Analysis of Blind Reconstruction of BCH Codes

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Blind Reconstruction of BCH Codes entropy Article Analysis of Blind Reconstruction of BCH Codes Soonhee Kwon and Dong-Joon Shin * Department of Electronics and Computer Engineering, Hanyang University, Seoul 04763, Korea; [email protected] * Correspondence: [email protected] Received: 16 October 2020; Accepted: 4 November 2020; Published: 5 November 2020 Abstract: In this paper, the theoretical lower-bound on the success probability of blind reconstruction of Bose–Chaudhuri–Hocquenghem (BCH) codes is derived. In particular, the blind reconstruction method of BCH codes based on the consecutive roots of generator polynomials is mainly analyzed because this method shows the best blind reconstruction performance. In order to derive a performance lower-bound, the theoretical analysis of BCH codes on the aspects of blind reconstruction is performed. Furthermore, the analysis results can be applied not only to the binary BCH codes but also to the non-binary BCH codes including Reed–Solomon (RS) codes. By comparing the derived lower-bound with the simulation results, it is confirmed that the success probability of the blind reconstruction of BCH codes based on the consecutive roots of generator polynomials is well bounded by the proposed lower-bound. Keywords: blind reconstruction; BCH codes; galois field; galois field fourier transform; lower-bound; RS codes 1. Introduction In order to achieve reliable information transmission through noisy communication channels, the use of error-correcting codes (ECCs) in data-stream is indispensable [1]. By sharing the parameters of ECCs between the transmitter and the receiver, the errors occurred by communication channels can be detected or corrected at the receiver in a cooperative way. However, in a non-cooperative context, it is necessary to decode received (or intercepted) data without the knowledge of parameters of the used ECC. In other words, a blind reconstruction of the parameters of the used ECC should be performed by the receiver. A blind reconstruction of ECCs has been studied in various ways [2–19]. The blind reconstruction schemes of linear block codes are studied in [2–9], the blind reconstruction schemes of Bose–Chaudhuri–Hocquenghem (BCH) codes are studied in [10–15], and the blind reconstruction schemes of convolutional codes are studied in [16–19]. Most of the blind reconstruction schemes of ECCs take the dual code approach to reconstruct the dual code space of the used code by using the received codewords. Valembois [2] proposed a detection and recognition algorithm for binary linear codes by using the dual code property and Cluzeau [3] proposed a blind reconstruction method based on iterative decoding techniques by using the dual code property. Moreover, most of the blind detection methods of BCH codes are also based on the dual code approach. By using the properties of BCH codes, their parity-check matrices can be constructed through applying Galois field Fourier transform (GFFT) on the received codewords and many of the blind reconstruction methods of BCH codes are based on GFFT [10–15]. In the same manner, most of the blind reconstruction methods of convolutional codes are also based on the dual code approach [16–19]. To reconstruct the generator polynomial or generator matrix of convolutional code, its dual code is recognized preferentially. An analysis of the blind reconstruction of cyclic codes over binary erasure channel (BEC) is performed in [20]. Note that for BEC, the number and the locations of error bits in the received Entropy 2020, 22, 1256; doi:10.3390/e22111256 www.mdpi.com/journal/entropy Entropy 2020, 22, 1256 2 of 16 data-stream are known to the receiver. By using this property of BEC, a blind reconstruction scheme of binary cyclic codes is proposed and a lower-bound on the detection probability of this scheme is analyzed in [20]. However, many blind reconstruction schemes consider the binary symmetric channel (BSC) where the number and the locations of error bits in the received data-stream are not unavailable. Therefore, the analysis in [20] is not directly applicable to the blind reconstruction schemes considering the BSC. In this paper, the blind reconstruction of BCH codes over q-ary symmetric channel is mainly considered because BCH codes are a most widely used class of cyclic codes, especially in communication and storage systems and q-ary symmetric channel is a general form of BSC. Especially, the method in [15] shows the best blind reconstruction performance among the existing blind reconstruction methods of BCH codes, but the theoretical analysis of this method has not been performed yet. Therefore, by analyzing the properties of BCH codes on the aspects of blind reconstruction, a lower-bound on the success probability of the blind reconstruction method in [15] is derived. More specifically, the distribution of GFFT values of the received codewords is analyzed and the blind reconstruction method is formulated by using the conjugacy classes. By comparing the derived lower-bound with the simulation results, it is confirmed that the success probability of the blind reconstruction is well lower-bounded. Furthermore, the analysis of BCH codes on the aspects of blind reconstruction may lay a foundation for an analysis of other blind reconstruction methods of BCH codes based on GFFT. In Section2, definitions and properties of BCH codes and GFFT are briefly explained. In Section3, the theoretic analysis of the properties of BCH codes on the aspects of blind reconstruction is performed. In Section4, the blind reconstruction method in [ 15] is explained, and a lower-bound on the success probability of this blind reconstruction method is derived. The simulation results confirm that the success probability of the blind reconstruction method is well-bounded by the derived lower-bound. In Section5, conclusions are provided. 2. BCH Codes and Galois Field Fourier Transform In this section, the BCH codes and the Galois field Fourier transform (GFFT) are briefly described. 2.1. BCH Codes BCH codes is a class of linear block codes for forward error correction. Let GF(q) denote the Galois field (or finite field) of q elements and let BCHq(n, k) denote the BCH code with length n and dimension k over GF(q). Note that the dimension k is the same as the length of random message which also implies the number of codewords. Then, the generator polynomial of BCHq(n, k) is defined as follows: g(x) = LCM[Mab (x), Mab+1 (x), ··· , Mab+d−2 (x)] (1) where LCM denotes the least common multiple function, a is a primitive n-th root of unity in GF(qm), i Mai (x) is a minimal polynomial of a over GF(q), b is an arbitrary positive integer smaller than n, and d is a designed distance. Note that m is the smallest integer such that n divides qm − 1. By the definition of generator polynomial g(x), ab, ab+1, ··· , ab+d−2 are the roots of g(x), i.e., g(ab) = g(ab+1) = ··· = b+d−2 g(a ) = 0. Let Sr be the set of the exponents of all roots of g(x) as follows: i Sr = i j g(a ) = 0, i 2 f0, 1, ··· , n − 1g . (2) k−1 A message can be expressed in polynomial form as m(x) = m0 + m1x + ··· + mk−1x and in vector form as m = (m0, m1, ··· , mk−1), where mi 2 GF(q) for i 2 f0, 1, ··· , k − 1g. A codeword of n−1 BCHq(n, k) can be expressed in polynomial form as c(x) = c0 + c1x + ··· + cn−1x and in vector form as c = (c0, c1, ··· , cn−1), where ci 2 GF(q) for i 2 f0, 1, ··· , n − 1g. Then, c(x) can be obtained as follows: c(x) = m(x)g(x). (3) Entropy 2020, 22, 1256 3 of 16 Since a codeword c(x) has g(x) as a factor, all roots of g(x) are also roots of c(x), i.e., c(ai) = 0 for all i 2 Sr. In this paper, the q-ary symmetric channel with error probability e is considered. Channel error n−1 can be expressed in polynomial form as e(x) = e0 + e1x + ··· + en−1x and in vector form as e = (e0, e1, ··· , en−1), where ei 2 GF(q) for i 2 f0, 1, ··· , n − 1g. Note that by the definition of q-ary symmetric channel, Pr(ei = 0) = 1 − e and Pr(ei = x) = e/(q − 1) for i 2 f0, 1, ··· , n − 1g and x 2 GF∗(q) where GF∗(q) = GF(q) n f0g. Then, a received codeword at the receiver is expressed in polynomial form as r(x) = c(x) + e(x), (4) or in vector form as follows: r = c + e. (5) Throughout the paper, the polynomial form and the vector form will be used interchangeably. i If there is no error (i.e., e(x) = 0), r(a ) = 0 for all i 2 Sr because r(x) = c(x). However, if e(x) 6= 0, i i we may have r(a ) 6= 0 for some i 2 Sr because it can be e(a ) 6= 0 for some i 2 Sr. 2.2. Conjugacy Classes and Cyclotomic Cosets m q q2 Let Ub denote a conjugacy class of b 2 GF(q ). Then, Ub consists of b and its conjugates b , b , 3 bq , ··· . Note that the conjugacy classes of the elements in the same conjugacy class are the same. i m The minimal polynomial of a 2 GF(q ) over GF(q), Mai (x), can be obtained by using the conjugacy classes as follows: Mai (x) = ∏ (x − z). (6) z2U ai The degree of Mai (x) is equal to jUai j, where jSj is the cardinality of a set S. Note that since Mai (x) has all the elements in Uai as its roots, g(x) in (1) has all the elements in Uab , Uab+1 , ··· , Uab+d−2 as its roots.
Recommended publications
  • 10. on Extending Bch Codes
    University of Plymouth PEARL https://pearl.plymouth.ac.uk 04 University of Plymouth Research Theses 01 Research Theses Main Collection 2011 Algebraic Codes For Error Correction In Digital Communication Systems Jibril, Mubarak http://hdl.handle.net/10026.1/1188 University of Plymouth All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Copyright Statement This copy of the thesis has been supplied on the condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and information derived from it may be published without the author’s prior consent. Copyright © Mubarak Jibril, December 2011 Algebraic Codes For Error Correction In Digital Communication Systems by Mubarak Jibril A thesis submitted to the University of Plymouth in partial fulfilment for the degree of Doctor of Philosophy School of Computing and Mathematics Faculty of Technology Under the supervision of Dr. M. Z. Ahmed, Prof. M. Tomlinson and Dr. C. Tjhai December 2011 ABSTRACT Algebraic Codes For Error Correction In Digital Communication Systems Mubarak Jibril C. Shannon presented theoretical conditions under which communication was pos- sible error-free in the presence of noise. Subsequently the notion of using error correcting codes to mitigate the effects of noise in digital transmission was intro- duced by R.
    [Show full text]
  • Decoding Beyond the Designed Distance for Certain Algebraic Codes
    INFORMATION AND CONTROL 35, 209--228 (1977) Decoding beyond the Designed Distance for Certain Algebraic Codes DAVID MANDELBAUM P.O. Box 645, Eatontown, New Jersey 07724 It is shown how decoding beyond the designed distance can be accomplished for a certain decoding algorithm. This method can be used for subcodes of generalized Goppa codes and generalized Reed-Solomon codes. 1. INTRODUCTION A decoding algorithm for generalized Goppa codes is presented here. This method directly uses the Euclidean algorithm, it is shown how subcodes of these generalized codes can be decoded for errors beyond the designed distance. It is proved that all coset leaders can be decoded by this method. Decoding of errors beyond the BCH bound may involve solution of nonlinear equations. The method used is similar to the use of continued fractions for decoding within the BCH bound (Mandelbaum, 1976). The Euclidean algorithm is also used by Sugiyama et aL (1975) in a different manner for decoding Goppa codes within the BCH bound. Section 2 defines the generalized codes and shows the relationship with the Mattson-Solomon polynomial. Section 3 defines the decoding algorithm and gives, as a detailed example, the decoding of the (15, 5) BCH code for a quadruple error. Application to the Golay code is pointed out. This method can also be used for decoding the Generalized Reed-Solomon codes constructed by Delsarte (1975). Section 4 presents a method of obtaining the original information and syndrome in an iterated manner, which results in reduced computation for codewords with no errors. Other methods for decoding beyond the BCH bound for BCH codes are given by Berlekamp (1968) and Harmann (1972).
    [Show full text]
  • Chapter 6 Modeling and Simulations of Reed-Solomon Encoder and Decoder
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE The Implementation of a Reed Solomon Code Encoder /Decoder A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical Engineering By Qiang Zhang May 2014 Copyright by Qiang Zhang 2014 ii The graduate project of Qiang Zhang is approved: Dr. Ali Amini Date Dr. Sharlene Katz Date Dr. Nagi El Naga, Chair Date California State University, Northridge iii Acknowledgements I would like to thank my project professor and committee: Dr. Nagi El Naga, Dr. Ali Amini, and Dr. Sharlene Katz for their time and help. I would also like to thank my parents for their love and care. I could not have finished this project without them, because they give me the huge encouragement during last two years. iv Dedication To my parents v Table of Contents Copyright Page.................................................................................................................... ii Signature Page ................................................................................................................... iii Acknowledgement ............................................................................................................. iv Dedication ............................................................................................................................v List of Figures .................................................................................................................. viii Abstract ................................................................................................................................x
    [Show full text]
  • Chapter 9: BCH, Reed-Solomon, and Related Codes
    Draft of February 23, 2001 Chapter 9: BCH, Reed-Solomon, and Related Codes 9.1 Introduction. In Chapter 7 we gave one useful generalization of the (7, 4) Hamming code of the Introduction: the family of (2m − 1, 2m − m − 1) single error-correcting Hamming Codes. In Chapter 8 we gave a further generalization, to a class of codes capable of correcting a single burst of errors. In this Chapter, however, we will give a far more important and extensive generalization, the multiple-error correcting BCH and Reed-Solomon Codes. To motivate the general definition, recall that the parity-check matrix of a Hamming Code of length n =2m − 1 is given by (see Section 7.4) H =[v0 v1 ··· vn−1 ] , (9.1) m m where (v0, v1,...,vn−1) is some ordering of the 2 − 1 nonzero (column) vectors from Vm = GF (2) . The matrix H has dimensions m × n, which means that it takes m parity-check bits to correct one error. If we wish to correct two errors, it stands to reason that m more parity checks will be required. Thus we might guess that a matrix of the general form v0 v1 ··· vn−1 H2 = , w0 w1 ··· wn−1 where w0, w1,...,wn−1 ∈ Vm, will serve as the parity-check matrix for a two-error-correcting code of length n. Since however the vi’s are distinct, we may view the correspondence vi → wi as a function from Vm into itself, and write H2 as v0 v1 ··· vn−1 H2 = . (9.3) f(v0) f(v1) ··· f(vn−1) But how should the function f be chosen? According to the results of Section 7.3, H2 will define a n two-error-correcting code iff the syndromes of the 1 + n + 2 error pattern of weights 0, 1 and 2 are all distinct.
    [Show full text]
  • Chapter 9: BCH, Reed-Solomon, and Related Codes
    Draft of February 21, 1999 Chapter 9: BCH, Reed-Solomon, and Related Codes 9.1 Introduction. In Chapter 7 we gave one useful generalization of the (7, 4)Hamming code of the Introduction: the family of (2m − 1, 2m − m − 1)single error-correcting Hamming Codes. In Chapter 8 we gave a further generalization, to a class of codes capable of correcting a single burst of errors. In this Chapter, however, we will give a far more important and extensive generalization, the multiple-error correcting BCH and Reed-Solomon Codes. To motivate the general definition, recall that the parity-check matrix of a Hamming Code of length n =2m − 1 is given by (see Section 7.4) H =[v0 v1 ··· vn−1 ] , (9.1) m m where (v0, v1,...,vn−1)is some ordering of the 2 − 1 nonzero (column)vectors from Vm = GF (2) . The matrix H has dimensions m × n, which means that it takes m parity-check bits to correct one error. If we wish to correct two errors, it stands to reason that m more parity checks will be required. Thus we might guess that a matrix of the general form v0 v1 ··· vn−1 H2 = , w0 w1 ··· wn−1 where w0, w1,...,wn−1 ∈ Vm, will serve as the parity-check matrix for a two-error-correcting code of length n. Since however the vi’s are distinct, we may view the correspondence vi → wi as a function from Vm into itself, and write H2 as v0 v1 ··· vn−1 H2 = . (9.3) f(v0) f(v1) ··· f(vn−1) But how should the function f be chosen? According to the results of Section 7.3, H2 will define a n two-error-correcting code iff the syndromes of the 1 + n + 2 error pattern of weights 0, 1 and 2 are all distinct.
    [Show full text]
  • Error Detection and Correction Using the BCH Code 1
    Error Detection and Correction Using the BCH Code 1 Error Detection and Correction Using the BCH Code Hank Wallace Copyright (C) 2001 Hank Wallace The Information Environment The information revolution is in full swing, having matured over the last thirty or so years. It is estimated that there are hundreds of millions to several billion web pages on computers connected to the Internet, depending on whom you ask and the time of day. As of this writing, the google.com search engine listed 1,346,966,000 web pages in its database. Add to that email, FTP transactions, virtual private networks and other traffic, and the data volume swells to many terabits per day. We have all learned new standard multiplier prefixes as a result of this explosion. These days, the prefix “mega,” or million, when used in advertising (“Mega Cola”) actually makes the product seem trite. With all these terabits per second flying around the world on copper cable, optical fiber, and microwave links, the question arises: How reliable are these networks? If we lose only 0.001% of the data on a one gigabit per second network link, that amounts to ten thousand bits per second! A typical newspaper story contains 1,000 words, or about 42,000 bits of information. Imagine losing a newspaper story on the wires every four seconds, or 900 stories per hour. Even a small error rate becomes impractical as data rates increase to stratospheric levels as they have over the last decade. Given the fact that all networks corrupt the data sent through them to some extent, is there something that we can do to ensure good data gets through poor networks intact? Enter Claude Shannon In 1948, Dr.
    [Show full text]
  • Lecture 14: BCH Codes Overview 1 General Codes
    CS681 Computational Number Theory Lecture 14: BCH Codes Instructor: Piyush P Kurur Scribe: Ramprasad Saptharishi Overview We shall look a a special form of linear codes called cyclic codes. These have very nice structures underlying them and we shall study BCH codes. 1 General Codes n Recall that a linear code C is just a subspace of Fq . We saw last time that by picking a basis of C we can construct what is known as a parity check matrix H that is zero precisely at C. Let us understand how the procedure works. Alice has a message, of length k and she wishes to transmit across the channel. The channel is unreliable and therefore both Alice and Bob first agree on some code C. Now how does Alice convert her message into a code word in C? If Alice’s message could be written as (x1, x2, ··· , xk) where each xi ∈ Fq, then Alice Pk simply sends i=1 xibi which is a codeword. Bob receives some y and he checks if Hy = 0. Assuming that they choose a good distance code (the channel cannot alter one code into an- other), if Bob finds that Hy = 0, then he knows that the message he received was untampered with. But what sort of errors can the channel give? Let us say that the channel can change atmost t positions of the codeword. If x was sent and x0 was received with atmost t changes between them, then the vector e = x0−x can be thought of as the error vector.
    [Show full text]
  • A List-Decoding Approach to Low-Complexity Soft Maximum-Likelihood Decoding of Cyclic Codes
    A List-Decoding Approach to Low-Complexity Soft Maximum-Likelihood Decoding of Cyclic Codes Hengjie Yang∗, Ethan Liang∗, Hanwen Yaoy, Alexander Vardyy, Dariush Divsalarz, and Richard D. Wesel∗ ∗University of California, Los Angeles, Los Angeles, CA 90095, USA yUniversity of California, San Diego, La Jolla, CA 92093, USA zJet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA Email: {hengjie.yang, emliang}@ucla.edu, {hwyao, avardy}@ucsd.edu, [email protected], [email protected] Abstract—This paper provides a reduced-complexity approach Trellises with lower complexity than the natural trellis can to maximum likelihood (ML) decoding of cyclic codes. A cyclic be found using techniques developed in [7]–[9] that identify code with generator polynomial gcyclic(x) may be considered a minimum complexity trellis representations. Such trellises terminated convolutional code with a nominal rate of 1. The trellis termination redundancy lowers the rate from 1 to the are often time varying and can have a complex structure. actual rate of the cyclic code. The proposed decoder represents Furthermore, at least for the high-rate binary BCH code gcyclic(x) as the product of two polynomials, a convolutional examples [10] in this paper, the minimum complexity trellis code (CC) polynomial gcc(x) and a cyclic redundancy check representations turn out to have complexity similar to the (CRC) polynomial gcrc(x), i.e., gcyclic(x) = gcc(x)gcrc(x). This natural trellis. representation facilitates serial list Viterbi algorithm (S-LVA) decoding. Viterbi decoding is performed on the natural trellis for As a main contribution, this paper presents serial list gcc(x), and gcrc(x) is used as a CRC to determine when the S-LVA Viterbi algorithm (S-LVA) as an ML decoder for composite should conclude.
    [Show full text]
  • Cyclic Codes, BCH Codes, RS Codes
    Classical Channel Coding, II Hamming Codes, Cyclic Codes, BCH Codes, RS Codes John MacLaren Walsh, Ph.D. ECET 602, Winter Quarter, 2013 1 References • Error Control Coding, 2nd Ed. Shu Lin and Daniel J. Costello, Jr. Pearson Prentice Hall, 2004. • Error Control Systems for Digital Communication and Storage, Prentice Hall, S. B. Wicker, 1995. 2 Example of Syndrome Decoder { Hamming Codes Recall that a (n; k) Hamming code is a perfect code with a m × 2m − 1 parity check matrix whose columns are all 2m −1 of the non-zero binary words of length m. This yields an especially simple syndrome decoder look up table for arg min wt(e) (1) ejeHT =rHT In particular, one selects the error vector to be the jth column of the identity matrix, where j is the column of the parity check matrix which is equal to the computed syndome s = rHT . 3 Cyclic Codes Cyclic codes are a subclass of linear block codes over GF (q) which have the property that every cyclic shift of a codeword is itself also a codeword. The ith cyclic shift of a vector v = (v0; v1; : : : ; vn−1) is (i) the vector v = (vn−i; vn−i+1; : : : ; vn−1; v0; v1; : : : ; vn−i−1). If we think of the elements of the vector as n−1 coefficients in the polynomial v(x) = v0 + v1x + ··· + vn−1x we observe that i i i+1 n−1 n n+i−1 x v(x) = v0x + v1x + ··· + vn−i−1x + vn−ix + ··· + vn+i−1x i−1 i n−1 = vn−i + vn−i+1x + ··· + vn−1x + v0x + ··· + vn−i−1x n n i−1 n +vn−i(x − 1) + vn−i+1x(x − 1) + ··· + vn+i−1x (x − 1) Hence, i n i−1 i i+1 n−1 (i) x v(x)mod(x − 1) = vn−i + vn−i+1x + ··· + vn−1x + v0x + v1x + ··· + vn−i−1x = v (x) (2) That is, the ith cyclic shift can alternatively be thought of as the operation v(i)(x) = xiv(x)mod(xn − 1).
    [Show full text]
  • Algebraic Decoding of Reed-Solomon and BCH Codes
    Algebraic Decoding of Reed-Solomon and BCH Codes Henry D. Pfister ECE Department Texas A&M University July, 2008 (rev. 0) November 8th, 2012 (rev. 1) November 15th, 2013 (rev. 2) 1 Reed-Solomon and BCH Codes 1.1 Introduction Consider the (n; k) cyclic code over Fqm with generator polynomial n−k Y g(x) = x − αa+jb ; j=1 where α 2 Fqm is an element of order n and gcd(b; n) = 1. This is a cyclic Reed-Solomon (RS) code a+b a+2b a+(n−k)b with dmin = n − k + 1. Adding roots at all the conjugates of α ; α ; : : : ; α (w.r.t. the subfield K = Fq) also allows one to define a length-n BCH subcode over Fq with dmin ≥ n − k + 1. Also, any decoder that corrects all patterns of up to t = b(n − k)=2c errors for the original RS code can be used to correct the same set of errors for any subcode. Pk−1 i The RS code operates by encoding a message polynomial m(x) = j=0 mix of degree at most k − 1 Pn−1 i into a codeword polynomial c(x) = j=0 cix using c(x) = m(x)g(x): During transmission, some additive errors are introduced and described by the error polynomial e(x) = Pn−1 i Pt σ(j) j=0 eix . Let t denote the number of errors so that e(x) = j=1 eσ(j)x . The received polynomial Pk−1 i is r(x) = j=0 rix where r(x) = c(x) + e(x): In these notes, the RS decoding is introduced using the methods of Peterson-Gorenstein-Zierler (PGZ), the Berlekamp-Massey Algorithm (BMA) and the Euclidean method of Sugiyama.
    [Show full text]
  • Max90x0000090xxx0099xx600x9099x 09 /4Co
    US 20190268023A1 ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0268023 A1 Freudenberger et al. (43 ) Pub. Date : Aug . 29, 2019 (54 ) METHOD AND DEVICE FOR ERROR GIIC 29 /52 ( 2006 .01 ) CORRECTION CODING BASED ON HO3M 13 / 15 ( 2006 .01 ) HIGH - RATE GENERALIZED (52 ) U . S . CI. CONCATENATED CODES CPC . .. .. HO3M 13 / 253 ( 2013 .01 ) ; HO3M 13 /293 ( 2013 . 01 ) ; GIIC 29 / 52 ( 2013. 01 ) ; HO3M (71 ) Applicant: HYPERSTONE GMBH , Konstanz 13 /152 (2013 .01 ) ; H03M 13 / 2906 (2013 .01 ) ; (DE ) HO3M 13/ 1515 (2013 . 01 ) ; HO3M 13 / 1505 (72 ) Inventors : Juergen Freudenberger, Radolfzell ( 2013 . 01 ) (DE ) ; Jens Spinner , Konstanz (DE ) ; Christoph Baumhof , Radolfzell (DE ) ( 57 ) ABSTRACT (21 ) Appl. No. : 16/ 395 ,046 ( 22 ) Filed : Apr. 25 , 2019 Field error correction coding is particularly suitable for applications in non - volatile flash memories. We describe a Related U . S . Application Data method for error correction encoding of data to be stored in (63 ) Continuation of application No. 15 /593 , 973, filed on a memory device, a corresponding method for decoding a May 12 , 2017 , now Pat. No . 10 , 320 , 421. codeword matrix resulting from the encoding method , a coding device , and a computer program for performing the ( 30 ) Foreign Application Priority Data methods on the coding device , using a new construction for high - rate generalized concatenated (GC ) codes . The codes , May 13 , 2016 (DE ) . .. .. .. 102016005985 . 0 which are well suited for error correction in flash memories Apr. 6 , 2017 (DE ) . 102017107431 . 7 for high reliability data storage , are constructed from inner nested binary Bose -Chaudhuri - Hocquenghem (BCH ) codes Publication Classification and outer codes, preferably Reed - Solomon (RS ) codes .
    [Show full text]
  • Appendix A. Code Generators for BCH Codes
    Appendix A. Code Generators for BCH Codes As described in Chapter 2, code generator polynomials can be constructed in a straightforward manner. Here we Jist some of the more useful generators for primitive and nonprimitive codes. Generators for the primitive codes are given in octal notation in Table A-1 (i.e., 23 denotes x4 + x + 1). The basis for constructing this table is the table of irreducible polynomials given in Peterson and Weldon.(t) Sets of code generators are given for lengths 7, 15, 31, 63, 127, and 255. Each block length is of the form 2m - 1. The first code at each block length is a Hamming code, so it has a primitive polynomial, p(x), of degree m as its generator. This polynomial is also used for defining arithmetic operations over GF(2m). The next code generator of the same length is found by multiplying p(x) by m3 (x), the minimal polynomial of 1>: 3. Continuing in the same fashion, at each step, the previous generator is multiplied by a new minimal polynomial. Then the resulting product is checked to find the maximum value oft for which IX, 1>: 2, ••• , ~>: 21 are roots of the generator polyno­ mial. This value tis the error-correcting capability of the code as predicted by the BCH bound. The parameter k, the number of information symbols per code word, is given by subtracting the degree of the generator polynomial from n. Finally, on the next iteration, this generator polynomial is multiplied by mh(x) [with h = 2(t + 1) + 1] to produce a new generator polynomial.
    [Show full text]