HPV16 and HPV18 Type-Specific APOBEC3 and Integration Profiles

Total Page:16

File Type:pdf, Size:1020Kb

HPV16 and HPV18 Type-Specific APOBEC3 and Integration Profiles medRxiv preprint doi: https://doi.org/10.1101/2020.11.25.20238477; this version posted November 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 HPV16 and HPV18 type-specific APOBEC3 and integration profiles in different 2 diagnostic categories of cervical samples 3 4 Sonja Lagström1,2,3, Alexander Hesselberg Løvestad4, Sinan Uğur Umu2, Ole Herman 5 Ambur4, Mari Nygård2, Trine B. Rounge2,6,#,*, Irene Kraus Christiansen1,7,#,*, 6 7 Author affiliations: 8 1 Department of Microbiology and Infection Control, Akershus University Hospital, 9 Lørenskog, Norway 10 2 Department of Research, Cancer Registry of Norway, Oslo, Norway 11 3 Institute of Clinical Medicine, University of Oslo, Oslo, Norway 12 4 Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway 13 5 Norwegian Cervical Cancer Screening Programme, Cancer Registry of Norway, Oslo, 14 Norway 15 6 Department of Informatics, University of Oslo, Oslo, Norway 16 7 Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus 17 University Hospital and University of Oslo, Lørenskog, Norway 18 19 20 #Equal contribution 21 *Corresponding authors 22 E-mail addresses: [email protected] (TBR), 23 [email protected] (IKC) 24 NOTE: This preprint reports new research that has not been certified1 by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.11.25.20238477; this version posted November 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 25 Abstract 26 27 Human papillomavirus 16 and 18 are the most predominant types in cervical 28 cancer. Only a small fraction of HPV infections progress to cancer, indicating that genomic 29 factors, such as minor nucleotide variation caused by APOBEC3 and chromosomal 30 integration, contribute to the carcinogenesis. 31 We analysed minor nucleotide variants (MNVs) and integration in HPV16 and 32 HPV18 positive cervical samples with different morphology. Samples were sequenced 33 using an HPV whole genome sequencing protocol TaME-seq. A total of 80 HPV16 and 34 51 HPV18 positive cervical cell samples passed the sequencing depth criteria of 300× 35 reads, showing the following distribution: non-progressive disease (HPV16 n=21, HPV18 36 n=12); cervical intraepithelial neoplasia (CIN) grade 2 (HPV16 n=27, HPV18 n=9); 37 CIN3/adenocarcinoma in situ (AIS) (HPV16 n=27, HPV18 n=30); cervical cancer (HPV16 38 n=5). 39 Similar rates of MNVs in HPV16 and HPV18 samples were observed for most viral 40 genes but for HPV16, the non-coding region (NCR) showed a trend towards increasing 41 variation with increasing lesion severity. APOBEC3 signatures were observed in HPV16 42 lesions, while similar mutation patterns were not detected for HPV18. The proportion of 43 samples with integration was 13% for HPV16 and 59% for HPV18 positive samples, with 44 a noticeable portion located within or close to cancer-related genes. 45 46 2 medRxiv preprint doi: https://doi.org/10.1101/2020.11.25.20238477; this version posted November 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 47 Keywords 48 Human papillomavirus, minor nucleotide variation, APOBEC3, chromosomal integration, 49 viral genomic deletion 50 51 Abbreviations 52 AID activation-induced cytidine deaminase 53 AIS adenocarcinoma in situ 54 ASC-US atypical squamous cells of undetermined significance 55 CIN cervical intraepithelial neoplasia 56 dN/dS ratio of non-synonymous to synonymous substitutions 57 HPV human papillomavirus 58 LSIL low-grade squamous intraepithelial lesion 59 MNV minor nucleotide variant 60 NCR non-coding region 61 ncRNA non-coding RNA 62 NGS next-generation sequencing 63 SCC squamous cell carcinoma 64 URR upstream regulatory region 65 UTR untranslated region 66 3 medRxiv preprint doi: https://doi.org/10.1101/2020.11.25.20238477; this version posted November 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 67 1. Introduction 68 69 A persistent infection with one of the carcinogenic HPV genotypes is accepted as a 70 necessary cause of cervical cancer development [1]. Of the 12 carcinogenic types [2], 71 HPV16 and HPV18 are associated with about 70% of all cervical cancers [3]. HPV16 is 72 predominantly associated with squamous cell carcinomas (SCC), while HPV18 is more 73 often detected in adenocarcinomas [3], suggesting that these HPV types differ in their 74 target cell specificity [4]. Nevertheless, only a small fraction of HPV infections will persist 75 and progress to cancer [5], indicating that additional factors and genomic events are 76 necessary for the HPV-induced carcinogenic process. 77 78 The 7.9 kb double stranded HPV DNA genome consists of early region (E1, E2, E4-7) 79 genes, late region (L1, L2) genes and an upstream regulatory region (URR) [6]. To date, 80 more than 200 HPV genotypes have been identified, based on at least 10% difference 81 within the conserved L1 gene sequence [7]. HPV types harbouring minor genetic variation 82 are grouped into lineages (1–10% whole genome nucleotide difference) and sublineages 83 (0.5-1.0% difference) [8]. HPV evolve slowly partly since the HPV genome replication is 84 dependent on host cell high-fidelity polymerases [9]. However, recent studies have 85 revealed variability below the level of HPV sublineages, which may indicate intra-host viral 86 diversification and evolution [10-12]. 87 88 Viral genetic instability is caused by various mutagenic processes [13]. One of the 89 mechanisms suggested to cause minor nucleotide variants (MNVs) and impact HPV 90 mutational drift involves the anti-viral host-defence enzyme apolipoprotein B mRNA- 91 editing enzyme, catalytic polypeptide-like 3 (APOBEC3) protein [14]. APOBEC3 proteins 92 are cytidine deaminases causing deoxycytidine (C) to deoxythymidine (T) mutations 93 during viral genome synthesis. The mutations can lead to defects in viral genome 94 replication necessary for the viral life cycle [15]. APOBEC3 mutational signatures have 95 been found in HPV genomes in cervical pre-cancerous and cancer samples [10, 16, 17], 96 and has recently been associated with viral clearance [18]. Findings of hypovariability of 4 medRxiv preprint doi: https://doi.org/10.1101/2020.11.25.20238477; this version posted November 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 97 the E7 gene suggest negative selection opposite of APOBEC3-related editing and an 98 essential gene conservation for progression to cancer [19, 20]. 99 100 HPV integration into the host genome is regarded as a driving event in cervical 101 carcinogenesis and is observed in >80% of HPV-induced cancers [21]. Integrations 102 causing disruption or complete deletion of the E1 or E2 gene result in constitutive 103 expression of the viral E6 and E7 oncogenes [22], leading to inactivation of cell cycle 104 checkpoints and genomic instability [23]. Integration may also lead to disruption of host 105 genes, such as oncogenes or tumour-suppressor genes, modified expression of adjacent 106 genes, as well as other genomic alterations, which may promote HPV-induced 107 carcinogenesis [24-26]. In high-grade lesions and cancers, integrations in certain 108 chromosomal loci, including loci 3q28, 8q24.21 and 13q22.1, have been reported more 109 often than in other loci [27], suggesting selective growth advantages for cells with site- 110 specific integrations in e.g. important regulatory genes. Increasing integration frequencies 111 have been reported upon comparison of cervical precancerous and cancer lesions [28, 112 29]. 113 114 Recently, we developed a novel next-generation sequencing (NGS) strategy TaME-seq 115 for simultaneous analysis of HPV genomic variability and chromosomal integration [30]. 116 Employing the TaME-seq method, we have explored HPV16 and HPV18 genomic 117 variability and integration in HPV positive cervical samples with different morphologies. 118 Differences in HPV variability between the diagnostic categories may shed light on intra- 119 host viral genome dynamics and evolution processes in cervical carcinogenesis. In 120 addition, integration analysis will contribute to a better understanding of this event during 121 HPV-induced carcinogenesis. 122 5 medRxiv preprint doi: https://doi.org/10.1101/2020.11.25.20238477; this version posted November 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 123 2. Material and methods 124 125 2.1. Sample selection
Recommended publications
  • Ring Finger 20/Ring Finger 40/WW Domain‑Containing Adaptor with Coiled‑Coil Complex Interacts with P53 to Regulate Gene Transcription in DNA Damage Response
    ONCOLOGY LETTERS 21: 436, 2021 Ring finger 20/ring finger 40/WW domain‑containing adaptor with coiled‑coil complex interacts with p53 to regulate gene transcription in DNA damage response DANNI MENG*, KUN GUO*, DIE ZHANG*, CHENG ZHAO, CHUANWEN SUN and FENG ZHANG College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China Received January 19, 2020; Accepted December 17, 2020 DOI: 10.3892/ol.2021.12697 Abstract. p53 is one of the most important tumor suppressor the results of the present study revealed the molecular mecha‑ genes, and its primary function is to act as a transcriptional nism of the interaction between the RNF20/RNF40/WAC activator to control cell cycle arrest, DNA repair and cellular complex and p53, and demonstrated that these proteins regu‑ metabolism by recognizing and binding to specific DNA lated gene transcription in the DNA damage response. sequences. Defects in the ring finger (RNF)20/RNF40/WW domain‑containing adaptor with coiled‑coil (WAC) complex, Introduction one of the histone H2B ubiquitination E3 ligases, have been reported to be a key factor in oncogenesis, cancer cell migra‑ p53 is a tumor suppressor protein (1). Mutations within p53 tion and invasion. Histone H2B mono‑ubiquitination has been have been demonstrated to lead to its inactivation, which is demonstrated to be essential for maintaining the functionality associated with ~50% of all types of human cancer (2). The p53 of the p53 tumor suppressor protein. The aim of the present protein contains an amino N‑terminal transactivation domain, study was to identify any sites in the p53 DNA‑binding a proline‑rich domain, a central DNA‑binding domain (DBD), domain (DBD) specific to the RNF20/RNF40/WAC a tetramerization domain and a carboxy‑terminal regulatory complex that may be involved in the gene regulation in DNA domain (CRD) (3).
    [Show full text]
  • Comprehensive Identification and Characterization of Somatic Copy Number Alterations in Triple‑Negative Breast Cancer
    INTERNATIONAL JOURNAL OF ONCOLOGY 56: 522-530, 2020 Comprehensive identification and characterization of somatic copy number alterations in triple‑negative breast cancer ZAIBING LI1,2*, XIAO ZHANG3*, CHENXIN HOU4, YUQING ZHOU4, JUNLI CHEN1, HAOYANG CAI5, YIFENG YE3, JINPING LIU3 and NING HUANG1 1Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041; 2Department of Pathophysiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan 646000; 3Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731; 4West China Medical School, Sichuan University, Chengdu, Sichuan 610041; 5Center of Growth, Metabolism and Aging, Key Laboratory of Bio‑Resources and Eco‑Environment, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, P.R. China Received January 30, 2019; Accepted August 30, 2019 DOI: 10.3892/ijo.2019.4950 Abstract. Triple-negative breast cancer (TNBC) accounts hierarchical clustering of tumors resulted in three main for ~15% of all breast cancer diagnoses each year. Patients subgroups that exhibited distinct CNA profiles, which with TNBC tend to have a higher risk for early relapse and may reveal the heterogeneity of molecular mechanisms in a worse prognosis. TNBC is characterized by extensive TNBC subgroups. These results will extend the molecular somatic copy number alterations (CNAs). However, the DNA understanding of TNBC and will facilitate the discovery of CNA profile of TNBC remains to be extensively investigated. therapeutic and diagnostic target candidates. The present study assessed the genomic profile of CNAs in 201 TNBC samples, aiming to identify recurrent CNAs that Introduction may drive the pathogenesis of TNBC.
    [Show full text]
  • GOLGA2/GM130 Is a Novel Target for Neuroprotection Therapy in Intracerebral Hemorrhage
    GOLGA2/GM130 is a Novel Target for Neuroprotection Therapy in Intracerebral Hemorrhage Shuwen Deng Second Xiangya Hospital Qing Hu Second Xiangya Hospital Qiang He Second Xiangya Hospital Xiqian Chen Second Xiangya Hospital Wei Lu ( [email protected] ) Second Xiangya Hospital, central south university https://orcid.org/0000-0002-3760-1550 Research Article Keywords: Golgi apparatus, therapy, intracerebral hemorrhage, autophagy, blood–brain barrier Posted Date: June 1st, 2021 DOI: https://doi.org/10.21203/rs.3.rs-547422/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/25 Abstract Blood–brain barrier (BBB) impairment after intracerebral hemorrhage (ICH) can lead to secondary brain injury and aggravate neurological decits. Currently, there are no effective methods for its prevention or treatment partly because of to our lack of understanding of the mechanism of ICH injury to the BBB. Here, we explored the role of Golgi apparatus protein GM130 in the BBB and neurological function after ICH. The levels of the tight junction-associated proteins ZO-1 and occludin decreased, whereas those of LC3-II, an autophagosome marker, increased in hemin-treated Bend.3 cells (p < 0.05). Additionally, GM130 overexpression increased ZO-1 and occludin levels, while decreasing LC3-II levels (p < 0.05). GM130 silencing reversed these effects and mimicked the effect of hemin treatment (p < 0.05). Moreover, tight junctions were disrupted after hemin treatment or GM130 silencing and repaired by GM130 overexpression. GM130 silencing in Bend.3 cells increased autophagic ux, whereas GM130 overexpression downregulated this activity. Furthermore, GM130 silencing-induced tight junction disruption was partially restored by 3-methyladenine (an autophagy inhibitor) administration.
    [Show full text]
  • Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
    1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Mutator Catalogues and That the Proportion of CG Muta- Types
    RESEARCH HIGHLIGHTS carcinoma. Moreover, the authors of APOBEC3B mRNA were generally GENOMICS found that 60–90% of mutations in higher, indicating that this is the these tumours affected CG base pairs, major mutator across the 13 cancer Mutator catalogues and that the proportion of CG muta- types. Using carcinogenic mutation tions correlated with the expression catalogues (such as the Cancer Gene of APOBEC3B across cancer types. Census and COSMIC) the authors Because APOBECs target cytosines found that APOBEC-signature within specific sequence contexts, mutations were prevalent in a subset the authors examined the cytosine of genes considered to be drivers of mutation signatures and found, for cancer, indicating that APOBEC- example, that those signatures in mediated mutation may initiate bladder and cervical cancers were and/or drive carcinogenesis. similar, and were biased towards the Taking a broader approach, optimum APOBEC3B motif (which Alexandrov and colleagues sought STOCKBYTE is TCA). The authors also found that to assess the mutational landscape bladder, cervical, head and neck, of >7,000 cancers, using exome and breast cancer, as well as lung and whole-genome sequence The sequencing of cancer genomes adenocarcinoma and lung squamous data. Their analyses revealed 21 has confirmed the complexity of cell carcinoma, all of which had distinct mutational signatures APOBEC3B is the somatic mutations that occur in the strongest APOBEC3B-specific that occurred, to different extents a mutator in tumours. However, there seem to cytosine mutation signatures, had the and in different combinations, be some patterns in the mutation highest levels of cytosine mutation across 30 cancer types. The most several types spectra, such as preference for muta- clustering.
    [Show full text]
  • Good Laboratory Practices for Molecular Genetic Testing for Heritable Diseases and Conditions
    Morbidity and Mortality Weekly Report www.cdc.gov/mmwr Recommendations and Reports June 12, 2009 / Vol. 58 / No. RR-6 Good Laboratory Practices for Molecular Genetic Testing for Heritable Diseases and Conditions INSIDE: Continuing Education Examination department of health and human services Centers for Disease Control and Prevention MMWR The MMWR series of publications is published by the Coordinating CONTENTS Center for Health Information and Service, Centers for Disease Introduction .............................................................................. 1 Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333. Background .............................................................................. 3 Suggested Citation: Centers for Disease Control and Prevention. CLIA Oversight for Molecular Genetic Testing ........................... 3 [Title]. MMWR 2009;58(No. RR-#):[inclusive page numbers]. Concerns Related to Molecular Genetic Testing ......................... 4 Centers for Disease Control and Prevention Richard E. Besser, MD Methods ................................................................................... 6 (Acting) Director Information Collection and Assessment ..................................... 6 Tanja Popovic, MD, PhD Development of CLIAC Recommendations for Good Chief Science Officer James W. Stephens, PhD Laboratory Practices in Molecular Genetic Testing ................ 6 Associate Director for Science Recommended Good Laboratory Practices ................................
    [Show full text]
  • Expansions, Diversification, and Interindividual Copy Number
    Expansions, diversification, and interindividual copy PNAS PLUS number variations of AID/APOBEC family cytidine deaminase genes in lampreys Stephen J. Hollanda,1, Lesley M. Berghuisb,1, Justin J. Kingb, Lakshminarayan M. Iyerc, Katarzyna Sikoraa, Heather Fifieldb, Sarah Petera,d, Emma M. Quinlanb, Fumiaki Sugaharae,f, Prashant Shingateg, Inês Trancosoa, Norimasa Iwanamia, Elena Temerevah, Christine Strohmeiera, Shigeru Kuratanie, Byrappa Venkateshg, Guillaume Evannoi, L. Aravindc, Michael Schorppa, Mani Larijanib,2, and Thomas Boehma,2,3 aMax Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; bProgram in Immunology and Infectious Diseases, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada; cNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; dLuxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg; eLaboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research, 650-0047 Kobe, Japan; fDivision of Biology, Hyogo College of Medicine, Nishinomiya, 663-8501 Hyogo, Japan; gComparative and Medical Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, 138673 Biopolis, Singapore; hBiological Faculty, Moscow State University, 119992 Moscow, Russia; and iEcology and Ecosystem Health, Institut National de la Recherche Agronomique, Agrocampus Ouest, 35042 Rennes, France Edited by Anjana Rao, La Jolla Institute and University of California, San Diego, La Jolla, CA, and approved February 27, 2018 (received for review November 30, 2017) Cytidine deaminases of the AID/APOBEC family catalyze C-to-U expansions, rapid evolution, and gene loss are also prevalent nucleotide transitions in mRNA or DNA. Members of the APOBEC3 evolutionary trends, suggesting a primary role for them in im- branch are involved in antiviral defense, whereas AID contributes mune responses (2).
    [Show full text]
  • The Battle Between Retroviruses and APOBEC3 Genes: Its Past and Present
    viruses Review The Battle between Retroviruses and APOBEC3 Genes: Its Past and Present Keiya Uriu 1,2,†, Yusuke Kosugi 3,4,†, Jumpei Ito 1 and Kei Sato 1,2,* 1 Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; [email protected] (K.U.); [email protected] (J.I.) 2 Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan 3 Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; [email protected] 4 Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan * Correspondence: [email protected]; Tel.: +81-3-6409-2212 † These authors contributed equally to this work. Abstract: The APOBEC3 family of proteins in mammals consists of cellular cytosine deaminases and well-known restriction factors against retroviruses, including lentiviruses. APOBEC3 genes are highly amplified and diversified in mammals, suggesting that their evolution and diversification have been driven by conflicts with ancient viruses. At present, lentiviruses, including HIV, the causative agent of AIDS, are known to encode a viral protein called Vif to overcome the antiviral effects of the APOBEC3 proteins of their hosts. Recent studies have revealed that the acquisition of an anti-APOBEC3 ability by lentiviruses is a key step in achieving successful cross-species transmission. Here, we summarize the current knowledge of the interplay between mammalian APOBEC3 proteins and viral infections and introduce a scenario of the coevolution of mammalian APOBEC3 genes and viruses. Keywords: APOBEC3; lentivirus; Vif; arms race; gene diversification; coevolution Citation: Uriu, K.; Kosugi, Y.; Ito, J.; Sato, K.
    [Show full text]
  • Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins
    microorganisms Review Deaminase-Independent Mode of Antiretroviral Action in Human and Mouse APOBEC3 Proteins Yoshiyuki Hakata 1,* and Masaaki Miyazawa 1,2 1 Department of Immunology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan; [email protected] 2 Kindai University Anti-Aging Center, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan * Correspondence: [email protected]; Tel.: +81-72-367-7660 Received: 8 December 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3 (APOBEC3) proteins (APOBEC3s) are deaminases that convert cytosines to uracils predominantly on a single-stranded DNA, and function as intrinsic restriction factors in the innate immune system to suppress replication of viruses (including retroviruses) and movement of retrotransposons. Enzymatic activity is supposed to be essential for the APOBEC3 antiviral function. However, it is not the only way that APOBEC3s exert their biological function. Since the discovery of human APOBEC3G as a restriction factor for HIV-1, the deaminase-independent mode of action has been observed. At present, it is apparent that both the deaminase-dependent and -independent pathways are tightly involved not only in combating viruses but also in human tumorigenesis. Although the deaminase-dependent pathway has been extensively characterized so far, understanding of the deaminase-independent pathway remains immature. Here, we review existing knowledge regarding the deaminase-independent antiretroviral functions of APOBEC3s and their molecular mechanisms. We also discuss the possible unidentified molecular mechanism for the deaminase-independent antiretroviral function mediated by mouse APOBEC3. Keywords: APOBEC3; deaminase-independent antiretroviral function; innate immunity 1.
    [Show full text]
  • Targeted Cancer Therapy Induces APOBEC Fuelling the Evolution of Drug Resistance Authors: Manasi K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423280; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Targeted cancer therapy induces APOBEC fuelling the evolution of drug resistance Authors: Manasi K. Mayekara†, Deborah R. Caswellb*†, Natalie I. Vokesc-d, Emily K. Lawe-h, Wei Wua, William Hillb, Eva Gronroosb, Andrew Rowanb, Maise Al Bakirb, Caroline E. McCoacha, Collin M. Blakelya, Nuri Alpay Temizi, Ai Naganob, D. Lucas Kerra, Julia K. Rotowj, Franziska Haderka, Michelle Dietzenk,r, Carlos Martinez Ruizk,r, Bruna Almeidal, Lauren Cecha, Beatrice Ginia, Joanna Przewrockab, Chris Moorem, Miguel Murillom, Bjorn Bakkerb, Brandon Ruleb, Cameron Durfeee-g, Shigeki Nanjoa, Lisa Tana, Lindsay K. Larsone-g, Prokopios P. Argyrise-h,n, William L. Browne-g, Johnny Yuo, Carlos Gomeza, Philippe Guia, Rachel I. Vogelf,p, Elizabeth A. Yua, Nicholas J. Thomasa, Subramanian Venkatesanb,r, Sebastijan Hoborb, Su Kit Chewr, Nnennaya Kanur, Nicholas McGranahank,r, Eliezer M. Van Allenq, Julian Downwardm, Reuben S. Harrise-h, Trever G. Bivonaa*, Charles Swantonb,r Affiliations: aDepartment of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA bCancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK cDepartment of Thoracic and Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas dDepartment
    [Show full text]
  • Insights Into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions
    viruses Review Insights into the Structures and Multimeric Status of APOBEC Proteins Involved in Viral Restriction and Other Cellular Functions Xiaojiang S. Chen 1,2,3 1 Molecular and Computational Biology, Departments of Biological Sciences, Chemistry, University of Southern California, Los Angeles, CA 90089, USA; [email protected]; Tel.: +1-213-740-5487 2 Genetic, Molecular and Cellular Biology Program, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA 3 Center of Excellence in NanoBiophysics/Structural Biology, University of Southern California, Los Angeles, CA 90089, USA Abstract: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) proteins belong to a family of deaminase proteins that can catalyze the deamination of cytosine to uracil on single- stranded DNA or/and RNA. APOBEC proteins are involved in diverse biological functions, including adaptive and innate immunity, which are critical for restricting viral infection and endogenous retroelements. Dysregulation of their functions can cause undesired genomic mutations and RNA modification, leading to various associated diseases, such as hyper-IgM syndrome and cancer. This review focuses on the structural and biochemical data on the multimerization status of individual APOBECs and the associated functional implications. Many APOBECs form various multimeric complexes, and multimerization is an important way to regulate functions for some of these proteins at several levels, such as deaminase activity, protein stability, subcellular localization, protein storage Citation: Chen, X.S. Insights into and activation, virion packaging, and antiviral activity. The multimerization of some APOBECs is the Structures and Multimeric Status more complicated than others, due to the associated complex RNA binding modes.
    [Show full text]