.518 0.0333 18 1.02 0.823 0.0209 16 1.29 1.31 0.0132 14 1.63 2.08 0.00828 13 1.83 2.62 0.00657 12 2.05 3.31 0.00521 11 2.31 4.17 0.00413 10 2.59 5.26 0.00328 9 2.91 6.63 0.00260 8 3.26 8.37 0.00206 6 4.12 13.3 0.00130 5 4.62 16.8 0.00103 4 5.19 21.2 0.000815 The amount of current that can be safely carried by a wire is affected by the wire gauge.
    [Show full text]
  • MTW Type Wire
    For the latest prices, please check AutomationDirect.com. 1-800-633-0405 Wire - Type MTW Applications Features Type MTW Wire Type MTW conductors are primarily • Gauges from 22AWG to 10AWG used in control cabinets, in machine tool • Bare copper conductor Stranded Copper applications, and in appliance wiring • Color-coded Polyvinyl Chloride (PVC) outer Conductor applications. For use in accordance with the jacket National • Striped version available for some colors Electrical Code (NEC) and NFPA Standard and gauges 79. • Multiple ratings and approvals Voltage rating for all applications is 600 volts. • 500ft, 1000ft and 2500ft spools or reels MTW wire is sold in a variety of colors and available for most gauges & colors gauges on 500’, 1000’ and 2500 foot spools. • Made in the USA E PVC MAD IN Insulation U S A Type MTW Wire Specifications Insulation Overall Allowable Size Number Outside Temperature Approximate Standard (AWG Thickness Diameter Ampacities* Agency or of Approvals Rating Weight (lbs) Packaging Strands 60°C(140 75°C (167 per UL1015 500ft/1000ft/2500ft (Spool/Reel) kcmil) (inches) (inches) (mm) 90°C (194 °F) °F) °F) UL1230 UL1335 UL1032 22 7 0.030 0.092 2.34 3 3 3 UL1015 UL1013 3.9 UL1011 UL1015 UL1230 500ft or 1000ft UL1335 UL1032 20 10 0.030 0.099 2.51 5 5 5 CSA TEW or AWM I A/B 4.0 2011/65/EU (RoHS 2) UL File No. E51583 18 16 0.030 0.110 2.79 7 7 14 105°C 4.6 / 26.8 (221°F) 16** 26 0.030 0.123 3.12 10 10 18 6.5 / 34.4 500ft, 1000ft or UL1015 2500ft.
    [Show full text]
  • Accessories 143143
    Wire IntroductionAccessories 143143 Wire Abbreviations used in this section American wire gauge AWG Single lead wire SL Duo-Twist™ wire DT Quad-Twist™ wire QT Quad-Lead™ wire QL Specifications Phosphor bronze Copper Nichrome Manganin Melting range 1223 K to 1323 K 1356 K 1673 K 1293 K Coefficient of thermal expansion 1.78 × 10-5 20 × 10-6 — 19 × 10-6 Chemical composition (nominal) 94.8% copper, 5% tin, 0.2% — 80% nickel, 20% chromium 83% copper, 13% manganese, phosphorus 4% nickel Electrical resistivity 11 µΩ·cm 1.7 µΩ·cm 120 µΩ·cm 48 µΩ·cm (at 293 K) Thermal 0.1 K NA 9 NA 0.006 conductivity 0.4 K NA 30 NA 0.02 (W/(m·K)) 1 K 0.22 70 NA 0.06 4 K 1.6 300 0.25 0.5 10 K 4.6 700 0.7 2 20 K 10 1100 2.6 3.3 80 K 25 600 8 13 150 K 34 410 9.5 16 300 K 48 400 12 22 AWG Resistance (Ω/m) Diameter Fuse Fuse current Number Name Insulated Insulation type Insulation Insulation (mm) current vacuum (A) of leads diameter thermal breakdown 4.2 K 77 K 305 K air (A) (mm) rating (K) voltage (VDC) Phosphor 1 SL-32 0.241 Polyimide bronze 2 DT-32 0.241 Polyimide 32 3.34 3.45 4.02 0.203 4.2 3.1 493 400 QT-32 0.241 Polyimide 4 QL-32 0.241 Polyimide 1 SL-36 0.152 Formvar® 368 250 2 DT-36 0.152 Polyimide 493 400 36 8.56 8.83 10.3 0.127 2.6 1.4 QT-36 0.152 Formvar® 368 250 4 QL-36 0.152 Polyimide 493 400 Nichrome 32 33.2 33.4 34 0.203 2.5 1.8 1 NC-32 0.241 Polyimide 493 400 Copper 30 0.003 0.04 0.32 0.254 10.2 8.8 1 HD-30 0.635 Teflon® 473 250 34 0.0076 0.101 0.81 0.160 5.1 4.4 2 CT-34 0.254 Teflon® 473 100 Manganin 30 8.64 9.13 9.69 0.254 4.6 4.3 1 MW-30 0.295 Heavy Formvar® 400 32 13.5 14.3 15.1 0.203 3.8 3.5 1 MW-32 0.241 Heavy Formvar® 378 400 36 34.6 36.5 38.8 0.127 2.6 2.5 1 MW-36 0.152 Heavy Formvar® 250 Lake Shore Cryotronics, Inc.
    [Show full text]
  • AWG and Circular Mils
    PDHonline Course E275 (3 PDH) AWG and Circular Mils Instructor: David A. Snyder, PE 2012 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDH Course E275 www.PDHonline.org AWG and Circular Mils David A. Snyder, PE Introduction: Conductors, also known as wires, cables, or busses, conduct electricity from one point to another. This course discusses the difference between solid and stranded conductors, and the size conventions (circular mils, KCMIL, and AWG) used to describe them. As the names would imply, solid conductors are composed of one solid piece of wire, whereas stranded conductors are composed of several smaller strands of solid wire. The terms circular mils, KCMIL, and AWG (American Wire Gage) are not quite as obvious and often require further explanation. We’ll start our discussion with the concept of circular mils in the next section. With regard to formulas and calculations in this document, we will be using the asterisk (*) for multiplication and the forward slash (/) for division. Numbers expressed in scientific notation will be presented in the format 1.2 x 10-6. Since we will be discussing diameter (d), rather than radius (r), in this document, the familiar expression for the area of a circle will be shown as A = π * d2 / 4, rather than A = π * r2. The tables presented in this document are available as a separate file, if you have difficulty reading the tables in this document. Circular Mils: A mil is a length, distance, or diameter that is equal to 1 / 1,000th of an inch (a milli-inch).
    [Show full text]
  • Sure-Seal ® Ip67 Usb Series Catalog
    SURE-SEAL® IP67 USB SERIES CATALOG www.peigenesis.com I www.peigenesis.cn [email protected] Table of Contents Technical Information................................................................................................................................................................................................ 4 How to Order USB Cable Assemblies ............................................................................................................................................................................................... 5 USB Receptacles ........................................................................................................................................................................................................ 5 USB Cable Mounted Plug Assemblies USB-A Circular Plug to USB-A Plug Cable Assembly ................................................................................................................................................ 6 USB-A Metal Circular Plug to USB-A Plug Cable Assembly ...................................................................................................................................... 6 USB-A Circular Plug to USB-B Plug Cable Assembly ................................................................................................................................................ 7 USB-A Metal Circular Plug to USB-B Plug Cable Assembly .....................................................................................................................................
    [Show full text]
  • Wires & Cables for Aerospace Applications Cations
    Wires & Cables for Aerospace Applications Wires & Cables for Aerospace Applications A brand of Axiom Graphic Imprimeur 01 34 66 42 42 Aerospace Business Unit 1303060 CATAL.indd 2 24/04/13 16:06 VISION We believe in the effective, efficient and sustainable supply of Energy and Information as a primary driver in the development of communities. MISSION We provide our customers worldwide with superior cable solutions based on state-of-the-art technology and consistent excellence in execution, ultimately delivering sustainable growth and profit. VALUES Excellence Integrity Understanding Prysmian Group is the world leader in the industry of high technology cables and systems for energy and telecommunications with sales of some € 8 billions in 2011, the Prysmian Group is a truly global company with subsidiaries in 50 countries, 97 plants, 17 research and development centres and about 22,000 employees. Prysmian Group is strongly positioned in high-tech markets. Prysmian is listed on the Milan Stock Exchange in the Blue Chip index. 1303060 CATAL.indd 3 24/04/13 16:06 The Aerospace Business Unit organization of The Prysmian Group is dedicated to aviation and space customers throughout the world. As a leader in the aerospace market, the organization under the Prysmian Group offers a wide range of wire and cable solutions for energy including ultra light weight conductors, signal and data transmission utilizing copper or optical transmission. The Aerospace Business Unit retains the know-how, the experience and the industrial capabilities of Draka-Fileca, the well-known trade mark known by the majority of airframe OEMs and sub- contractors in the industry.
    [Show full text]
  • Electrical Conductors
    Electrical Conductors Course No: E02-005 Credit: 2 PDH A. Bhatia Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] CHAPTER 1 ELECTRICAL CONDUCTORS LEARNING OBJECTIVES Learning objectives are stated at the beginning of each chapter. These learning objectives serve as a preview of the information you are expected to learn in the chapter. The comprehensive check questions are based on the objectives. By successfully completing the OCC-ECC, you indicate that you have met the objectives and have learned the information. The learning objectives are listed below. Upon completing this chapter, you should be able to: 1. Recall the definitions of unit size, mil-foot, square mil, and circular mil and the mathematical equations and calculations for each. 2. Define specific resistance and recall the three factors used to calculate it in ohms. 3. Describe the proper use of the American Wire Gauge when making wire measurements. 4. Recall the factors required in selecting proper size wire. 5. State the advantages and disadvantages of copper or aluminum as conductors. 6. Define insulation resistance and dielectric strength including how the dielectric strength of an insulator is determined. 7. Identify the safety precautions to be taken when working with insulating materials. 8. Recall the most common insulators used for extremely high voltages. 9. State the type of conductor protection normally used for shipboard wiring. 10. Recall the design and use of coaxial cable. ELECTRICAL CONDUCTORS In the previous modules of this training series, you have learned about various circuit components. These components provide the majority of the operating characteristics of any electrical circuit.
    [Show full text]
  • Navy Electricity and Electronics Training Series
    NONRESIDENT TRAINING COURSE SEPTEMBER 1998 Navy Electricity and Electronics Training Series Module 4—Introduction to Electrical Conductors, Wiring Techniques, and Schematic Reading NAVEDTRA 14176 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Although the words “he,” “him,” and “his” are used sparingly in this course to enhance communication, they are not intended to be gender driven or to affront or discriminate against anyone. DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE By enrolling in this self-study course, you have demonstrated a desire to improve yourself and the Navy. Remember, however, this self-study course is only one part of the total Navy training program. Practical experience, schools, selected reading, and your desire to succeed are also necessary to successfully round out a fully meaningful training program. COURSE OVERVIEW: To introduce the student to the subject of Electrical Conductors, Wiring Techniques, and Schematic Reading who needs such a background in accomplishing daily work and/or in preparing for further study. THE COURSE: This self-study course is organized into subject matter areas, each containing learning objectives to help you determine what you should learn along with text and illustrations to help you understand the information. The subject matter reflects day-to-day requirements and experiences of personnel in the rating or skill area. It also reflects guidance provided by Enlisted Community Managers (ECMs) and other senior personnel, technical references, instructions, etc., and either the occupational or naval standards, which are listed in the Manual of Navy Enlisted Manpower Personnel Classifications and Occupational Standards, NAVPERS 18068.
    [Show full text]