Int. J. Mol. Sci. 2012, 13, 17019-17047; doi:10.3390/ijms131217019 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Organic Solar Cells: Understanding the Role of Forster¨ Resonance Energy Transfer Krishna Feron 1;2;*, Warwick J. Belcher 1 , Christopher J. Fell 2 and Paul C. Dastoor 1 1 CSIRO Energy Technology, PO Box 330, Newcastle, NSW 2304, Australia; E-Mails:
[email protected] (W.J.B.);
[email protected] (P.C.D.) 2 Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308, Australia; E-Mail:
[email protected] * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +61-2-4960-6248; Fax: +61-2-4960-6021. Received: 7 October 2012; in revised form: 3 December 2012 / Accepted: 5 December 2012 / Published: 12 December 2012 Abstract: Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Forster¨ resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Forster¨ theory to accurately calculate energy transfer rates are discussed.