The Cenozoic Rocks; a Discussion to Accompany the Geologic Map of the United States

Total Page:16

File Type:pdf, Size:1020Kb

The Cenozoic Rocks; a Discussion to Accompany the Geologic Map of the United States The Cenozoic Rocks; a Discussion to Accompany the Geologic Map of the United States GEOLOGICAL SURVEY PROFESSIONAL PAPER 904 The Cenozoic Rocks; a Discussion to Accompany the Geologic Map of the United States By PHILIP B. KING and HELEN M. BEIKMAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 904 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1978 DEPARTMENT OF THE INTERIOR WILLIAM P. CLARK, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director First printing 1978 Second printing 1984 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Page Page Abstract ---------------------------------------------------------------------------------------------­ 1 Tertiary System-Continued Introduction -------------------------------------------------------------------------------------- 1 Pliocene Series-Continued Tertiary System -----------------------------··------------------------------------------------­ 2 Continental deposits -----------------------------------------------------­ 33 Paleocene and Eocene Series ---------------------------------------------­ 2 Sheet deposits -----------------------------------------------------------­ 33 Marine stratified rocks -------------------------------------------------- 3 Ogallala Formation ---------------------------------------­ 33 Gulf Coastal Plain -------------------------------------------------­ 3 Bidahochi Formation --···--------------------------------- 34 Midway Group (Tx) ---------------------------------------­ 3 Basin deposits --------------------------------------------------------­ 35 Wilcox Group (Tel) -----------------------------------------­ 3 Santa Fe Formation ---------------------------------------­ 35 Claiborne Group (Te2) -----------------------------------­ 6 Gila Formation -----------------------------------------------­ 36 Jackson Group (Te3) -------------------------------------- 7 Muddy Creek Formation -----------------------------­ 37 Atlantic Coastal Plain -----------------------------------------· 7 Humboldt Formation -------------------------------------­ 37 Pacific Coastal Area ---------------------------------------·-····· 7 Salt Lake Formation -------------------------------------- 38 California -----------------------------------------------------·-----­ 8 Deposits associated with volcanic rocks ......... 38 Oregon and Washington -------------------·---------­ 9 Idaho Group -----------------------------------------------------­ 38 Continental deposits -------------------------------------------·---------- 10 Other formations ---------------------------------------------­ 38 Great Plains and Rocky Mountains ................. 10 Quaternary System -----------· ····------------------------------------------------------­ 39 Paleocene deposits (Txc) -------·-----------------------­ 11 Gulf Coastal Plain ----------------------------------------------------------------­ 39 Eocene deposits (Tee) -------------------------------------- 12 Mississippj Embayment ------------------------------------------------ 39 Eocene lacustrine deposits (Tel) _________________ _ 13 Other areas ---·-------------------------------------------------------------------- 42 Outlying areas ---------------------------------·-----------------------­ 14 Atlantic Coastal Plain -------------------------------------·-------------------- 42 New Mexico and west Texas ------------------------ 14 Great Plains ---------------------------------------------------------·------------········ 43 Arizona ----·----------------------------------------------------------- 14 Pleistocene ......................................................................... 44 Nevada and California ---------------------------------­ 14 Undifferentiated Quaternary ..................................... 44 Western Montana -------------------------------------------­ 15 California ------------------------------------------------------------------------------------ 45 Washington -------------------------------------------------------- 15 Basin and Range province ................................................. 46 Eugeosynclinal deposits -----------------------------------------------­ 15 Cenozoic volcanic rocks ............................................................... 47 Oligocene Series -----------------------------------------------------------------------­ 16 Lower Tertiary volcanic rocks (lTv) ................................. 49 Marine stratified rocks -------------------------------------------------­ 16 Eocene marine"pillow basalt (Teb) ........................... 49 Gulf Coastal Plain -------------------------------------------------­ 16 Lower Tertiary andesite (ITa) ................................... 49 Pacific Coastal Area ---------------------------------------------­ 17 Clarno Formation (lTv) of northeastern Oregon .. 51 California ···--------------------------------------------------------­ 17 Challis Volcanics (lTv) of south-central Idaho ... 52 Oregon and Washington ------------------·----------­ 17 Western Montana ........................................................... 52 Continental deposits ------------------------------------------------------ 17 Absaroka volcanic field, Wyoming and Montana 52 Great Plains and Rocky Mountains ------·----------­ 17 Eastern Great Basin -------------------------------------------··········· 54 Outlying areas ---------------------------------------------------------- 20 San Juan volcanic field, southwestern Colorado ... 54 Oregon ------------------------------------------------------·----------- 20 Other areas of lower Tertiary volcanics in southern California -----------------------------------------------------------­ 20 Rocky Mountains ....................................................... 57 Miocene Series -------------------------------------------------------------------------- 21 Southwestern Arizona --------·-················----------------·········· 58 Marine stratified rocks --------------------------------------·----------­ 21 Mogollon Plateau, southwestern New Mexico _____ _ 58 Gulf Coastal Plain -------------------------------------------------­ 21 Trans-Pecos Texas ------------------------------------··········------------ 59 Ailantic Coastal Plain ·········--------------------····--------­ 24 Upper Tertiary volcanic rocks (Tmv, Tpv) ................... 61 Pacific Coastal Area ---------------------------------------------- 24 Upper Tertiary andesites of Washington (uTa) ... 64 California -----------------------------------------------------------­ 24 Upper Tertiary andesites of Oregon and California Oregon and Washington -----------------------------­ 25 (uTa) ---------------------------------------------------------------------------------- 64 Continental deposits -----------------------------------------------------­ 26 Columbia River Group of Washington, Oregon, and Northern Great Plains and Rocky Mountains 26 Idaho (Tmv) ................................................................. 65 Outlying areas ----------------------------------------------·----------­ 27 Southeastern Oregon and northeastern California. 66 New Mexico and Arizona ------------------------------ 27 Snake River Plain of southern Idaho ..................... 67 Washington and Oregon ------------------------------ 27 Great Basin of Nevada and adjacent States ---------­ 67 California -----------------------------------·-----------------------­ 28 Sierra Nevada and Coast Ranges of California __ 68 Pliocene Series -------------------------------------------------------------------------- 28 Southern Rocky Mountains ------------------------------------------ 69 Marine stratified rocks ····---------------------------: ................. 28 Volcanic fields of Colorado Plateau ......................... 70 Atlantic and Gulf Coastal Plains ---------------------- 28 Upper Tertiary volcanic rocks of southern Basin Pacific Coastal Area in California ___________________ _ 32 and Range province in Arizona and California 71 III IV CONTENTS Page Page Cenozoic volcanic rocks-Continued Quaternary volcanic rocks (Qv, Qf) ................................. 71 Tertiary intrusive rocks (Ti) ....................................................... 75 Andesitic volcanics of Cascade Range in Cascade Range ......................................................................... 75 Washington, Oregon, and California ................... 73 Oregon Coast Range ............................................................. 75 Basalts of Snake River Plain (Qv) ........................... 73 Central Idaho ........................................................................... 77 Felsic volcanic rocks of Yellowstone National Park Central Montana ..................................................................... 77 (Qf) ···················································································· 74 California and Great Basin ................................................. 77 Eastern border of Sierra Nevada, California ....... 74 Colorado Plateau ..................................................................... 77 Clear Lake area, California Coast Ranges ........... 74 Southern Rocky Mountains ................................................. 77 Jemez Mountains, New Mexico ................................. 74 Southeastern Basin and Range province ....................... 78 Basaltic fields of New Mexico and Arizona ......... 75 References cited ............................................................................... 78 ILLUSTRATIONS
Recommended publications
  • Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia
    Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia Brett Hohs Tallentire Gilley B.Sc., Simon Fraser University, 1999 A THESIS SUBMInED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE In the DEPARTMENT OF EARTH SCIENCES O Brett Hollis Tallentire Gilley, 2003 SIMON FRASER UNIVERSITY December, 2003 All rights reserved. This work may not be reproduced in whole or part, by photocopy or other means, without the permission of the author. APPROVAL Name: Brett Hollis Tallentire Gilley Degree: Master of Science Title of Thesis: Facies Architecture and Stratigraphy of the Paleogene Huntingdon Formation at Abbotsford, British Columbia Examining Committee: Chair: Dr. Glyn Williams-Jones Assistant Professor Dr. Peter Mustard Senior Supervisor Associate Professor Dr. ames MacEachern SupJ rvisory Associate Profess - Fvpf.Michael ~ilhn Ex rnal Examiner Doua4 as Colleae. De~t.of Geolosv & Anthropology Date Approved: ne 4 , 2 csz aw PARTIAL COPYRIGHT LICENCE I hereby grant to Simon Fraser University the right to lend my thesis, project or extended essay (the title of which is shown below) to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users. I further agree that permission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission.
    [Show full text]
  • 1 Paleobotanical Proxies for Early Eocene Climates and Ecosystems in Northern North 2 America from Mid to High Latitudes 3 4 Christopher K
    https://doi.org/10.5194/cp-2020-32 Preprint. Discussion started: 24 March 2020 c Author(s) 2020. CC BY 4.0 License. 1 Paleobotanical proxies for early Eocene climates and ecosystems in northern North 2 America from mid to high latitudes 3 4 Christopher K. West1, David R. Greenwood2, Tammo Reichgelt3, Alexander J. Lowe4, Janelle M. 5 Vachon2, and James F. Basinger1. 6 1 Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, 7 Saskatchewan, S7N 5E2, Canada. 8 2 Dept. of Biology, Brandon University, 270-18th Street, Brandon, Manitoba R7A 6A9, Canada. 9 3 Department of Geosciences, University of Connecticut, Beach Hall, 354 Mansfield Rd #207, 10 Storrs, CT 06269, U.S.A. 11 4 Dept. of Biology, University of Washington, Seattle, WA 98195-1800, U.S.A. 12 13 Correspondence to: C.K West ([email protected]) 14 15 Abstract. Early Eocene climates were globally warm, with ice-free conditions at both poles. Early 16 Eocene polar landmasses supported extensive forest ecosystems of a primarily temperate biota, 17 but also with abundant thermophilic elements such as crocodilians, and mesothermic taxodioid 18 conifers and angiosperms. The globally warm early Eocene was punctuated by geologically brief 19 hyperthermals such as the Paleocene-Eocene Thermal Maximum (PETM), culminating in the 20 Early Eocene Climatic Optimum (EECO), during which the range of thermophilic plants such as 21 palms extended into the Arctic. Climate models have struggled to reproduce early Eocene Arctic 22 warm winters and high precipitation, with models invoking a variety of mechanisms, from 23 atmospheric CO2 levels that are unsupported by proxy evidence, to the role of an enhanced 24 hydrological cycle to reproduce winters that experienced no direct solar energy input yet remained 25 wet and above freezing.
    [Show full text]
  • Carnivora from the Late Miocene Love Bone Bed of Florida
    Bull. Fla. Mus. Nat. Hist. (2005) 45(4): 413-434 413 CARNIVORA FROM THE LATE MIOCENE LOVE BONE BED OF FLORIDA Jon A. Baskin1 Eleven genera and twelve species of Carnivora are known from the late Miocene Love Bone Bed Local Fauna, Alachua County, Florida. Taxa from there described in detail for the first time include the canid cf. Urocyon sp., the hemicyonine ursid cf. Plithocyon sp., and the mustelids Leptarctus webbi n. sp., Hoplictis sp., and ?Sthenictis near ?S. lacota. Postcrania of the nimravid Barbourofelis indicate that it had a subdigitigrade posture and most likely stalked and ambushed its prey in dense cover. The postcranial morphology of Nimravides (Felidae) is most similar to the jaguar, Panthera onca. The carnivorans strongly support a latest Clarendonian age assignment for the Love Bone Bed. Although the Love Bone Bed local fauna does show some evidence of endemism at the species level, it demonstrates that by the late Clarendonian, Florida had become part of the Clarendonian chronofauna of the midcontinent, in contrast to the higher endemism present in the early Miocene and in the later Miocene and Pliocene of Florida. Key Words: Carnivora; Miocene; Clarendonian; Florida; Love Bone Bed; Leptarctus webbi n. sp. INTRODUCTION can Museum of Natural History, New York; F:AM, Frick The Love Bone Bed Local Fauna, Alachua County, fossil mammal collection, part of the AMNH; UF, Florida Florida, has produced the largest and most diverse late Museum of Natural History, University of Florida. Miocene vertebrate fauna known from eastern North All measurements are in millimeters. The follow- America, including 43 species of mammals (Webb et al.
    [Show full text]
  • Oil, Natural Gas and Helium Potential of the Chupadera Mesa Area, Lincoln and Socorro Counties, New Mexico
    Oil, natural gas and helium potential of the Chupadera Mesa area, Lincoln and Socorro Counties, New Mexico by Ronald F. Broadhead and Glen Jones February 27, 2004 New Mexico Bureau of Geology and Mineral Resources A division of New Mexico Institute of Mining and Technology Socorro, NM 87801 Oil, natural gas and helium potential of the Chupadera Mesa area, Lincoln and Socorro Counties, New Mexico By Ronald F. Broadhead1 and Glen Jones2 1 Principal Petroleum Geologist and 2 Assistant Director for Computer/Internet Services New Mexico Bureau of Geology and Mineral Resources, a division of New Mexico Institute of Mining and Technology, Socorro, NM 87801 ABSTRACT The Chupadera Mesa region encompasses 3900 mi2 in eastern Socorro and western Lincoln Counties, central New Mexico. The area includes varied geological elements including the broad Jornada del Muerto Basin in the west, and the Oscura Mountains and Chupadera Mesa in the medial area. The Laramide-age Sierra Blanca Basin and several isolated mountain ranges formed principally by Tertiary-age igneous intrusive bodies occupy the eastern third of the region. The Chupadera Mesa area has been sparsely drilled. A total of 45 wells have been drilled within the project area. This is a density of approximately one well for every 85 mi2. Many of the wells are shallow and reached total depth in Permian strata. Only 20 wells have been drilled to Precambrian basement. This is a density of one well per 200 mi2, or 6.4 townships. Neither oil, natural gas nor helium production have been established. Nevertheless, several of the wells have encountered promising shows of oil, natural gas, and helium.
    [Show full text]
  • Pamphlet to Accompany Geologic Map of the Apache Canyon 7.5
    GEOLOGIC MAP AND DIGITAL DATABASE OF THE APACHE CANYON 7.5’ QUADRANGLE, VENTURA AND KERN COUNTIES, CALIFORNIA By Paul Stone1 Digital preparation by P.M. Cossette2 Pamphlet to accompany: Open-File Report 00-359 Version 1.0 2000 This report is preliminary and has not been reviewed for conformity with U. S. Geological Survey editorial standards. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U. S. Government. This database, identified as "Geologic map and digital database of the Apache Canyon 7.5’ quadrangle, Ventura and Kern Counties, California," has been approved for release and publication by the Director of the USGS. Although this database has been reviewed and is substantially complete, the USGS reserves the right to revise the data pursuant to further analysis and review. This database is released on condition that neither the USGS nor the U. S. Government may be held liable for any damages resulting from its use. U.S. Geological Survey 1 345 Middlefield Road, Menlo Park, CA 94025 2 West 904 Riverside Avenue, Spokane, WA 99201 1 CONTENTS Geologic Explanation............................................................................................................. 3 Introduction................................................................................................................................. 3 Stratigraphy................................................................................................................................ 4 Structure ....................................................................................................................................
    [Show full text]
  • Mammal Footprints from the Miocene-Pliocene Ogallala
    Mammalfootprints from the Miocene-Pliocene Ogallala Formation, easternNew Mexico by ThomasE. Williamsonand SpencerG. Lucas, New Mexico Museum of Natural History and Science,1801 Mountain Road NW Albuquerque, New Mexico 87104-7375 Abstract well-develooed mudcracks. The track- ways are diveloped on the mudstone Mammal trackways preserved in the drape but are preserved as infillings at the Miocene-Pliocene Ogallala Formation of base of the overlying conglomerate (Figs. eastern New Mexico represent the first 2-4). Most tracks are preserved on the report of mammal fossils-from this unit in underside of a single, thick conglomerate New Mexico. These trackwavs are Dre- block (Fig. 3). A few isolated mammal served as infillings in a conglomerate near the base of the Ogallala Formation. At least prints were also observed on the under- four mammalian ichnotaxa are represented, side of adjacent blocks.he depth of the including a single trackway of a large camel infillings suggest that tracks were made in (Gambapessp. A), several prints of an uncer- a relatively soft substrate. Some prints are tain family of artiodactyl (Gambapessp B), a accompanied by marks indicating slip- single trackway of a large feloid carnivoran page on a slick, wet substrate (Fig. 5C). (Bestiopeda sp.), and several indistinct im- Infillings of mudcracks and narrow, cylin- pressions, probably representing more than drical burrows and raindrop impressions one trackway of a small canid carnivoran are Dreserved over some areas of the (Chelipus sp ). The footprints are preserved in a channel-margin facies of an Ogallala tracliway slab. Mammal trackways repre- braided stream. sent at least four ichnotaxa.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • The Cenozoic Era - Nýlífsöld 65 MY-Present Jarðsaga 2 Ólafur Ingólfsson Origin of the Term: the Tertiary Tertiary System
    The Cenozoic Era - Nýlífsöld 65 MY-Present Jarðsaga 2 Ólafur Ingólfsson Origin of the Term: The Tertiary Tertiary System. [1760] Named by Giovanni Arduino Period as the uppermost part of his 65-1.8 MY three-fold subdivision of mountains in northern Italy. The Tertiary became a formal period and system when Lyell published his work describing further subdivisions of the Tertiary. The Tertiary Period is divided into five epochs (tímar): Paleocene (65-56 MY), Eocene (56-34 MY), Oligocene (34-24 MY), Miocene (24-5,3 MY), and Pliocene (5,3-1,8 MY). Confusing set of stratigraphic terms... More than 95% of the Cenozoic era belongs to the Tertiary period. During the 18th century the names Primary, Secondary, and Tertiary were given by Giovanni Arduino to successive rock strata, the Primary being the oldest, the Tertiary the more recent. In 1829 a fourth division, the Quaternary, was added by P. G. Desnoyers. These terms were later abandoned, the Primary becoming the Paleozoic Era, and the Secondary the Mesozoic. But Tertiary and Quaternary were retained for the two main stages of the Cenozoic. Attempts to replace the "Tertiary" with a more reasonable division of “Palaeogene” (early Tertiary) and “Neogene” (later Tertiary and Quaternary) have not been very successful. Stanley uses this division. The World at the K/T Boundary Paleocene plate tectonics During the Paleocene, the inland seas of the Cretaceous Period dry up, exposing large land areas in North America and Eurasia. Australia begins to separate from Antarctica, and Greenland splits from North America. A remnant Tethys Sea persists in the equatorial region.
    [Show full text]
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon And
    Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig.
    [Show full text]
  • Notes on Paleocene and Lower Eocene Mammal Horizons of Northern New Mexico and Southern Colorado
    56.9(1181:78.9). Article XXXII.- NOTES ON PALEOCENE AND LOWER EOCENE MAMMAL HORIZONS OF NORTHERN NEW MEXICO AND SOUTHERN COLORADO. BY WALTER GRANGER. PLATES XCVII AND XCVIII. The purpose of the present short paper is to indicate some of the results of the Eocene exploration conducted by the writer, with the assistance of Mr. George Olsen, in the San Juan Basin in 1916. It is hoped that the fol- lowing notes may be of some aid to future Eocene collecting in this region and possibly also to detailed geologic plotting. Three separate localities were examined, viz.: the Torrejon of Angel Peak, lying south of the San Juan River; the Torrejon of the Animas Valley, between Aztec and Cedar Hill; a set of later beds in Colorado, lying north of the Denver and Rio Grande Railway, between Los Pifios and Piedra Rivers. The American Museum expedition of 1913 visited nearly all of the Paleocene localities of the San Juan Basin from which fossils had previously been obtained, made extensive collections and summarized the strati- graphic results in a paper published the following year.1 These localities are all on the south side of the San Juan River and extend in a long line from the vicinity of Ojo Alamo eastward to the Puerco River below Cuba. Exposures lying to the north near the San Juan and in the Animas Valley were known to be Paleocene but for lack of time were not examined that year. The Angel Peak Region. The exposures at Angel Peak are in the form of a gigantic crater cut out of a fairly level grass-covered plain to a depth of several hundred feet and with a diameter of three to four miles.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION in the CRETACEOUS Mcdermott MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO
    VOLCANIC INFLUENCE OVER FLUVIAL SEDIMENTATION IN THE CRETACEOUS McDERMOTT MEMBER, ANIMAS FORMATION, SOUTHWESTERN COLORADO Colleen O’Shea A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August: 2009 Committee: James Evans, advisor Kurt Panter, co-advisor John Farver ii Abstract James Evans, advisor Volcanic processes during and after an eruption can impact adjacent fluvial systems by high influx rates of volcaniclastic sediment, drainage disruption, formation and failure of natural dams, changes in channel geometry and changes in channel pattern. Depending on the magnitude and frequency of disruptive events, the fluvial system might “recover” over a period of years or might change to some other morphology. The goal of this study is to evaluate the preservation potential of volcanic features in the fluvial environment and assess fluvial system recovery in a probable ancient analog of a fluvial-volcanic system. The McDermott Member is the lower member of the Late Cretaceous - Tertiary Animas Formation in SW Colorado. Field studies were based on a southwest-northeast transect of six measured sections near Durango, Colorado. In the field, 13 lithofacies have been identified including various types of sandstones, conglomerates, and mudrocks interbedded with lahars, mildly reworked tuff, and primary pyroclastic units. Subsequent microfacies analysis suggests the lahar lithofacies can be subdivided into three types based on clast composition and matrix color, this might indicate different volcanic sources or sequential changes in the volcanic center. In addition, microfacies analysis of the primary pyroclastic units suggests both surge and block-and-ash types are present.
    [Show full text]