DIGITAL MAP AND CHART SERIES DMCH019 Published by © 2014 The Geological Society of America. All rights reserved. For permission to copy, contact [email protected]. DOI: 10.1130/2014.DMCH019 The Geological Society of America, Inc. 3300 Penrose Place • P.O. Box 9140 Boulder, Colorado 80301-9140

F North South F’ H North South H’ I North South I’

A-A’ Nba B-B’ Nld Nbt Nbt Nld METERS Section Nli Nbx METERS METERS METERS Qg Section Qg Nbx Qg B-B’ Ncx Ngb Nsb 1000 Nbx 1000 Ngh Section Qo 1000 1000 Nbc Nld Nld Nsb Nct Ngb Nld Qa, Qa2, Qa3, Ngb Qa2, Qa3(?), Qg Nld Ngh Qcl Ngb Nba Nba Ngh Qa4 & Qo(?) Nps Nct Qcf Ngh Qa4 & Qo(?) Qg Nsr Nba Nbt Nbt Ngx Ngh Qcf Nba Nbx Nba Nbt Nbt Nbt @ Nps Qa2 & Qa3 Ngx Ncp Nps Nba Nsd Nbc @ @ Qa2 Qa3 Qo Ngh @ Nba @ @ @ & Qa3 Qo Ngh Nct @ @ Nba @ @ Km @ @ @ @ @ @ Qa2, Qa4 & Qo Nba Nba @ @ Ngh Nba Nba @ @ @@@ @ @ @ @ @ Tx @ @ @ @ @ @ @ @ @ @ @ @ @ @ Qg Qg Nba @ Nba @ @ @ Nba @ @ @ @ @ @ @ @ @ @ @ Qa2, Qa3, Qa4 & Qo Nba @ Nba Nba @ @ Nct Nct Nct Nct Nba @ @ @ @ P*hb @ 0 @ @ Nba Nba @ Nba @ Nct Nct Nct Nba Nba Nba @ @ @ @ @ Nps P*hb @ @ @ @ Nba @ @ Qo @ Nba @ @ @ @ @ Nba @ @ Nps P*hb @ Km @ @ @ @ @ @ @ @ @ Nps @ Nps Nps Nct abandoned eastern continuation Northern Brown’s Garlock fault Ranch fault zone @ @ | @ @ @ @ @ @ 500 500 @ @ @ 500 26 500 @ Garlock fault Nba @ @ Jl @ @ @ @ @ | | @ @ Km P*hb of the Savoy@ fault(?) 20 Km Savoy fault Km Km @ |

Km | | @

Jl Km @ | | Jl 16 0000

Km Jl | |? 30 Km @ | | @ j o 47

o o Km 69

Km B-B’ Little Bird fault o @ 28 Nps Garlock fault Ranch fault zone Northern Brown’s

Section 50

SEA Ranch fault zone SEA Northern Brown’s SEA @ SEA Nps LEVEL LEVEL LEVEL LEVEL Nps 2600 Qa2

Nla Qa3 Nbt Nbx Nbx Nbx

Nla Nli Qa3

North Nla Nbx South North South

E Nbt Nla E’ G G’ 2500 Qa2 Nbt o

Nld Nbt Qa2

Nba Nba Nap Qg

METERS Nct Nba Nbt Qa METERS METERS Qa2 Qa o 66 Nps

Qa2 Nla Nla Nba Nba B-B’ Qa3 Nps

Qa2 Nba Nba Nba Nld o Nps

Section Qa2

Ntc 19 90 2500Nps

1000 Nba 1000 1000 o Nps Qcf o 82 Qa2 Ngx Nps 53 80 Nps Nps o

o

Qa, Qa2, Qa2 j o

Nba Qa4 Qa2 50 o o

Ntc Nba Nsr Nba Qa3 & Qo Qa Nps 84 o Nps

j

Km Qa3 o o

Qa2

Nbx Qg Nba Qa2 Qa3 10 o 46 11 o o

Qa2 & Qo? Qa3 & Qg Ngx

Ntv Ntv Ntv Nsc I 39 74

Qa2 & Qo? 26 o 65 Qa2

Nta o 75 o 47 o

Km Nba o RANDSBURG WASH ACCESS ROAD

@ Nta @ Nba Qa2 47 o Nps Qcf

@ @ Nta Nsd Nst Nbx Nba Qa 55 34

Nbl Nst o 35 Qa2

@ Nsd Nst Nst Nba Nba 52 25 20 Nps 42 Qcf

@ o T-PKV-WMR-E @ @@ @ @ o Nps 62 o @ o

@ Nsf @ 35 o o Qa2

Qa2, Qa3, & Qg(?) o Qa2 Nps Nps Nba o _^

Qa2, Qa3, Qg & Qo(?) @ @ @ Nsf o 54 25 3.14 @@ @@

Qa2, Qa3, Qa4 & Qo(?) @ Nba @ Nsd Ngx 45 @@ Qcf @@ Qa2

@ @ @ @ @ @ Nbt 2300 0 o o @@ Nba @ 35 @@ o Savoy fault @ @ @ @ Nba @ Nsb @ 45 o 45 55 @@ 48 Nps o @@ Nba @ @ @ @ @ Nba o 35 @@ Qa2 Qcf Km @@@ @ Ä o Garlock fault @ Qcf @ @ @ o @@ @@ Qa2 @@

Nba @ @ @ Nba Qa Qa3 14 5 @@ @@ Qcf Qcf |

Teagle Wash fault @ Km Km @ 15 10 @@ Nps B’

500 500 @ 500 Qa2 Qo 15 Christmas@@ 40 Nps @@ @@ Ngf Qcf o Nps o Ä @@ @@ 2400 Nct @ @@ @@ |

@ 2200 Qa4 10 Qcf Nps @@ @@ @@ Jl

Km @ H Qa3 Qcl @@ 15 Qa2 Jl @@ Km Km e Qcf @@ Qa2

30+60+250 lines Qcf 240010 Nps @@ DOeu Qa | @@ Qa2 o o Nps

10 e @@

Km Qa Nps Qo Qcf @@ @@ @@

Km Qa Qa2 e @@ @@ @@ Qa2 @@

Jl Km Qa2 11 o @@ Qo @@ Ngf @@ @@ Qa2 @@ 0000

Jl Qa2 @@ 10 @@

Qa2 Qa2o 0

Km Qa o Qcf Qa3 @@ Qcf Qa

Km Km Km Nps Qa @@ @@ @@ 7 @@ @@ @@ Qcf o 0o Nst @@ Qa2 o

46 e 0 18 00 @@ Qcf @@

Km 71 5 @@ o 15 e Nps 00 @@ @@

Qa2 Qa2 0 43 Nps @@ j Qa3

o j o @@ @@ o A-A’

o o Ngf

0 Qa3 Qa3 Qa4 Nps2300 85 90 @@ Qcl @@ 63 @@ @@ o 84 DOeu @@

B-B’ o 52

72 @@ Qa 15 @@

Section 0 j o15 0 @@ 3 @@

o 5 ¦ @@ Qo @@ 82 @@ Qo o Nps 17 o @@

Garlock fault 16 0 Ngf 78

Section Northern Brown’s Ranch fault zone o Qa3 j

@@ Qa2 0 ¦

Qa2 o Nps Qcf @@ @@ SEA 62 @@ Qcfj 26 o 0 0

SEA SEA Qa2 o Nst o @@

2400 o o 0 O_el 86 0

40 @@ Dg ¦85

Qcf o DOeu Qcf @@

LEVEL o Nps @@ 15 60 @@ @@ 49 Ngf 61 57 Qa2 @@ 26 ¦ Qa3 o 30 65 Qcf @@ @@ o 2 LEVEL 26 Nps 15 0

LEVEL Qa2 e o Ngf 0 o

@@ o o @@ 5 0 0

j Qa3 25 @@ o 20 Nps @@ o @@ o 54 58 24 0

o *b 76 0 ¦ 57 j j ¦ @@

@@ o0 60 ¦

60 65 33 o ¦ 80 0 46 Qa3 o o

10 26 @@ Ü @@ o

61 o

Qcl 33

@@ e Qo @@

o 25 @@ o 26 o North Qcl Ü 0 @@ 70 @@ 59 35 05 o 84 Ü j South Nps Qa3 o70 À 0 0 @@

Qa 25 25 @@ Jl j @@

Qa3 Qo o à à 20 j DOeu

o 3 o 0 @@ 55

D D’ Nps @@ @@ @@ 0 69 @@ Qa3 o @@ o

Nba o o 54 37

Qa3 Qa2 68 Qa2 Qo 40 0 o53 @@

@@ @@ 0 @@ 0 Ngf 0 ¦

Ncp ¦ @@ @@ j

84 o @@ ¦ ¦ Ncp o o o e o

Qa3 Nhx Nst Nld Qa3 Qa3 25 25 @@ @@ 86 75 O_el 69 38

SCALE 1:20 000 @@ Smith (1964) 20 Qo @@ @@ Ngf Nsbo *b ¦

Nsc 8 @@ » 0

12 À ¦

Qa4 & Qo? Nsd Qa3 Qcl 07 @@ Qa2 26 @@ 20 79 2500 16 @@ Nx @@ 68 0 ¦ 0 o o

o j @@ Ngf o O_el METERS METERS 41 @@ @@ @@ j51 49

Nst Qa3 o Nps 0.64 _^ @@ *b 20 54 @@

Nld Qa3 o à ¦ ¦ Qa4 ¦ 84 Nps @@ @@ Qa2 0 ¦ 0 @@ ¦ o @@ Canyon ¦ 0

Nsd Nps Ngf @@ Nx 50 @@ o58 Ngb

o 84 Qa3 Qo @@ 35 Â 5 0

Nct? Nps @@ 15 28 43 33 32 0 o 85 @@ Qo 0 78

Geologic Map of the Northern Lava Mountains and Summit Range, 1 1 miles ¦ 0 Qcf

Qa2 j o ¦ 1000 Nct NcI 1000 0 Qa2 @@ o P*hb Ngf o

0 o @@ Nps 36 Ngf o j Qa3

Nst Nba @@ Qo o Nps 19 @@ 70 @@ 0 ! Nsc @@ o @@ 0 Qa2 32 @@ Ã o ¦ Qcf 35 @@ 0 *b 64 @@ 76

5 Qa4 @@ 56 ¦ 76 Â 0000

Nba 0000 10 5 o o 64 Ã 71 LV-J6

Nct ¦ Ngf

393 Qa3 Qa3 Qo 10 20 @@ Ã 51 60 0 0 73 50 393

Ntv @@ Qo o o 0 0

o 83.8 o ¦ Nct 31 o Ngf

Qa2 @@ 0 o @@ 49o 70 *b @@ Nsd 83

Nct Qa4 Qa3 Qcf @@ Qcl Qo 0 j Qo @@ 0 o84 0 Nx o 65.7 0 Qa2 Qo 70 Phd @@ 0 0Ngf Nx O_el @@

Qa3 Ü 50 P*hb 16 0 Oem

Qa3 Qa3 Qa2 Qcf 0 0 j Ngf Qcf @@ @@ 13.7 Ngh

Qo 2500 38 0 Jl o Dg Qa Savoy fault Qo @@ 0 o 0 Qcf 0 Teagle WashKm fault(?) Nps 80 j @@ 1 0 1 km j e o Qcf @@ LV040910 Km 40°N San Bernardino County, @@ o @@ 19 55 Nx G j 2 Qa3 84 0 Qcf o @@ _^ 90 o Qa2

Km o Ngv 0 j Qa3 Qcf Ngh 11 ¦68 Ngh 57 Qcf 0 019.0 Nx e 0

Qa3 Qa2 Qcf Qa2 0 0 0 @@ Qo 43 @@ Nct @@ 0 @@ Ngh 0 Nx

Qa3 Qa3 Qo 23 0 Pgg 0 Phd¦ @@ Ncx

0@@ @@ 61 Qcf 50 28 @@ 21 o Ncx 25 0 Qa4 @@ Qa4 o

0 0 85 o Ü

Qa4 @@ 084 @@ 0 Qo o 0 o0 70 Qcf j

Qa2 Qo Qo @@ 41 o @@ Qcf

Phd j 77

Qa2 Phc o Garlock fault 0 15 o Nx

CONTOUR INTERVAL 20 FEET @@ 0 0 o 53 0 Qa3 @@ o 86 Jl By 0 @@ 0 Ü

500 500 Ngh o Ncx Qa2 @@ Qcf 0 @@ Km Qa4 Nct 80 j Qa3 o j

Qa2 Qa2 @@ Ngh 0 Ü23o 0 @@ 0 10 Ncx LV-G6 40

Jl projection NAD83 UTM zone 11N Qa3 Qa3 Ncx 0j 25 @@ o 43 o15 30 Ngb @@ 43 Km 10 79 o 0 Qa 0 ! Nct o 68.4 o @@ ! P*hb j

Joseph E. Andrew, William M. Rittase, Francis M. Monastero, Tandis Bidgoli and J. Douglas Walker Qa4 Qa o0 0@@ 20 0 @@ 77 Ü

Qa2 Qa4 Qa3 Qo @@ Qa3 13 62.8 0 Ncx 80 ! Qa4 @@ 14 0061.1 45 Ngh Qcf 0 Nx LV-I6 86

Ngb 0 o o j 0 o 0 Qa2 2500 Nx

Qa2 11 o 71.3

117°30'W Ngh0 o 78 20.2 Ngb 0

CALIFORNIA 0 Nct 0 2600 0 @@ 0 Nx 2014 Qa2 0 o o o @@ 2600 10 Qa3 j 71.2 65

A-A’ 0 @@ o Nba 14 @@

0000 Qa3 Qa2 @@ Ncx 0 0 25 0 Nct Ngh 2300 Qo 0 0 0 05 Qa4 0 30 Phc 51.5 0 Qa4 Section o 0 0 o Garlock fault 33 o o 76 Qa3 0 0 18 25 0 LV-H6 Nct  0 @@ 45 89 o

Qa2 Qa3 Qo o Qcf 50.0

Qa4 Qo Ngv 57 0 42 0 j 75.4 j Ngh

Qa2 @@ @@

Index map showing the location of Qa2 Ü 0 48 o 25o 15 Ngb 59 Qcf o26 o o

Qa3 @@ 0 0 0 j79 88 66.1 0

W Qa3 Qa3 Qo @@ @@ j 0 0 0 Ngh 0 Ngh Ngb @@ Qa3 Ncx e 16 17.5 Nct SEA ° E 2600 o Qo o o Ncx @@

SEA O_c 0o54 @@ o 36 ! Qcf the map area astride the central @@ Qa3 23 @@ @@ 0 0! 15 @@ @@

e 41 2700 LEVEL @@ j 06 o Qcf LEVEL 0 0 o

Nba @@ Qo Qo @@ Qa2 05 0 @@ 2700 116 0 o Ntd Qo 68

Garlock fault and in the context of the Qa3 o 0 0 _^ 06242008-9 Ngb 15 o 15 Qcf North 0 0 Qa4 @@ Nct 10 @@ 0 0 28 o 10

South 36°N 0 Qa3 Qa3 0 Nct 8.0 o 22 0 o o Qa4 @@ Qa3 o63 C C’ Quaternary fault map of California Nta Qa4 Qa2 Qa2 0 0 @@ Qa2 @@ Nhx Nhb Qo Qa Qa3 Qa4 @@ @@ Qa2 49 Qo Ngh o @@ 0 Ngv 0 @@ Nhb @@ Qa2 Qa2 o 20

Qa2 & Qa3 Nhx Qa2 Qa2 Qo @@ Qa Qa2 @@ @@ @@ @@ @@ 36 @@Ncx Ngh Nba Nba Qa Qa4

Nbt (Jennings, 1994; Bryant, 2005). Nta @@ @@ Qa4 20 Ü @@ 0 Nba0 Qa3 Qa4 0 0 @@ Qcf @@ 0 METERS Nli METERS j

0 Map Area 0 0 Qa4 2600 o21 @@ Nct 25 Garlock fault @@ @@ 0 o

Qa2 @@ @@ Qa4 0 Ngb 260 00

Teagle Wash Qo Qa3 Qa4 Qa2 @@ @@ _^ @@ 0 34o 0

Qa2 @@ Qo Qa4 @@ @@ 0 o Nct 20 25 o o

1000 Nhx 1000 @@ @@ @@ @@ Nba Qo 2300 @@ 0 o 10 Qa4

Nhx Geology compiled by J. Andrew 0 @@ @@ 0 0 10 Ncx 230 o 0 LV031510 @@ o Nba @@

2900 2700 @@ Qa2 @@ @@ 0 Qa @@ @@

0 o 20

Nli 35°30'N o Qa4 Nct 0 59 0 9 o @@ Nba @@ Ngh Qa4

Nhx Nba o 19.12 25 o Npr Qa3 Qa2 Qa3 @@ 07 @@ o Nba Qa2

Nbt Qa2 Qa3 Qa3 Qa3 0 64 @@ @@ Nhx 6 j

| Nli Qa2 o Nba o

37 0 2400 Qa4 07 5 0o 0

Geologic mapping data from: 0 0 @@ 0 0 @@ 29 o15 @@ 0 43 2300 o 0 Nba Nct

Nli 0 o Nba

Nbt o 0 0 63

@@ o @@ 0 o 22 0 @@

Nba Ntd @@ 2400 0 580 0 j 53 Qa3 o o

Nba Nbt @@ 05 Ü 00 @@ 0 Ngb 35°30'N

@ Qa2 o

Nbt @ @ @ @@ Qa2 Qa4 o 83 0 0 Ngb Ü Ncx LV-I5 0 @@ J. Andrew Ntd 36 Qa4 25 @@

@ @ W 0 @@ Qa2 0 0 Ngv Qa2 Nba Nct 71.2 0Nct

o 65

Jl Garlock fault

Savoy fault Jl j

Nba ° 0 0 j58 710 @@ @@ 0 0 0 F Qa2 @@ Qa3 j o 40 Ncx o @@ 70.5 Qa4 Ü Qa4 o 0 Nct

| 9 Ntv Qo 25 0 0 Nsc 0 @@

Kr? (entire area) Nta j87 Ncx 15 45 o Qa2 @@ 0 77 64.1 0 0 Qo 0 Ü Ngv 0 @@ 120 Jl | Nba o j o 80 @@ 50 Qa2 j@@ 48.5

Nba Nta 0 @@ Qa2 0 0 15 Qa2 0 Nsc 0 Qa2 85 @@ 0 Ngb 0 20 o Qa2 o Qo Ngh

0 Qa Qa2 15 35 F. Monastero Ntv Nta Qa4 o 25 o Nba @@ Nct @@ Qo 0 0 o Qa2 Nsc 0! @@ Qa4 @@ 500 Km 500 Qa Qa3 Ü 08 _ o o 0Nct 0 21 @@ 00 ^ o

@ @ @ 0 Qa3 84 @@ @@ @@ @ @ (Summit Range between Trona-Red 0 @@ Qa Qa3 0 j Qa2 o00 15 Ncx Nct 85 Nsc@@

o 43 o

@ 0 Nba 32 Ü 30

15 @@ o o j 15 Nba Nba Nct 0

@ @ Mountain Road & railroad tracks) Qo Nta @@ Qa 36 25 @@ NcxNct

@ Qa2 Qa4 Qa3 Qa2 Nba Nba Ngb @@ Nsc 0 LV-J5 Ngb Military Boundary Military @ Qa2 Ncx Qa2 Qa3 29 o @@ @@ @ Qa2 @@ ! 25 Nba @@ Qo Qa4 94.6 @ Qa j Km Teagle Wash fault(?) Jl Qo Nba? Qa2 @@ Qa2 70 LV030710-7 17 LV-F5 17 o Nct @@ 20

W. Rittase Qa2 26 Qa4 @@ 15 o Qa4 46 @@ 69.7 Qa4 Km ! 152.1 @@ Nsc @@ ! o o

Qa2 ! 11.62 o LV-G5 22 63.7

Km 0 0 Qa2 Qa2 Qa3 Qa4 @@ 2700 Nct o A-A’ o 14.3

Nta Qo 0 o 70.8 30 10 Nba @@ Qa4 o 83

(along the Garlock fault and ! o @ Ngh Nct Ngh

j !72 10.3 o 20 Qa2

Section 0

Qa3 LV-D5 j @@ Qa2 66.0 0 Qo 9 o o Qa3 22 17 o

0 Qa4 Nba 49.1 ! @@ e

Qa Qa3 65.4 @@ 0 Qa3 o

Christmas Canyon area) Nta Qa 77.4 LV-E5 o 11 @@ 27 @ Ngh e o 20 @@ SEA SEA Nta Qa3 67.5 Nba Qcf o @@ Nba

Nta o 67.7 LV-H5 Qo o

11 Nba Nba @ Nba @@ @@ 0

LEVEL LEVEL Nta Nta Qa2 @@ 66.8 o 64.8 24 77.0 Ngf Nba Qa2 Qa3 o Z. Casey Nta Qg 45.6 5 2 60.4 Qa2 Little BirdQcf fault 75.6 @@ 19 Ngf Qa4 j

Nta0 Qa o

0 @@ Qa2 0 @@ 86 o 53.9 @@ 18 20 61.5 @@

(Teagle Wash and eastern El Paso 0 Qa3 @@ Qa2 Nba Nba 0

Ntv 2400 o 16.6

D o 0 35 2700 j

Qa2 Qa3 @@ @@ Qa3 Qg @@ 26 Nba @@ @@ 58

@@ Ntd @@ Qa2 Qa3 Qo 20 @@ 2800

Mountains) Qa2 @@ 25 o @@ @@ @@ Qg @@ Qa2 Nba o Nba 0 @@ Ngb

2500 o Qo o 0 Qa3 Qo Qa3 Nba Qo Nba Qa2 41

Qa2 Qa3 2400 Nba o o o Qa4 0 @ 0

Qg o j 22

Qo Qa2 @@ Nba o 24 o @@ Ngh

Qa Qa2 Qg 20 0 0 40 9 33 30 09 Ntd Ü

Additional structural measurement Qa2 25 o Ngf @@

CORRELATION OF MAP UNITS Strike & dip of planar structures Geochronology Samples Contacts 074 Qg @@ Qg 0 o Qa4 @@ o @@ 0 j @@ o @@ Qg @@ 5 o55 Nba Nta o Nba

Qa4 Qo @@ @@ Qo Nba Nga o 25 23 Qa2 o@@ [new Ar-Ar and U-Pb samples and (long-dashed where approximate, data from Smith (1964) and 2900 Qa Jl? Qg 10 Qa2 Nbc 25 oo o Ngh

SURFICIAL DEPOSITS (with dip value) Nta @@ Qg Qa2 Qa Nsc 0 14 o 45 @@

OOEEPLEISTOCENE HOLOCENE Qa2 Ntd Qa3 Qg 88 @@ @@ Qa4

short-dashed where inferred, @@ Qa Qa2 Qa3 Qa3 0 Nsf 20 o Nsx Qa3 0 0 Nsc 50 Qo o 29 0 @@ Ngh

o reinterpreted Ar-Ar data of Smith et al. (2002)] Dibblee (1967). Nta Nta Qa2 Qa @@ Nba Nsh

o Nba

45 Nta @@ Qa2 Qa3 Qg 71 31 @@ 23 o 0

Qh Bedding dotted where concealed, and Qa4 o Nba Nba @@ @@

@@ Qa2 20 o @@ j Nct 20 21

18 Qa o e

Nta Nta o Nsc Qo o 0 43 46 @@ j

e LM96-2 ‘?’ where queried) 0 Jl Jl @@ Savoy fault 15 0 @@ 59j Qo @@ 30 45

Sample name & Nta Nta Ntv Qa4 2500 Nba 22 oo

j Ü o 31

_^ 16 48

Qa3 Qg 20 0 82Ü @@ 0 o @@

@@ @@ Qg 0

Horizontal bedding 0 @@ Ntc Qa2 Ü Qa2 0 o 33 14

Qa Qp j o o

UTRAYNEOGENE QUATERNARY Qc 0

7.13 Ntd 0 64 0 Qa3 o 30 Qg 0 Ngb 0 o 23 42 35 o @@

Ntv @@ 30 Qg 14 15 Nbao @@ 25 57 @@

interpreted age (Ma) in bold @@ @@ Ntv 59 j o Ü 20 o Ü Qa3 o o o 15 o o

@@ 0 Ü o @@

« Ntc Ü o 0 47 4 @@

35 o 0 @@ 41 53 Nsm 0 o o Nta 23

Depositional Ü

3000 j o @@

o @@ 2900

45 o Üj @@

o 58 Qo @@ o 25 21

e o

Ncp j59 0 Nct

Qa2 Nta 0 Nba 24 Ü 0 0 j j Ncp

0 @@ j o

Qa2 Qa3 34 o

Flow layering Ntc j 0 88 0 0 @@ j

Qa2 o 084 20 Qo 30 Nba Ntc 0 Qo @@ Ü

o o 54 0 o o @@ Qa2 o 0

Qa2 @@ o Qg o 0

33 31 28 j Qa3 @@ Qo Qa4 14 27 31« o 10 15 Nct Ü Qo o @@

25 Qa2 Nba Qa2 « 0 o Qa2 @@

Ntc 0 39 16 o o 22

o Qa3 0 o

Ntv o o Nba LV0317104 ¦ @@ @@ j 0 0 e 10 0 0 68

45 (U-Th)/He Thermochronology Data 0 Ü 0 48 Qa3 50 Nsh 0 Nba 830Ü 0 0 52 o 0 Qo @@ @@

j 30 _^

Marker tuff bed 0 37j Qa4 Qg Nba LV-D4 Qo 0 0

Nba 20 o

Foliation o @@ 0 Nba A’ o @@ Nsc 11.22 0 14

0 @@ 0 Ntc o Nba 05 @@ 0 00 0 29 o oNct

Qa3 0 o 22 68.8 57 0 2600 68 300

60 @@ Teagle Wash fault 0 o o 50

0 o Qa 39 @@

Ç o Nba Nsd o o

47 Qa2 2600 2600 2500 0 Qo 0 Nst 37 63 39 0 21 0

25 25 o Qo 0 0 o 0 0 o o

Qa2 Qa3 ! Nsb Qo

38 o ! 59.2 64 @@ @@

o Nba 64 13 e Results of 2007 study (Walker et al., unpublished data) j Qo 40 27 Qg @@ Qg LV-C4 Ngb

j Ntc 0 89o 0Nba 0 o Qo 0 Qo

45 o 19 26 ! Ngb 0 Nba o o j

35 Nctj

31 0 10 j @@ «

Ü @@ 0

Intrusive Tti 73 13.8 « @@ 0

Ç Nct Qa 0 25 0 o Qa2 61

Fault plane Qa2 o 88 12 Qo 78.3 Nsd0 0 Nsx 00 47 Nsr o Nsr LV-G4 Ngb

LV-E4 « 34 j o 39 @@

Qa4 j 46 0 Qa4 0 Ntc? o Qa 71 Nba j 39 20 53.6 Nsd o 0 250086 43 83 0

o 0 0

0 Ngh

o 0 15 Qo j 36 Ü 69.6 @@ o

Nct Ü 28 0 0 @@

o o 0 Nst Nct « 42 @@ @@ o Qa 60

Qg 0 Ü

Ü 0 0

Ü Ü Qa !

75 @@ Qa 3100 58 Qa2 78 83 Ngb 86.9 ! Nsx @@ Qo ! 0 510 031 191.8 0

The averaged age (Ma) of all analyzed fractions 0 ! o o « Qo o 16 0@@ j o 12.4 0 00 0

45 Qa2 36 Qa2 17 ! 0 0 0

@@ @@ LV-F4

0 o jo @@ Km o 0 19 _ 0 0 o j ^ 0

Qa @@ o 86.8 76.8

Dike 0 Ntv Nta 21 o 28 0 « Ncp 25 « 0 Nba

Dike @@ 8.5 Nsd « 0 34 0 @@ 0 0 LV-B4 j

j o 0 @@ 0 Ü 67 15 17.0 0 « « Km Ü o @@ 15 Ü 0 j 0 24 Ntv j j 39 LV050710-2 « 0 Ç o o _^ @@

0 Nai 68 60 @@ « o 0o

Qt Qo Qg 66 0 10 @@ 67.8 30 0 0 0 39

G Qa2 62 0 @@ 0 0 0 2700 31 Ü @@

Nhf Km Qa2 72.6 15 0 o j 63 Nsr0 0 14.6 Ncp 0 0 LV030710-5 Nsd Qo

 0 j Zircon (red font) @@ j j 88 Ü 10.49 @@ o

Qa2 22 20o 25 Tga 9.8 0 0 55 Km 0 « 0 87 o o

Nct @@ 38 0 0 0

45 Ntv Km 76 Ncp 83 0 Ü 70.3 17 0 ! @@ 0 Qo @@ 8.6 @@ @@ 0

78

Qa2 Nba LV-A4 0 Nsd 0 @@ @@ @@ Vein Qa 0 o Nsd 0 83

Ntc jÜ j o

Qa2 @@ 2700 @@ Nsr 83 0Nsc Nsr Qo Nst 18.84 2 0 0 Ü 64.6 0

Fault Qa4 86 84 0 o 00 Nct Qg o

SEDIMENTARY ROCKS Nai 31 3200 0 0 67.6 ! 41 14 o Ü 43 Nsr « 15 36 @@ 66 @@ 900

Nct Km LV031410B0 0 32 Nsc

Nct 0 Km @@ @@ @@ 0 Nst 0

G Qo j 0 Nbc 87 o 0 36 0 0 0 @@ È 0 Nsr o j0 Ü 0

Apatite (blue font) Qa4 0 59 Nba

0 Ü 58.1 56 o0 33 0 0 0 j @@ Qa 0 @@ @@ Nct

Nta 62 Ü j

45 Qa2 3200 0 0 0 10.9660 0 o 0 73 0 0 43 Nsc Qo

Qo 41.7 @@ 0 21 0 57 0 38 Qa4

Ntv «

Axial planar cleavage 02 e 0

@@ @@ @@ 2800 0 o

j @@ Ngf

Km 0 0 0 @@ Nsr 0 o o 20

TRONA ROAD 76 0 0

@@ 17 _^ « 33 Nba @@ j

Ntv 68 0 0 0 o Ngb j Nsd o Qo Qcf 49.0 e «

Ntv o «

2600 @@ @@ @@ o Ü

2800 Ü 2800 0

0 Qa2 80 80 Qa2 0 59 o Nsr

Results of 2010-2011 study (Bidgoli, unpublished data) 0 68 Jl 0 Nba @@ 05 2700 Nsd 0 o Qa2 o

@@ Qg 10 Nsd 48 o Ü 25

Ü @@ 2700

Qo j

10 77 49 o 0 Qo 17 @@ @@

0 62o @@ j

o Qc o Nsr 0 Nsb

0 Nsd 0 « 0

@@ 0 Km Qa2 o 0 j 0 66 Nsd @@ o j

Qa2 @@ 0 0 38 Nsd j 20

0 o Wilderness Boundary @@ Ü 00 o 46 0

Qcl j @@ j @@ Qa4

Jl Jl 09 @@ Ü 28 0 o

@@ 21 @@ j 0

Nct @@ 53

@@ 0 2800 15 @@ @@ 0 Nsr 0 0 72 0 0 73 42 0 0 0 0 0 0 Nsr 27 30 « 16 3000 26 o  Qa3 27

o 0 79 « «

@@ 3300 21 0

2800 0 0 33 2700 « 0

The age (Ma) of all fractions are listed o

Wilderness Boundary 42 Nsr 0 0 0 0 47 31 Nsd 38 @@ 2900

o 0

Qa2 Nba 0 @@ 0 0 28 @@ Qa4

Trend and plunge of linear structures 0 82 35 o Nsd0 o 0 0 « 0

25 0 54 Qa4 0 0 0 o Nst Nsd j 22

@@ 27 0 @@ 0 @@ Qa2 0 45 36 « 0 @@ 0

o o 0 « o 77 0

Ngb Ü

o « o 0 80 @@

Ü 0 Ntc 32« Nhb o Ü Qa o

LOEEMIOCENE PLIOCENE Qh Jl @@ 82 0 j 45

o «

84 0 3300 Ã o 88 Qg o @@ 0

! j Qa 0 15 0 @@ @@ 80 0 @@ 2 0 Nsr 52 j @@ Qa2 0 Qa2

@@ Nsr 47 o « « 0 25 60 30 0 j

o 40 o o

Zircon (red font) 0 Ü0

(plunge value not shown) 83 17 Nba 40 0 @@ 2500 «

j 84 Ü 26

0 Qg 16

0 o 41 Nst j

0 Qa2 @@ 0 62« 0 Nba o o «

0 2900 30 Qa2 0 o Nba j

j

j0 47 o

Ngv 0 80 @@

Nhx 740 @@ 0 8 2900 Nst 15 Qg Nbl

Nsd 0 70 33 @@ Üo43 0 37

0 3400 @@ 02 0 Ngb

@@ Ü 43 62 58 Nsx 0 Nsd 2800 Ngh

@@ « o @@ 67 20 o «

! Qa « 0 Nsr Nsd 20 44 j o

Garlock fault 0 0 o Qa2 37 o 85 « Ntv Qa2 @@ j

o Qo o26 o @@

Apatite (blue font) @@ 20 o 51 Nsd Nsb o 41 2600

Lava flow direction @@ 0 « o 28 @@ @@

@@ o 49 o

55 Nba Ü « Qo 77 0 29

63

o 21 46 Qa3 34 25 «

Npr Ngh Nps @@ @@ 88 0 Nsc Nct 0 @@ @@ Â 0 0 o

«

68 j @@ o0 60 83 ç o Nsd Qo Qa2 @@ 0

3300 Qa o o 2900 o

o Nsd «

j Nsb 17

Nhd 42 Nsh 49 o o @@ @@

41 0o o 84 0 Nsr Nba « o Nba 23

@@ 0 Qa2 3500 Qg 10 o 0 @@ 83Ü Nsr

CENOZOIC 31 20 Nga @@ Nsd @@ Old Military Boundary Fence

52 o 5 0 Nsd 86 26 33 Qo

Ngx Fault striation 0 3400 17 « 62

o o

Ntd @@ j 38

o 73 61 Ngf

24 Nsr 0 o o 0 80 0 o 0 Qa4

o Qa2 @@ o o 25 0 0

Ü 3500 Qa2 Nsx 49 o @@

o 51 Qo 0 0 50 @@

o o

0000 Jl o 27 0 30 32 0

30 « 0 o 0 0 Km Nba 41 « 90 e o

o

19 j Nsd Qa4 28 10 Qa o 30

Km o Nba 27 52 @@ I’

Nta Nga @@ @@ Nhf Jl 52 58 0 20 @@ Nsd o j @@ o0 0 j 0 Nbl 38 46

20 20 42 17 j Nba 0 0 e

j o Nsd

44 0 o @@ Ü @@ Nba 17 58 Nsr

o o

0 o

71 Ü 7 o @@

0 Ü

Nst o 0

 0 Ü

@@

0 0 0 o Qg @@

Qa3 o @@ j 18

58 2900 Nba 71 65 0 Qa4

@@ Savoy fault o 0 0 o Ngf

47 Ü @@ «

j 80 Nsr 0 0 25 0

67 47 16 o Nsr

Nst Qa2 80 o o 78 Qg 53 33

Jl j Qa2 20 Qa2 20 Â

66 « j

20 j 49 0 o Nsd Ngh

Field observation station 17 o 04

0 41Ü 70 0

56 o Qa2

Qg j Qa2 440

o j 12 0 o 0 88 @@ 31 o

o e 0 2900

VOLCANIC AND SEDIMENTARY ROCKS Nsh « Nsd j  «

0 Ü 39 o 0 44 36 Ü 58

j 0 0 o

0 44 oÜ Ü 65 o

o o Nsr 10 75 0 25 0 Nsh « 3000 o 0 j 05 66 o

@@ Qg 32 o Qa4

0 » j 47 o 31 Qg 33 0 047 0 0 42 77 o

62 @@ 0 28 o o

3600 o 56 Nsr 0

Ç 63 o 0 47 55

Qa2 o Qc ooo 280008 04 o 51

@@ Ç j j o Ü 0 2800 Ü 31 «

Ç Nsx @@ 30

38 03 o j 70 @@

Jl @@ 0 0 o

Jl Km 23@@ Nsh Qg 43 Nsd 0

j o 87 39 79 0 o j 0 @@ j o 0

Jl o Qc 19 0 o 0 j

0 @@

j o 62 34

Nld Nla Nli 0 0 o 05 o o « 0 29 38 0 o «

58 o o

3600 39 Ü 00

Qg @@ Nsf 71 0 o 46 o Ü 0 29 Ncp 0 j 18 22 64 0 o 04

@@ j o

@@ 18 Nsr Nbl Nst 0 117°40'W

0 84 Nbl @@ o

o

@@ Qg 0 50 Nba 47 o10 o 0Nsr 0 20 63 62 Qa o o

@@ Ü 25 Qc 13 0 Nbf « Ü

Qa 20 28 33 Qg 10 0 Nsr Qo Nbf @@

0 20 o j

Nsh j

0 e o 0 C Nhf 57 @@ Qa4 47 43 o 18 13 0 Qt 2900

o Nst « 51 0 3600 Qa2 20 0 o Nsx

Km 87 o Nsr

@@ Qa2 o o 0 Nsd Nsh @@

@@ @@

@@ 25 « @@ Qa4

@@ Nst o Qg o o 0 0 o « 81 Qa4

@@ o 0 75 0 Nsd 3000 0 o @@ 052 Qc 61 84 o

@@ o o 69 Ü o

Qa2 Qg Qa2 00 38 « o

o 35 o

10 0 @@

@@ 61 @@ Nba 0 21 0

0 0 20 Nsc 64 Nbf Qg @@

Qa2 19 LV-A3 37 Qg 0 j 5 19 j 38 0 0 10 0 Qa4 @@ j 0 20 38 60

Nbf Nba 0 @@ o Nsd 20 «

Nap Nbt @@ 79 23 51Ü Nsd0 0 Nbf o

Nai Nbx Nbl o90 Qa Ü 51 o Ü Qo @@ o 0

0 o 0 0 LV-D3

Nhf 06 0 o Nga 25

0 64.9 83 48@@ o 0

3700 3400 @@ 10 o Qa2 38 Qa2 Nba Qa2

o o 64 68 @@

o 0 0 @@ @@ @@

o 0 77 j j

12 44’ @@ 63.9 25 Nsf « Nsr 23 69.8 0 o Qo j 0 o Nba 25 Nsd 72

@@ Qc o 0 40 0 0 LV-E3 10 0 Nst Ngf Ü

@@ Nst Ü o32o Qa2 0 @@

o ! Qg 4.1 59

o o

Qo o 0 o

Nbc 42 Nba 15 o o 0 Nba o 99.1

Qa2 0 j 90

@@ @@ 52 0 o 0 Nst Nbf

o @@ j @@

50 o 77.6 Qa2 Nba

Ü

31 0 j 0 0 Kg 0 Nba @@ 51

Qg 39 Â o 1.5o 0 22

70 64 0 0 j

j Nsx 52.1 0 Ü 0 Qg 18 @@ @@

25 o 38 88 o o Nsf 2800

o Nhf 25 40 27 LV-B3 60 LV-C3 0 j

o o @@

o Km 0 76.8

o o 20 25 54

78Ü Ü 43 0 0 !

Ü

Ncp j Ü ! ! 9.5 43 0 o o

51 0 ! o Ü @@

o o 20 Üj

@@ 43 o ! Nba

22 @@ o 15 60.5 78 o 68.6 @@ Qg ! Ngb

Qa2 33 j

3500

o 70.2 @@ j

@@ o j 0 o !

Nta @@ o 66 Qg ! Nbc 72 ! Ü 15 0 Ngf 43 ! @@

Nsr @@ 57 Ü 0 52 0

45 0 o Nhf j o

0 0 j j 58 Üj

52.9 0 o

35 33 62.2 0 10 Ü Ü Qo LV-F3 @@

@@ TUNNEL 60 39 Nst Qg o 0 52.1 @@

o 15

30 o @@ o 60 0 o 0

o 38 24 0 35

0 62 0 Qg Ü

3700 j 32

o j

o 80 j Ü

o j

o o

Nsb 56 Qg 79 Qa2 45.1 0 61.9 o @@ 0 Nst Kg 64 0 0 46o 50 Qg Qg 0 68.7 o

o 72 o 30

Ç 28 16 0 0 o Ü 0

Ü j o

Ncp @@ 0 oNsd o 87

@@ o j

0 o 38

o 68 0 o o

o 49.0 0Nsf 20 0 0 68 0 68 0 25 o o

Ncp o 77 67 Qa4 Ü Jl o o 64.2

Nsh Nsf Nsx Nsd Jl o j « @@ 40 23 0 40

90 Qg 24 39 0 00 59 o 63 0 @@ 32 Ü o Nsb 3800 11 10 Ü @@ o 0 Ü

SD060810-10 Tpv 62 Nba 45 @@ @@ 0 0 39 o 60.9 o @@

3500 29 Ü

Nhf o o

Nst 16 Qa2 29 78 o Ü 68 Nsp o Qa2 2700 @@ o «

o 51 58 22 26

o j j

0 79 38 0 20 0 88 44 j o

Nst 90 o o 35 25 Qa2 22 0 j 0 72 25 55.1 Qa4

11.93 @@ Nba Nsc 0 15 10 @@ o j

e o

2700 Nst o @@

81 00 Jl o @@ 17

Nsm j 20 o13 Qa2 Qo

Qa2 o

o

86 Qa3 Qg 40 0@@ Ü 58 j 21

55 o j j Qg 0 29 o

o o 0

¦ 76 Nst 73 @@ Pca

30 Ncp 43 o o @@ j j 63 34 Qa2 Kg 0 @@ @@

o o o 0 Ngb 20

0 13 0

0 o 3000 43 19 27

84 Nst » 0 27 Ü 20 o 0 o o o

Jl _^ Nsc S U M M I T R A N G E Ü Nba 44 Qg 0 o 27 23 Nbf Qa4 83 10 0 o

3500 41 Nst 43 36 o Qa3 16 o Nsx o 20 @@ Nso 50 Qa2 42 30 30

o Nbc

Nta 89 o 0 o Nst o o o 0 o 0

72 32 20 o 15 3000 o 5 o

63 j Qg 79 Nst Nbf 52 45 o

o 64 0 Nba o o

Ç 3100 o 26 @@ o

Nst Nba o o o TRUE NORTH 0 Nsc o 21 @@ 00 22 o o Qg Nba Nsf

75 o» » 10 05 20 0 « Qo

Qa3 o «

@@ Qa2 Qg Ü j Nsp « j 29 43 o

60 Nct @@ 41 24 16 20 42 0 j 30 oNba @@ o 0 Ngf @@ Jl Ncp 34 11 Ü 0 0 43 Nst 0 @@ 62 @@ 10 0 o 20 25 o

o « Nsb Nsd 75 @@ @@

o o 0

Jl Jl _^ 15 11 o 31 20 o 22 5 0 0

55 38 o « Ü Nbf 40

o @@ Qg 39 Qg 0j Qc 0 0 37 69

@@

Qa2 GFZ-82 o « o o

0 o o o Qc 0 @@ Nbx @@

¦ o Ç 27

69 Nbf 26 08 2900 12 Qo

¦ 32 18 46 Qa4 @@ 0 Military Boundary o Ü

Nct ¦ Qa2

MAGNETIC NORTH » o Qa3 o 43 o

25 j Qa2 5 0 15 @@ Nba j

57 30 o @@ 0 55 o 52 60

o o

o 45

Ü 0

11.24 47 2800 0

Nsc Nct Nsc Ü Nba à  00

j

o o

90 o 66 0 o

o 0

51 Â

o

@@ ¦ Ü

@@ 15

o Ü Nba @@ 75 68

j Qa2 « Nba

j Ü o @@

Nsm 81 79 j o o 0 75 0

Nct 64 50 Ncp Nai Nbt 0 @@ 25 Qa2 Nbc 0 78

0 0 @@ Qa2 Nct 64 Qg 25 06 25 o o

@@ o 90 77 79 o

23 23 j Nsd

o 0 o

APPROXIMATE MEAN o Ncp 27 0 o

@@ Nst 68 35 «

o j Nba 77 Qo

0 52

07JDW22 0 @@ 17 o 52

54 Ä o Nsd 17

@@ 36 o Ç 0 0 Qg « Qa4 o j j 18

0 Qa2 o 23 « Qa2

Nsb Jl Qa 39 33 Nbc M O U N T A I N S @@ o j j Qa2

87 Nsc 07JDW24 15 e Nba

Qa2 09 o j « 23 Qo

80 o o«

Qt 0 7.8 Nba Nst @@ @@

MAGNETIC DECLINATION, 2011 @@ o Ü

5

Nsc 81 o

o 60 40 @@ o Nla o @@ o o o Nba

3400 80 j ÜÜ 10 63 0 @@ 2700

@@ « o o o 0 j Ü

j Ü o 0 Qa2 71.8 12 Qa

Qg Qg o 0 32 69

0 Ü 0 73 40 0 « 87 10 0 Ngf

0 0 o à 52 SAVOY ROAD _^ G0 58 32 G o 48 71 @@

o o

62 Nai _^ 65 G 15 65 Text 20 @@ 50

@@ j Nba 32 o o o Nbl 56 o

Nct Qg 0 Nsp o 61 o o 0

@@ 34 Nst 87 qmz @@ 7 0 o

Nsc 0 o o

Ncp Nst 50 Nla o 15 Â o0 21 Ncx Nci Nct o 55

90 07JDW25 50 o 0 60 Nct 55 « o Nba o

@@ j63 55 @@ o 0 o 5.7 20 20 Qa3

o 0 Nsm 85 j Ü Ü 65

0 o j G Nba 0

Nsc 33 o Qg Qa2 o

o o 0 41 Qa2 0 2800 0

41 70 Km Nba 33 Jl @@

@@ o Ç 86.5 48 43 5.6 30 0 53 Nsd @@ 71 Qg 2900

3800 Qa2 Qa3 o 0 Nbf 20 2800 5 0 64

74 49 0

« Nsc o j 24 o « «

o o 37 Nba

0 0 j « Ü

Nst 0 35 o o

60 Nbt o 0 10 o 80 54 Wilderness Boundary Qg @@ o 14 0 Nsc Ü 70 0

j o o Nai o 7.5 Qo Qa2 0 Qo « o

Nct o @@ 45 j

@@ Ç o o @@ 43 07JDW21 40 24 2700 67

57 Nst Nct 50 Ü 2900 10

Qt 0 0 Qa2 Qg Nai Nbt 07JDW23 o Nbx Nbx @@ 0 86 60 Nsf Qa3 o Nba

38 25 Nst 07ES03 e o 10 33

30 Ncp o Qg Nsd

0 0 Qa4

o 29 3600 3500 7.0 o 0

Nta @@ 34 Nsb 20 o Nli 0 o Ü 20 o @@ Nsb 55 Nsp 0 @@

69 @@ Qc o j 29 10 47 51 @@

@@ 0 @@ Nsb 71 25 G o 52 40 @@ o 0 Nba

25 0 37.4 37 Nba Nst ¦ @@ o 20 0 7.8 j

Qo Ü @@ 15 Nsh o 2900 Qa4 Qt @@ @@ o 0 0 Ü 42

Nba o o @@ o 0 o 40

j Qc o 0 Qo j 44 0 Ü o 330

Ü 0 @@ Nst 21 «

@@ Ncp o o

Jl 0Nso o Qg G 61 o Qa2 45 Nx Ü

Nct 59 0 42 0 9 Nba 42j0 Nbt 23 07ES04 @@ 30 09 33 j Qg 88 0 35

Nta Nst 0 j o 60 10 57

Ü @@ 0 54 Qg 0 09 o o « o

j 88 15 0 @@

@@ o o

Qt Qa2 32 3300 86 Ü o @@ Nga o 66

j j Ngf Ü 0 o 25 15 o43 50 80 78 Ü « o @@ 38 0

j o o 0 o o 34 @@ o @@ 90 Qo j 0 0

o 49 j 0 34

3500 Nla Km G 0 47 Qa2

o Nsd ¦

Nst Qa2 51 47 o 36 Ngf

j 61 2900 Nba Nba

Ü o

o o Ü 33 Nba 83 ! 0 0 Qg ! o

MESOZOIC 52

0 j Km 40 0 Nbx o Nsh Ü 86 Ü

à j 24 43 38 Qo 44

o Nli Qa2 83 « PLUTONIC AND METAMORPHIC ROCKS o

54 j Ü Qo Nsd SD040910-1 44 j 0 47 o 0

À

@@ o j 0 Nli o o Nsd 0 Nsh

0 Nbt Nba o 20 Mapping base of USGS 1:24000 0 0 35 Qg 0 @@ o

0 À 0 29 Qa2

o o

0 @@ @@ _ 0 Nci o Qg 70 Ü 0 LV-D2 0 2800

Ü ^ j

0 j Qg o 0 0 0 0 40 0 50

50 @@ 0 47 0 10 @@ 29 @@ 12.74 Qc o o

o Nsc @@ o

o @@ o o 24 Qg o10 48

¦ Nsb Ü o o 86 Nba o

0 @@ o o

0 0 0 73 44 o Nba 0 0 25 76.1 o ¦ 0 o j 41 o @@ ¦

43 «

50 j @@ Nba j63 15 @@ 41 @@ » Ü Nst j 0 o 73 o 40 Qa2 Qa2 Qa2

«

Kr quadrangles in DLG format @@ @@ 82 40 Nst 0 0 o 0 Nli Ü Nba 3000 30 61.8 Qo 43 @@ 25 49 3200 18 Ü 60 3200 | Bedrock 42 Â 74

0 0 30 o 0 30 @@ Ngf

o o 50 0

0 @@ 0 Qo Qg 32 @@ 44 o @@ 28 @@

90 Nsb @@ 50 o 40.6 67 @@

Qc @@ 0 15 20 o o Nba

Qo o47 Nla o j o Qa3 Qg j Qg 54 o 27

0 Nli 0 o 33 77 @@ 77 Qg 35

CRETACEOUS 30 o Ü 0 Qg 20 Qa2 @@ 0 o 0

@@ o @@ ñ 15 o

0 Nbc 0 @@ Ü 35 57 62.2 21 @@ o 84 o o0 o 0 Â 2900 3300 @@ Spr 3100 Nba @@ e Qa4 (Spangler West, Spangler East, Christmas 0 o 31 o @@

@@ j o Nsr o

@@ Nhf 0 o 3900 @@ Nba « 10

Kg Kd Km 0 Qc 53 54 Qg Savoy fault Ncp 0 0Nbx 65 @@ 35 52 o 83 11 o 10 Nsd Nbx @@ o

64 28 0 Nst Ü @@ @@ Nli Ü Qa2 Ngb

54 47 5

| @@ 60 0 0 0 80 32 @@ 0 @@ 0 Qa2 j@@ 50 25 Nba 16 Nba Nga @@ 12 24 @@ Ngf Nba @@

@@ 52 Nli 0

j @@ 3400 15 o @@

o « 20 @@ Nsc Nct Nld 33 Nbx Qo

_ 0 o @@ Nbc 53 j Ngb 30 ^ ¦ 15

« 40 o ¦ 49 Nba ! Summit Diggings _ @@ Canyon, El Paso Peaks, Klinker Mountain, 0 ^ ¦ 21

0 74 Ü o

68 o @@ o LV-A2 o Qa2 @@ Nba Nga ¦ @@ @@ o Qa2

51 120905-1 GFZ-85 Qa2 Qg o 43

@@ o 0 j 15 o 280

o « « Qc LM96-15 Nba o Qg

o 20 Qo

Jl @@ @@ ¦ 78 72 0 112.1 Nsr Nsc 14 @@

JURASSIC Nhf @@ @@ Nbx o @@ o Nba o ¦ 59 Ngb

o j 52 @@

11.37 Ü 0 @@ 73 Nhb 29 o

7.24 @@ j Km o

Nhv 0 _ 0 @@ Ngb @@ ^ o

54 o @@ 10.66 77

Qa4 85 ¦ 20 Nla Nsb Nst Nba Nla 69.0 Nbx 25 @@

West of Black Hills, and Black Hills) 0 81 ¦ 0 0 Nct 21 o

Qt Qa3 Nst Qc 20 41 Nba @@ ! o 31 @@ 65 0 3000 @@ 45 ! o @@

Ü Qa2

o @@ Nbx j Nbt 10.8 28

@@ 0 Nba 59 @@ 40 Nct Km @@ Qg LV-C2 @@ @@

¦ Nba 0 o Nga @@ @@ Nst Nli 61 Qa2 Ngb

13 49 Ncp o 29

Pgg 13 @@ Nsc 041 37 6.7 o j @@ Ngf 63 Qg

Qt 0 o ¦ @@ @@ 74 Nla j Nsd 88 0 0 Nbt Nba Nba 74.6 Qcf Nbt Qa4

o 0 0 Nbx @@

o Qo @@ o À ¦

@@ Ü @@ @@ @@ Ü @@ @@

@@ 63 @@ o 57 Qg Qo @@ @@ @@

Ü 0 0 j o Nba @@ 47 @@ 24

¦ Ü 3700 23 0 39 0 j ! 65.9

0 0 o 76 o 35 @@ ! 10 @@

Ü 26o o 0 o ¦ 27 50

0 @@ 83 Qg o Nld 00 0 0 Nbx 3400 @@ 49 Nba Qo o 010 LV-B2 Qa3 @@

Nhb o Qa2 Nsb 65 0 17 0 o @@ 25 Nsd Nla 17 0 0 0 Nba o 65.8

36 o 45 25

Qt ¦ 20 Nba

0 0 j 0 10 37

¦ @@ 0 53 0 28 0 o 0 ¦ @@

@@ j64 0 72 Nst 0 Qa4 j

» Nsc 0 Nba 71.8 o @@ Nba

Phd j o

0 0 77 43 Nbx 0 Nbt Nci Nba 41.9 Nba @@

76 ¦ 30 Ngf

64 o Ü

60 Ü Geographic names from USGS 1:24000 o  o o

PERMIAN Nhb Nbc Nsd 27 @@ Nba o 0j 45

» 19 67 Nso 0 0 0 Nci 56 o o Nba Nbx 64.2 Nba 76 j @@ Ngb Ngb

Ü Nli 4000 o

@@ @@ Ã 78 Qg Qo

0 35 ¦ Ü Ngb @@ @@

0 80 Nsd o 0 Qc 20 55

o j 26 24 @@ @@ 84 @@

PALEOZOIC Jl 89 Nsd j | ¦ 0 0 50 o

84 o Nba 25 L A V A

o 15 o

» 26 0 0 32 o 26 0 @@ 0 36 @@ Nba o 20.6 Qo Qo Nba

0 0 o j @@ 0 o Qg 3600 Qg

Nhf 0 76 0 j 44 Nla Qa2 @@

o 0 45 0 o Nba o Nga

Phc @@ 40 62 o 30 Nld 28 @@

j 50 0 o Qo

0 @@ o o o Nba

@@ @@ 58 ¦ 69 0 0 @@ 47 Ü 0 o 60.9 Qa4 0 0 ¦

quadrangles & 1:100000 BLM maps 29 0 33 26 j 0 0 18 5 @@

o o @@ @@

Ü Nli ¦ 0 o

78 Nsd 0 55 Qg Qo Qcf Nsb 0 e o

j j ¦ j0 o Nba

0 88 o

j o 5 35 87 40 27 0 05 o Ü

@@ Â j o @@ 86

0

Nba o o

¦ 0 0 0 o 38 Nbt j o Nga

¦ o !

3400 Nsd 0 0 25 10 o ! 15 81 0 0 07LVMTES01 o 60

61 0 0 0 o @@ 10 @@

34 @@ 0 @@ 0 42 46 0 Qcf oo24

0 @@ Nld 0 o

Phb 57 0 o 0 10 Qo @@

À o 0 0 40 Nba @@

» @@ 46 Nbx o Qo

@@ Â

@@ Qa4 @@ o Nba

Nct o

¦ 90 o 55 @@ @@ Nba

0 7.4 45 73 ¦ o

3400 Qa2 Qo Qo 07LVMTES02 0 0 Qo 30 LV-E2b

@@ o e Ncp 5

@@ o 0

Nla 0 Nba  5 0 2900 j Nga

@@ » 43 0 14 3700 @@ o @@ Nbx 0 2600 o

0 _^ o

j Nhv 0 @@ 3800 0 63 G 41 o Qo 45 @@

Nhf Qc 73 66 Nbx 15 @@

Nba o o

80 @@ 0 0@@ Qo 25 Nbc @@ Nbx o 84.1 0 78 Ü

7.0 o « o Nba

0 0 05 81

0 @@ o o 15 36

20 Qo

@@ 23 @@ o Km o PENNSYLVANIAN 0 ¦ @@ o 58 o Nbt

Nci o

« 20

Nhv 0 17 30j Nbt Nba Nba o ! @@ o 15.7 G O L D E N !

72 ¦67 Nhb Nla Nbc @@ 0 ¦ @@ G @@ Qg Qo Qo 15 0 Nba 68.4

b 0 16 o 57 Qo 39 Nba 0 0 Qa2 Nba

À 0 0 o 40

À 120805-1 @@ o 0 53 @@ 20 23 o Qg Nba 0 81 0 Â

o @@ 64 @@ ¦ o Qo o 20 9 @@ 40

3500 0 @@ o 15 Km o 30 Nli Qa4 25 Qo 81 Â 13.4 0 o 40

0 0 47 25 o Qa2 o @@ 73 Nbt 0 5 2900 0

Ç Qc 20 o Nci  30 j 0 3500 25 Ü o

@@ 33 0 0 0 @@ Nba 25 Nbx0 LV-E2 ¦ o 0 @@ 0

36 39 Qa2 43

Nbf 0 o 0 0

Ü o

o Nsf 0 @@ 0 0 Nba o Nli o 35 0 0 Qo jo 0 Nba 75 42

Nst Ü 78 Qo Â

@@ @@ @@

o Ü 46 o o 3000 23 58 25 o

0 00 Nsf 0 @@ 0 Qo 0 0 Nci @@ G @@ 0 0 0

65 0 87 ¦ 42

0 Nla Ncp 0 0 0 0 o o @@ @@ o 18 65 7.3 @@ 89

j 23 0 j «

¦ o 55 Nba Nba 50 25

55 « Nba 16 25 o @@

@@ Qg Nba 4.5 Â Nba @@

o 0 0 0 03

 0 0 82 o 25 0 0 @@ 5 24 Nli 0 o

Dg 0 Nli à » @@ o Nba Qa Nba @@

3200

Nhv Qa2 j « 36 Nci Ü j @@ 5

j o o 4.6 Ngb

Nli @@ 0 0 « 0 34 Qo 0 Â

Qa 73 0 0 o

à 05 0 o o Nga

3200 Nld 3700 10 0 07LVMTES05 Qo 10 @@ @@ Â

Qt 0 « 69 Nci Qa2 Qo  Nbx

o @@

o o

69 @@ «37 3600o 0 47 0 0 0 0 Nba 55 Qo 57

32 0 0 28 Nba 0 50 @@ 4.0

Nld o j Nba @@

DEVONIAN 20 Nsd 0 0 0 o Ü 88

0 0 Nba @@ 20 Â Nbt

0 0 ¦ Â 19 Nli

Ü Nba Nli j @@ j j

90 75 o 0 18 Nli 0 Nbt « 86

00 e

¦

62 Ü 0 o 49 Nba ¦ 39 37 0 o

@@ 83 51j 86 j 0 j 35 40 83

j 39 Â o o

Qt Nhf Nhf 0 Nst 03500 19 0 0 25 0 20 « o Nba o20 Qa2 Nga 40 @@ Nli 5

Ü 0 Nla Nst 52 @@ @@ Nla

Jl 42 54 Qo o 70 0 Â

o 86 j 0 37

0 120905-2 0 j o Nla o

30 Ü

DOeu DOeu @@ 51 LM96-2 42 o 10 80

68 j Nla Â

o o @@ 0 88 Nld 70 10 « Ü

Oem 39 @@ 0 Nbc o 0 o 60 Qc Nhf Nhf Nsd 61 o @@ @@

0 j 0 73 0 Nba 78 Ü «

o 64 Nsd o @@ j 52 Qc 0 o Qa2 o 0

j Qg 69

3400 76 7.29 ¦ 84 «52 Nla Nli Nci 0 0 0 0 Nli @@

à « 59 _ o 40 0 Nba

44 o j 45 ^7.13 _

063 o @@ 0 ^

o

o 0 « Ü Nba 35 o o 81 0 @@ o Nba j @@ Nli 0 Nli Â

0 o @@ 16 0 21 Qg 0 @@ Ü 0 60 Nli o 41 «

28 49 87 0 25 35 Nct Qo 25 33 0 Nbx

@@ Â 67 63 @@

Jl 0 Nbt à j 0 0 0 25 50 10 o « j j

0 LV0518108 37 ¦

_^ o Nli È @@ 0 0 Nbf 0 o 0

o « Nbx j V A L L E Y Nbt Nhf o @@ o Qo

j 57 j Qo o 0 0 Nld Nci0

Oem Jl o90 Nba 87 0 Nld 0 @@ 10 o 60 È78 73 0 0 « @@ Qo Nbx @@

ORDOVICIAN DOeu o 72 40 « Qa Savoy fault @@ Ü 10 72 3500 10 Qc o Nli 3300 13 @@ 49 0 « 51 0 Nga

o 0

Nba o 0 0 0 @@

j j 6.52

90 0 49 53 @@ 59 85 57 30 Nba 30 50 78 Qg 0 o o Ü o 3400 o

56 ¦ o 26 o o

69 o @@ 0 o

j 88 80 0 Â Qa

Nhf j 44 0 56 Nbx 0

j @@ 10

60 « 0 @@ 90 jo « 40 3100 Nbt 0 0 @@ Nba

80 0 Qg 48 o

o 65 o @@

Qa o » Nla Nld 43 Nba Nba 3000

o o @@

0 77 « 30 67 @@ 0 Nci Ü o Nbt o @@ 0 Â o o

0 Qo Qo o 83 52 o Nbt 68 o Ü Nbx j 20 j @@ 3700 3200

Oc Oel Qt 75 o Nbx 67 Nli 80 @@ Nba o o Ü Nli o Ü

o @@ @@

39 o

DOeu o 0 Nhb Qa3 0 00 20 65 Nba Nba 77 8

395 43 20 « o Nli

59 0 @@ 27 15 25 Nba 3600 Nba 63 o @@ 0 20 0

o ¦ o

Nba 0 Qa2 3000 0 37

Nba Â

54 64 32 oNct j

CAMBRIAN £ 0 o j Nba 0 Nbx Nba Qo 0 o o

o 66 o o o o

@@ j 0

o Ü @@ @@ Qa4 41 25 Nci 13 Nbt 14 o 40

j 67 520 Nli o j 0

Nla 25 j 45 o Â

73 Qa3 Qa2 20 Nci o 0 Nba @@ Nba 0 51 o @@

Jl 63 0 0 Nba Nbt Qa2

Nhf [ 83 51 @@ Qo o Qa2 o

Qt DOeu @@ o à 88 38 62 o 0 15 @@ 0 0 0 Qg 39 35 Nba 0 Nba 0 44 0 0

o 43 5 0 44 31 o Ngb

o Nbt 34 Nba@@ @@ o

Nhf 30 3700 20 0 25 o @@ j

Ü 4200 j o

Ü Nbx o56 83 58 20 @@

j Nbx j 0 @@ o 43 o 3300 Nbx o

DOeu Nci 0 58 Nbt 0 o 0 @@

¦ o

0

Nbt Nba 64 o 0 Nbt 4100 Nbt Nli 00 40 Ü Qt 63 o 35 Qa2 0 o 45 Nba j o 71 32

Nhf Phoenix Gulch ¦ 16 2800

Nba 55 @@ 0Qg @@ Nbx Nsf o Nbf Nla 45 3300 66 30 o 58 0 « o Nga

Nba 61 4000 48 55 0 0

DOeu Nhb o Nld Nbt 33 Nla o 3800 53 o

Nld 3900 Nbx Â

39

à 0 o o 0 @@ o

0 Ã o o Qg

j 85 Nld Nbx0 Nci @@ 61 j j o 20

54 Nba Nba 0 Nbt71 o 0 @@ 0 Qa2 @@

o o o

¦ 50 0 o

0 « o40 0 o Nbx Nba

Qt 0 @@ @@ 20 0

0 71 60 0 71 o 3200 0 o

o @@ @@ o Ü @@ 0 Nbx Nbt 0

@@ Nld 50 0 3700 46 Nba 00 0

@@ o 71

0 0 Nci Nbf o @@ Ü 0 43 0 22

o 0

@@ 39 Nbt 0 0 061 W I L D E R N E S S 28 Nba Qa2 14 j @@ 20 o

0 53 0 o @@ 0 68 @@ 20 Nba @@ 55 o

@@ Nld o 0 40 75 o 21 21 0 @@ 0 Ü 0 o 73 15 o o @@ j o 10 Nbx

o @@ @@ Nhf Nld 40 37 59 56 0 15 o @@ o

@@ Ü o

20 25 o j Nbx ACKNOWLEDGMENTS 45 28 Nba o 10 Nbx 20 63 0 89 Qa2

88 45 0 Nci Qc o 25 @@ Nba

15 j o o Nbx o 0 o o o25 0 Nbx 0 00 @@ o o 51 54 Nhf 20 o 8 o 20 0 o

@@ o o

46 20 15 @@ 50 o 0 @@

o o

48 3500 Nbf 90 Ü

2 Nli 20 Qo 55 o

0 3200 o o o

0 Qt @@ 0 @@ Nba 60

DOeu Nhf @@ Nba Qa Nld Nba23 Nli 0 Nci 0 o 20 40o  o 0 0 63 78 23 Nbx o 15 5

Qa2 Â Nba « 88 @@

8 0 3600Nba e 76 15

Nld 15 o o 30 0 @@ @@ Nba

This geologic mapping was supported 84 0 0 0 23 o LV-D1 0 15 Â ¦

@@ Nhb 0 Qa4 30 o 0 o 25 Nba !

32 j o o ! 40 @@

o 20

j o 86

o

Üj @@

Nba  Nba oNbx

830 o 20 0 0 o 32 o o Nli 0 Qa

0 8 Nhb 88 Qo o 0 o

DOeu 0 LV-A1 66 o 70.0 o

Ü 0 Nba

j 23 0 Qo 22 Nba Nbx @@

56 o 26 Qa2

Qa2 Nba o o Nba

o 68 35 27 2800

Nhf @@ 0 27

j 08 o Qa2 @@ Nba

51 @@ 0 0Nci @@ 18 69.7 Qa2 0 0 0 20 86 64.7 o

Qa4 o @@ 22 Qg Nba Qa j 88 59 o 20 0 40 18 by grants from the EarthScope Program @@ D’ o 80 Nba Qa2 0 o Gulch 82 25 10 56 2900 24

0 0 o o 15 56 0 o @@

Nld 3800 o Nba o Nba

37 @@ 10 o

o 28 @@ 00 o o

à o

@@ 0 0 e 63.3 0

4000 o o

Èo 60 67.0 Qa2 Ü

@@ o 23 Nbx o

o 0 @@ Qa2 @@ o

0 o Nba o 35 o Nbx

DOeu » 53 Nba Nba 56 Nba Qo 750 Nba 8 40 0 0 54 Nbx 0 0 Qa2

o j Nba 0 17 Ncp

@@ o o

@@ Nhb @@ Ç 37 @@ Nba @@ o 30 Nba Nba 13.1 52.0 @@ o Qa3 o o o o 10 j 0 j @@ Nbt Nbf

0 26 Nbf Nli Qa2 o @@

DOeu @@ o Qa2 Nbt o of the National Science Foundation and Oem 0 o o o

3200 @@ 0 Qa3 0 Nbx o

Qg 5 o

40 71 o Ü o 10 o

@@ Ü 27

o 88

Nba o o

0 35 o «

Oem @@ 8.5 45

o

o

@@ Nli 20 7 Nbao Qa2 61 42 o o

Nhb @@ 40 20 Nbx 46 @@ 3200 57 j 40 Ü o o LV-F1

3200 Nba o 35 o Nba 80 @@

Oem Ç 38 72 o 46 76 0 LV-C1 0 0 Nba @@ o ! o

85 @@ 30 35 ! Nba !

0 Ç Qa4 o Nci Qo ! o 32 e Nhf o 10 o

Nct o LV-E1 o Nbx o 0 Nba o

0 0 45 ¦ 76.3 o

the Geothermal Program Offi ce of Nhb à 82 @@ 20 30 0 o 0 12 0 Nbx 10 @@

@@ 0 e 64.2

0 37 Qo Nba 20 o LV-B1 Nbx o o 3100

0 @@ o o 0 o Nbx « Nba 43 0 Nbc 0

Qa3 0 Qa4 16 Nbx @@ 30 20 65 Nbx 05 Nbx 2900 79.8 o @@ @@ 59.2 @@ 30 o

78 o Nbt 28

Qo 51 25 0 32 Â 0 0 00

Qa3 O_el Qo oo Nba Nsc 10 Nbf Nba 64 63.5 68 @@ 0 @@

Nhf @@ @@ 35 @@

À 10 Nbt Nbx @@ o o 0 o

@@ 25 69 72.8 o j o 0 o

» G 20 Qg o o o 24 o

o o 0 58.7

O_el @@ 57 @@ 40 o Nbx Nbx 0 @@ 75.2 0 ! C H I N A L A K E

o 84 o

Npr 3600 Qo Nbt Nba o 0

17 0 o 59.7

the U.S. Navy. j @@ À 64 Npr Qo Nbx _^ @@ 20 Nbx @@ 0 Qa2 o 0 15 @@ ¦ 61 À o 66.0 Nbt o

Nhb Nld 55 Nbx

O_el @@ o o 24 Nbf Nbf Qo o Nba o 25 16 o 37.2 @@

Nhb @@ 35 Nbx Nba 0

o 36.3 15 77 63 Qo @@ o 0 o o 0

Qo 41 @@ o @@ 51.0 0 Qg o 07JDW20

0 Qa2 o o 77 Nbx 2700

3500 53.2 0

O_el Npr 0 20 46 o 44 0 0

Qa2 Nhb 50 15 @@ @@ 50 20 0o 30 0 65 60 o 51.0 Nbf0 0 @@ o

o o Nbx 0 o @@

4400 @@ o 47 Qo @@ 15 20 15 o 43

This publication was greatly Nba 35 7.48 10 41 Nba 7.9 ! 05 @@

@@ 50 30 o j

Â

50 o Nbf 0 20 Nba 14 3100 0 Qa3

o @@ 3900 @@ 40 o Nbf 57 o o o

@@ Hardcash 3.2 o 30 Nbx @@ Nbt 20 Nbx

Qa4 A 0 0 20 32 Ü @@ 02 05 o Nbx

o 0 Nba Nbx

Nhf Nhf Qa3 Nbx 15 0 60 32 Qa2 Qa2 o Qa2 @@

À

@@ o @@ @@

14 Nhf Qc 0 @@ 70 3000 Nbt 0 o

improved by a review DOel Qa4 0 @@ Nhb 057o 20 15 Nbc Nbf

0 Nhb 0 Nbf 57 0 36 40 o Nbx @@ o o

Nbf0 o @@ Nba Nbx

o

@@ o 0 47 Nbf 75 0 o

Nhf Nbx Nbx o

o o @@ o

o

Nhb À Nbx  36 Qa2 67 Nbt

o o Qa2

10 @@ 15 j 20 22 @@ o 5 Nbt o 71

0 11 0 ¦ 20 82 0 « 0 66 0 Nbf

Nbf o Nba 0 65

o Nbx Nba o Qg 07 o

from Bernard Guest. o 0 0 86 o Ü

Qa4 Qa4 0 Nbc Nbt @@ 00 o Qa4 o Nbx ¦

@@ 57 Ü o @@

40 o

0 @@ 3100

0 33 Â 0 20 05 o 65 o Ü

Nhf Nhb 10 0 Nli  j Nba 28 Nbx @@

o 20 0 0 0 10 25 o Nbx

0 0 j Nbx2800

Nhf 0 o @@ 78 Nbt Nbx o 30 0 o 20 0 Qa2

Nhf Qa2 0 0 Nbt o 32 35 Nbx N A V A L A I R 0 @@

69 o

Qa3 4200 28 0 Nbt Qg j Nbf

e o

Nhf o 4300 25 @@ Nbx 30 49 45 Nbt o 0 57

Qa3 0 0 Nbx 80 Nba Nbx 28 o 54 @@

Nhf 3000 Qo 30 Nbx 37 0 000 Nbf Nbx

o

o o 15

o @@ 42 @@ Nba 50 o 81 0 Nbf @@

Qa2 50 o

0 0 @@ Nli 0 90 Â Qa2 Nbx

Nba o 40 @@

Nhb Nba Nbt Nli 5 j 0 Nbf

Nbx @@ Nba 30 @@ Nbt Nbx @@ 16 o 35 0 Qa3 o

24 o Ü

0 83 0 Nbx o @@ @@ 56 oo 28 Nbx j B L A C K

@@ 3900 Qg 40 79 Ü 0 63 83 @@ Nblo Qo Nbt 60 o 42 Qa2 15 o

@@ o 5

Nhb 0 o

« @@ 3800 0 0 0 @@ @@ Nbx Nbt @@ Â 42 o o

Qa2 15 @@ Nbt o 49 57 64 0j @@ 05 o

Nba o Nba o 6 Qa4 o @@ 0 90 @@ 3700 52 o 4000

20 60 @@ 0 73o o @@ Nbf

Nbx Nbt 0 Nbt 0 Qa2 Nbx 0

Nli Nbx o o @@ Nbf

90 0 0 j 42 _^ Nbx Nbx o «

oo 3800 o

o Nbx Qg @@ 30 64 40 55 0 Nbt Qa2 Nbx Qa @@ Qa2 @@ @@ 4400 60 @@ ¦ Qg 65 0 0 0 2700

3000 Nbl o Ngf

Qa Nbx @@ @@ 43 o 10 @@ 0 3200 Qc 60 88 7 LV0508104 @@ 0 Nbx Qa2 Qa

0 Nhf 36 0 @@ @@ Qa Qa4 @@ @@ o 40@@ @@ Â Nbf @@ Qa W E A P O N S S T A T I O N

Qo 25 86¦ Qg 41 6.51 @@ Nbf @@ o 3000 Qo o Nbx Nbx o o

20 @@ @@ @@ 0 84 @@ 0

Npr 4300 Nbt 0 0 10 2900 Ngf ¦ Qo Nba

Qa4 Qo @@ 0 e @@ 27 35 0 Nbt Qa2 18 0 28 @@ @@ 0 0 o 28 Â

0 @@ o Qa2

Qa2 4200 55 90 05 20 o Nld Nbx Nld

Qh 90 0 52 @@ o @@ 0

@@ 36 0 87o o 0 o 3000 Qa3 Nbt « Â 80 o @@

4100 Qo o  Nbx Nbx Nbt

0 @@ o « Nbx 70 @@ 0 23 @@ o

2900 Nbx ¦ Qg 25 20 0 0 ¦ Nbt 0

Npr @@ Nbt o 0 20 H I L L S Nba o o 30 0 90

@@ 26 «

@@ 4000 Â 0 « 0 0 30 0 48

3900 86 ¦ o @@ Nld @@ Nld o 10 Ncp

@@ 0 0 15 j 0

o 0 10

Qa2 « ¦ 44 0 @@ Ngf

« 10 @@

@@ Â 0 @@ 18 87 « 42 @@ 0 @@

LM96-17 ¦ Qo 80 37 @@ 80 o «

20 @@ 3300 3200 o 0 Ngb

65 74 Ü 56

j  oo  10 58  76 49 ¦

0 @@ Ü « 6 ¦ Â 80

_^ 9.99 B 75 0 Nli Nbt « Qc 90 50 Â 20 o 0 G’

44 @@ 72 Garlock Road 65 21 ¦ j ¦

Nli 4600 25 24 Nba Nba Ü

« 8 34

76 Nba 80 ¦ 40 o

o 88

@@ ¦ o o Qa2

Nbt 3600o 63 3200 @@ @@ o 0 @@ 15 20 4700 Nli 29 3300

Qa4 Â ¦ Ü

@@ 70 Nba Nld 66 @@

@@ 3800 Nap Nbt 15

Qa Â

@@ o

4000 45 j

Ä 3000 @@ Nbx  80 ¦ 10 o Nba

20 @@ o o Qg j 0 0 4100 4800 @@ 5 o 0 35 o

@@ 3900 ¦ 0 @@ 90 57 o ¦ 0 3100 30 @@

@@ @@ @@ 20 Nba 42 @@ Qa3 @@ « o

« « o @@ @@

Qa2 10 60 Nbx @@ 40 @@ o 21 45 @@ 12 Ngf

4100 @@ 0 25 50 @@ ¦ Nsb o

@@ 4200 Â 15 @@ 9 Nba 16 Qa2

Qh Nbt Nld o o o 17 Nbt @@ @@

 Nbx 25 Nbx Qt @@ 74

Qo @@ 3600 3400 45 35 47 @@ 80 38 @@

 16 0

10 00 Qa3 3900 Nbx 0 @@ 0

Qo @@ Nba o Nbx 0 71 o @@ @@ @@ 0 50

o 34 Nld o 70 Qo Qa ¦

35 Â o 50 o Savoy fault 15 o

63 0 ¦ 11 0 ¦ Nba 0 o 75 0 o Nhf 3500 50 3000 0 @@

Qa2 ¦ Nbt Nbt ¦ @@

2900 @@  @@ 73 @@ 0 60 @@ o Qa2 Ncp   « 44 @@ @@ Dome 3500 25  o26 @@ LV-G0 75 ¦ ¦ Qa3

20 Nld 60 Nbt 3200 30 @@ 75.8 LM96-16 45 Nld 0

Mountain @@ Nba 30 @@ Nld 0 9 Qa3 73.2

_ 15 « Nld @@ Nld o 69.9 @@ 21 063

^ 60 Nld o @@ Ngf

DESCRIPTION OF MAP UNITS 0 @@

Npr  0 Nba 33.2  Qp o

o 60 Nld Qa3 ¦ o

Qa Nbl 0 3000

Qo C’ 7.82 Nba @@ Nbt @@ @@ 16 Ngf ¦ Nld @@ j

25 ¦ Nld @@ 30 j 0 Ü

40 @@ 63 j

Qo Nbx 39 Qa2 0 0! @@ Nct 0

CENOZOIC o Ü 0 @@ 3100 o _^ 3400 @@ 0 Nbc 0

0 0 2900 Km @@ o Nbx 65 ¦ 0 5

Qo 25 @@ 13 Nld 0 88 290 Ncp LV0512106

Nbl 3400 Nba

Nld 76 o Kd o o o

QUATERNARY 84 LV051210-2 3700 30 0 11.7

0000 3900 o 27

o

o o 3100 ¦ ¦ Qa « 30 Qa2 Qg @@ o 27

Nbx o 50 0 @@ 19.74 Km

117°40'W Nba 00 _^ H’ 44 3600 « 25 68 63 80 o 16 0 @@ Ncp

HOLOCENE @@ 0 0 o LV-C0 Nbl @@ Km

44 « 80 o o ! Nba Km 0 Km Qa4 903800 30 80 36 63 65 Nbx 68.0 @@ Km o 10

! 49 63.2 Qa Qa2 0 0 Km @@

 o 68  Nbl 22 ¦ LV-A0 @@ 60 o @@

o Nba Nbx 0 ¦ 0 ! 5 0 4500 o

Qh Human-modified surfaces @@ 61.5 LV-B0 Qa2 @@ 60.9 82 Nsd 4400 70 Â 22 55 ¦ ¦

4300 Nbx @@ o

60 59.8 68.7 63 3200 Qa3 Qa2 68.6 Nba Kg @@ Nld ¦ -3.3 @@ @@ 10 o Nst

Qa Active alluvial deposits @@ 61.3 Nba 17 0 0 0000 separated out by Smith (2009) from what had previously been Nhx Conglomerate of exotic clasts – Poorly indurated and 0000 Nbx Kg @@ 392 392 40j 8.9 «

Nbx Nld Nbx 80 @@ 2800 Km 3300 ¦ Qp Active playa deposits mapped as Christmas Canyon Fm. (Smith, 1964). The Christmas poorly exposed conglomerates and diamictites. These have 4000 90 Qg @@

0000 Â Nbt Km Kg Kd Qg Military Boundary Kg 0

Kg 65 Canyon Formation overlies this unit with an angular abundant exotic clasts of granodiorite to quartz monzodiorite, 45 Nld @@ Km

j @@ Qg @@ 0 Qa3

Qc Active colluvial deposits 4200 Qa 55 Qc 0 2800

@@ Â Nba Nbl 0 Kd unconformity. Individual beds of this siltstone and sandstone unit calcsilicate rocks, vesicular basalt, hypabyssal igneous rocks, 4100 3800 90 Nbt 0 Brown's Ranch 90 Nbt @@ Nld ¦

0000 10 ¦¦

e 0 Qa2 Alluvial deposits 2 – Alluvial deposits that are incised and Qa 10 Kg Km Nsd 117°30'W

Wilderness Boundary ¦ o 3100 can appear similar to the parts of the Christmas Canyon Nba fault zone 46 intermediate volcanic rocks, and very dark colored, layered silicic @@ 45 0 88 Qa

2900 non-active, but without Pleistocene lake effects (i.e., wave-cut 3300 Qg Ü Qa Formation, but the clast content is different and the Christmas hornfels that are dissimilar to any adjacent bedrock exposure. 3900 35 Qg Nsd 0j 62 West 20 Km 0@@ 0o A 34 terraces, beach ridges, etc.) and without significant desert Nsd Nsb Nct E’ Kg Kg @@ o Canyon Formation everywhere has very low dips versus the Locally the clasts also include an additional assemblage of Nbt Nba 4300 F-F’ ¦ j METERS Nso

Summit Diggings Section East 0 Nsd

pavement development. Nhx Nhv Nst A 3300 Nsd 76 0

moderate to steep dips of these older siltstones and sandstones. cordierite porphyroblastic graphitic schist and hornblende 0 0 0

Nct @@ 1000 Nbt Nci 1000 3400 70 @@ 0

@@ 0000

Nst Nsc Nsb Km 65 34 Qa3 10 ¦ Qa4 Qa3 Alluvial deposits 3 – Alluvial deposits that are incised and diorite. These conglomerates occur only between the Savoy and Nst Nst Km ¦ Km o Qa

Nso Nsc METERS 30 o 47

Sediments of Teagle Wash (Pliocene(?)) Nli Km ¦¦ @@ Nsc ¦ E-E’ Teagle Wash fault 10 Km o

non-active. Desert pavement is poorly developed. This is the Garlock faults in the western Summit Range. These have been Nhx 60 Nba @@ 55 Qc Nli? Nsb Section 0 Nba Nso Nsb @@ 0 Sedimentary deposits exposed as inselbergs in Teagle Nba Km F’ Nst mgr-1 !

youngest unit cut by the last earthquake rupture on the Garlock @@ o

extensively worked and prospected for placer gold. Nbc 30 @@ Km Kd 0Nsd Km Nba @@ Km 80.0 Wash, north of the Garlock fault. All of these deposits are poorly Nbt Nba @ ¦ 0

fault. Teagle Wash fault Nba 50 63.8 These conglomerates are displaced left-laterally from their Nba? ¦ 15 5 @@ Kg Kd @@

¦10 117°20'W

cemented and have no direct geochronologic age constraints. Teagle Wash fault Nst ¦ Kg Nbt@@ @@ Qa Qa2 Qa4 Alluvial deposits 4 – Alluvial deposits that are incised and sediment source area by motion on the Garlock fault (Carter, Km 0!

These units were deposited unconformably over coherent gd-1 Km @@ 90.5 Kd non-active, with Pleistocene lake effects and greater amounts of exposures of tuff that we correlate to the lower Miocene Cudahy 1994). The clast rock types are similar to the clasts in the 500 500 86.3 Km Metasedimentary rocks of El Paso Peaks (Devonian-Cambrian) 79.7 Blackwater fault desert pavement development with some rubification and desert Paleocene conglomerate member of the Goler Formation in the El 47.6 Camp Fm. The provenance of the clasts in these deposits are D-D’ DOeu Upper member – Light gray-tan, fine-grained, siltstone C-C’

Section 15 2 8 varnish. Paso Mountains (Dibble, 1952; Cox and Diggles, 1986; Cox, 1982). Section Qa2 distinctly different from the nearby modern drainage sources of Km ¦ 00 Qa2 Qa hornfels and calcsilicate beds with intervals of interbedded blue The source for these clasts appears to be the Goler Gulch area at Km @@ Qt Tufa and travertine – Lakeshore tufa deposits and spring deposits; the Summit Range. Qa to white meta-limestone in beds 0.3-2 meters thick. These rocks the eastern end of the El Paso Mountains, north of the Garlock Qa2 spring deposits on the lava flows of the Lava Mountain Dacite to Ntc Conglomerate of clasts from Christmas Canyon area – Km are intruded by numerous granodiorite dikes up to 3 meters wide. fault (Carter, 1994). This source area interpretation is supported by SEA Km the south of the Brown's Ranch fault zone are possibly older than SEA Qa3 Arkosic diamictite with crude to well-developed bedding and the presence of placer gold and granitic clasts in both the Goler LEVEL LEVEL Km Qa3 Oem Middle member – Sequence of very dark meta-siltstone Quaternary. Km local pebble to cobble lonestones and lenses. The clast rock types Fm. and the conglomerate in Hardcash Gulch, despite no exposed @@ @@ and quartzite beds about 5 meters thick. B West Nbt Nbt Qa Kd Qo Older alluvial deposits – Alluvial and colluvial deposits that are are diverse: metamorphic rock clasts are the most abundant with Nbx 0 Kd Kd source for gold or granite in the El Paso Mountains. The volcanic Nbx O_el Lower member – Meta-limestone beds with interlayered Nbx Km 0 Kd strongly incised, have Pleistocene lake effects (wave-cut scarps quartzite, phyllite, calcsilicate hornfels, meta-argillite and clasts in the conglomerate at Hardcash Gulch are similar to the Nli Qg Nba @@ meta-siltstone beds. The carbonate beds are gray to light Nli Nbt Nli East @@ and beach deposits) and strong desert pavement development. gray-green granodioritic mylonite; felsic to intermediate B Km Km 2900 early Miocene volcanic rocks of the Cudahy Camp Fm. (Cox and Nba Nli Nli Nli Km mgr-3 bluish-gray, thin bedded and well laminated. Numerous composition volcanic rock clasts are locally abundant; a few METERS Nbx Nbx METERS @@ Kd 83.8 Qa2 Nbt F-F’ 0 Kd

Qg Terrace gravel deposits – Gravel deposits dominated by Diggles, 1986; Cox, 1987; Loomis and Burbank, 1988; Monastero et Nba H-H’ (Jurassic?) porphyritic granodiorite dikes intrude this unit. G-G’ @@ 72.8 Nba I-I’

Section @@

Nbt Section Section Km 62.6 vesicular basalt clasts occur locally; and sparse intrusive clasts 1000 Nsd Nsc Nsr Nst 1000 porphyritic dacite lava clasts from the Lava Mountain Dacite and Nba Qa2 Nst Section al., 1997). Goler Gulch is the largest drainage in the eastern El Paso Nba Nct Qg Nst Nba Nba Nsf Nbl Nsd Nba Nba 0 @@ Kd ! O_c Metasedimentary rocks of Colorado Camp (Ordovician- consist of greenish granodiorite (epidote metamorphism) and Nsd Nsc Nsb Nsc Nsr Ngh Km associated sills. These deposits infill into the breached plunging Mountains and it samples the placer gold-bearing Paleocene Nba Nsc Nsc Nsc Tcx Qa3 2900 0 Km 3100 @@ @@ Nba Nba Nsr Nbl Nsc Phd Qcf Cambrian) – One very small exposure in west of Christmas light pink alaskite. The uppermost exposed portion has a slightly Nsd Nst Nsh Nst Kd @@ Kd 0 0 anticline of units as young as Pliocene (Pleistocene?). conglomerate member of the Goler Formation and the Miocene Nba Nsp @ Nba Nsf Nsd Nst Nba Nba Nba @ Nst Km Nbf @ @ @ Nct Nbl Nct Nct Nba Nct Nx Nx Qa2 Canyon near the Little Bird fault. The outcrop consists of different clast assemblage dominated by vesicular basalt, Nsd Nsd Nbl Nct Nct Nct @ @ @ Nba @ @ Nst @ Nst Nx volcanic rocks of the Cudahy Camp Fm. @ @ Nsb Nst Nsc @ O_el Km Christmas Canyon Formation (middle Pleistocene) [Smith 1964; @ @ Nst Nct @ @ @ @ Phc mgr-2 brecciated gray to tan meta-limestone and poorly exposed porphyritic dacite and white, flow-banded rhyolite. Rare clasts of Nsc Nsc @ @ Nct @ Jl *b ! 0 Nsr Nst Phd @ P*hb DOeu Km ! 76.3 0 Qa3 Spaly of Northern Nsc Nsd Nct @ | Pgg Jl *b redefined by Smith, 2009; redefined herein] Smith (2009) Nhd Conglomerate of dacite clasts – Conglomerate of Nsb Nsb Ncp | Pgg @ 35°24'N 73.7 brecciated black meta-chert. graphitic schist with alumina-rich porphyroblasts were noted by Blackwater fault Km Nct Nct Nsc | Pgg 73.3 Qa2 35°24'N

Nst Nsb Nsc Little Bird fault *b estimated ages of this formation to be 0.30 to 1.3 Ma. coarse-grained, poorly lithified felsic lava clasts. These clasts are 3000 500 Splay of Northern Nsb Dg 500 Carter (1994), which he correlated with a porphyritic schist in the Nsb Qa3 References flow-banded rhyolite with a white to very light tan color. The clasts Km Km Blackwater faultNsp Km O_el Oem Qcf Fluvial member – Conglomerate and sandstone, up to 15 El Paso Mountains [the Mesquite Schist of Dibblee (1952)]. Carter Km Km Km Qa2 Bryant, W. A. (compiler), 2005, Digital Database of Quaternary and Younger Faults | Km are most similar compositionally and texturally with rhyolitic Km Km Km meters thick of poorly sorted coarse to very coarse sand in (1994) interpreted this conglomerate deposit as being derived Km O_el from the Fault Activity Map of California, version 2.0: California Geological Survey portions of the early Miocene Eagle Crags volcanics (Sabin, 1994) Km Km Qa2 moderately well-indurated matrix. The color is mostly from the Paleozoic to Pliocene geologic units of the Christmas Nsp Kd Qa2 Web Page, ; (11/11/11) yellowish-brown with less abundant pale red. The matrix is Canyon area, in the NE Lava Mountains. If this correlation is correct | Section

arkosic sand. These occur only in a small area just west of the Blackwater fault Carr, M.D., Christiansen, R. L., Poole, F. G., and Goodge, J. W., 1997, Bedrock geologic strongly altered to clay. There are 5 to 50% pebbles, cobbles, and this conglomerate deposit was displaced ~17 km along the SEA Splay of Northern SEA boulders. Notable clast rock types are rounded, fresh-appearing Garlock fault from its sediment source in Christmas Canyon area, railroad tracks in the Summit Diggings area. They are deposited LEVEL LEVEL map of the El Paso Mountains in the Garlock and El Paso Peaks 7.5' quadrangles, Kern County, California: U.S. Geological Survey Miscellaneous Investigations Map black vesicular basalt clasts. The depositional flow direction was on the south side of the Garlock fault. This unit occurs above the directly on the Bedrock Spring Fm. and they are overlain by the exotic clast conglomerate of Hardcash Gulch. I-2389, 1:24,000 with pamphlet. toward the west-southwest, roughly parallel to the Garlock fault. coarse volcanic breccia deposit. Carter, B., 1994, Neogene offsets and displacement rates, central Garlock fault, Qcl Lacustrine member – Lacustrine siltstone and sandstone Ntv Volcanic breccia deposit – Breccia deposit of cobbles to Sediments of Golden Valley (Pliocene(?)) Sedimentary deposits, California, in McGill, S.F., and Ross, T.M., eds., Geological investigations of an active beds with interbedded thin layers of pebble. The beds are boulders of mostly volcanic rocks. The most common clast rock younger than the Late Miocene Bedrock Spring Formation that portions of this conglomerate commonly have abundant round derived from the older Bedrock Spring Formation with the Nli Vitrophyric intrusions – Thin to thick sills of dark the sedimentary rocks of the Bedrock Spring Fm.] Nbl Lacustrine facies – Limestone, altered tuffaceous arkosic dominant phenocryst mineral, with lesser amounts of biotite and orthopyroxene and hornblende are present in lesser amounts. the conglomeratic facies of the Paleocene Goler Formation. We Nci Andesitic porphyry intrusion – Fine-grained equigranular Kd Diorite – Medium to coarse-grained medium to dark gray-green Pgg Andesite of Goler Gulch (Permian) – Two small outcrops of margin: Redlands, California, San Bernardino County Museum Association, p. sub-horizontal and commonly weather to a light greenish color. type is reddish weathering, silicified flow-banded rhyolitic breccia. occur in the eastern Lava Mountains. clasts of rhyolitic volcanic rocks. A thin tuff from the top of this addition of a component of coarser material derived from the green-gray dacite with vitrophyric textures; usually has Nap Fine-grained felsic porphyry – Nearly aphyric light-gray sandstone, silicified tuff, carbonate-replaced ash tuff and chert hornblende and possibly pyroxene. This unit is distinct from an Quartz phenocrysts are rare. Many of these lavas are relatively interpret the coarse material may be recycled from the Paleocene groundmass plagioclase and hornblende porphyritic rock of diorite occurs as lenses and pods within monzogranite and medium to medium-fine grained equigranular diorite. Light 348–356. Cox, B.F., 1982, Stratigraphy, sedimentology, and structure of the Goler Formation This unit is interpreted to have been deposited in a nearshore Other common rock types are coarsely vesicular basalt, Ngb Conglomerate of basalt boulder clasts – Cobble to interval has an Ar/Ar hornblende age of 8.0 ±0.2 Ma (Rittase, Goler Formation in the El Paso Mountains. well-developed cooling columns. These vitrophyres are often silicic rock with steep contact relations with adjacent Bedrock beds. These lacustrine units occur locally in the otherwise fluvial older bluish porphyritic dacite by the strong flow-banded platy crystal-rich with coarser plagioclase crystal up to 3 mm long. Most units. intermediate composition. Most of this unit is propyllitically granodiorite. gray-green color probably due to low greenschist grade unpublished data), but this hornblende may be detrital. This unit crystal-rich with phenocrysts of feldspar and hornblende with or units of the Bedrock Spring Formation. They only occur on the texture, dark red-tinted color and associated abundant of these are bluish colored, due to partially devitrified glass altered that destroyed and replaced the minerals and textures. metamorphism. These exposures are similar to the hypabyssal (Paleocene), El Paso Mountains, California: Implications for Paleogene tectonism environment. An ash correlated with the 604 ka Lava Creek B ash fine-grained basalt, and flow-banded rhyolite lava. A few intrusive boulder conglomerate of very fresh-appearing, dark-colored, MIOCENE Spring Fm. Steeply dipping, possibly concentric, flow foliation Nsb Basalt flows – Basalt lava flows exposed in three places: Km Atolia monzogranite – Coarse-grained, light pink biotite-bearing on the Garlock Fault [Ph.D. dissertation]: University of California-Riverside, 248p. (Smith, 1964) from the Yellowstone Caldera occurs 1 meter below rock clasts (monzogranite and granodiorite boulders) occur vesicular basalt clasts. The basaltic clasts are most concentrated in occurs below the basalt boulder conglomerate and locally above without biotite. These rocks weather to a distinctive blue-gray fabrics are present. south side of dacite domes of the older Summit Range Sequence. flow-breccia. These flows appear to be slightly more mafic than content. A few localities preserve vitrophyric textures. Some lavas western Summit Range, northeastern Lava Mountains and Black This unit appears as a massive textured, grayish-colored masses of monzogranite. This unit correlates with the Late Cretaceous Atolia intrusions related to and intruded into the Andesite of Goler the metamorphic clast conglomerate. The boundary between the Lava Mountain Dacite (upper Miocene) [Smith, 1964; redefined color. Sills of this unit are generally parallel to bedding, but locally We interpret a local lacustrine facies environment located on the the lower bluish dacite flows, chemically they classify as andesites. weather to light pink, these are probably the most devitrified poorly exposed silicic rock. THis porphyry has a (U-Th)/He age of Gulch in the El Paso Mountains. One exposure shows intrusive Cox, B.F. and Diggles, M.F., 1986, Geologic map of the El Paso Mountains wilderness the top of the lacustrine facies. locally. The clasts in this unit are similar to rocks present at an lag gravels at the top of exposures. This unit is generally the herein] Nai Porphyritic felsic dikes – Porphyritic dikes of light gray to Hills. The basalt lava in the Summit Range and Lava Mountains are quartz monzonite (Hulin, 1925; Smith, 1964). A U-Pb zircon age of study area, Kern County, California: U.S. Geological Survey Miscellaneous Field isolated hill and nearby outcrops just west of highway 395, ~8 km uppermost unit of the sediments of Golden Valley, but locally this conglomerates is indistinct in many places, especially the cut bedding obliquely. The sills range in thickness from 2 to 140 m. upstream side of topographic sills of the dacite domes. This A sample from the northeast Lava Mountains yields a U-Pb zircon portions of the lava. These lavas grade locally into coarse generall ythin, with only one flow unit exposed. They vary from 15.9 ±1.3 Ma based on 5 zircon fractions (Walker and Monastero, 86.5 ±5.5 Ma (Walker and Monastero, unpub. data) fits with 64 km relations into units correlated with member D of the Studies Map MF-1827, scale 1:24 000. NEOGENE southeastern boundary. Nld Dacite lava flows – Thick, medium to dark-gray, porphyritic Smith (1964) mapped these as 'Quaternary andesite' based partly light orangish-gray, finely-porphyritic dikes intruding the Atolia interpretation fits with the northward depositionalLM1132 flow direction age from chemical abrasion thermal ionization mass (abundant boulder-sized clasts) volcanic breccias of similar dacite unpublished data). The ages of the (U-TH)/He zircon fractions metasedimentary rocks of Holland Camp. This unit may better to the NW of the of the map area. unit caps older units. The basalt boulder conglomerate has been quartz monzonite, north of the Savoy fault. Phenocrysts of slightly porphyritic to coarsely porphyritic basalt lava flows and restoration of slip on the Garlock fault to put these rocks adjacent Dibblee, T.W., Jr., 1952, Geology of the Saltdale quadrangle, California: California PLIOCENE lava flows and flow breccias usually capping mesas. Most of these on exposures interpreted to represent a lava flow edge. These of the fluvial parts of the Bedrock Spring Formation (Smith, 1964; spectrometry (CA-TIMS) of 10.490 ±0.054 Ma (Th-corrected). lava. These dacite lavas have dome-like aspects, the outcrop varied from 13.1 to 17.1 with three fractions giving the ages of correlate with Jurassic age intrusions such as those interpreted to Division of Mines and Geology 160, 66 p. Ntd Conglomerate of dacitic clasts – Pebble to boulder deformed into a broad east-northeast plunging anticline with Ngx Conglomerate of exotic clasts – A sequence of feldspar ~1 mm across occur in a very fine grained groundmass. A flow breccias and there are a few plagioclase porphyritic to similar age granitic rocks in the southeastern-most Sierra have phenocrysts of plagioclase and hornblende in a dark 'roll-over' structures [Fig. 16 in Smith (1964)] are instead this study). We envision local topographic dams created by the pattern indicates short and thick flows that grade laterly into ~16.9 Ma; so we interpret that this intrusion is at least that old and occur farther to the east, but the spatial association with other Dibblee, T.W., Jr., 1967, Areal geology of the western , California: US Npr Conglomerate of volcanic clasts from Red Mountain – Coarse conglomerate/breccia of intermediate volcanic clasts, gently dipping limbs. The source for the basalt clasts is interpreted conglomerate containing clasts of dominantly metamorphic sample of these dikes yields a U-Pb zircon age from chemical Nsp Felsic porphyry – Porphyritic felsic rock with less than 10% basaltic-andesite lava flows. These lava flows are are slightly Nevada Mountains [95-85 Ma Dome Mountain intrusive sequence conglomerate containing cobble to boulder clasts of medium to be from basalt lava flows capping the mesas of the Black Hills, rocks that overlies rocks the Bedrock Spring Fm. and locally the greenish-gray matrix and with strong platy parting. It appears to interpreted to be the lateral ends of sills into the Bedrock Spring presence of lava flows and dome units of the older Summit Range phenocrysts of plagioclase and biotite. There are strong planar breccia. A sample from the northeast Lava Mountains yields a altered to dark gray-green or grayish-red and have amygdules therefore likely to be 18-19 Ma as are other nearby units and of Saleeby et al. (2008)]. Permian rocks fits with the Andesite of Goler Gulch. Geological Survey Professional Paper, P-522, 153 p. field-classified as porphyritic dacites. The clasts are light blue to abrasion thermal ionization mass spectrometry (CA-TIMS) of 7.797 Fife, D.L., Ruff, R.W., Unruh, M.E., 1988, Late Tertiary epithermal(?) gold mineralization gray-colored intermediate composition volcanic rocks. The largest southeast of the study area (Smith, 2009; this study). This source Lava Mountain Dacite. This unit is a gray to tan pebble to cobble be one flow unit generally 80 to 130 meters thick, west of the map Fm. Chemically these are dacites with similar geochemical Sequence to block north-flowing streams, creating small lakes fractures that follows a generally very steeply dipping U-Pb zircon age from chemical abrasion thermal ionization mass with remnant vugs. Two basalt samples from the Summit Range across the region (Sabin, 1994; Monastero et al., 1997). Metasedimentary rocks of Holland Camp light purple with abundant feldspar crystals in fine silica-rich area the thickness is less than 80 meters (Smith, 1964). Originally signatures to the Lava Mountain Dacite porphyritic lava flows ±0.047 Ma (thorium-corrected). Many of these units are too thin to which deposit limestone and alter and cement underlying tuff spectrometry (CA-TIMS) of 10.966 ±0.042 Ma (Th-corrected). A associated with the Garlock fault zone, Christmas Canyon Quadrangle, San clast noted was 6 meters in diameter. The volcanic clasts are matrix. The clasts are relatively angular and occur from fine interpretation is based on the relatively unique fresh appearance diamictite of mixed angular clasts of metasedimentary rock, map as units and appear on the map and cross section as lines. flow-foliation. This rock is rhyolitic based on geochemical analyses have Ar-Ar groundmass ages of 11.93 ±0.14 and 12.74 ±0.05 Ma. Nct Ash tuff – Well bedded felsic ash and lapilli tuffs occur at Phd Member D (Permian) – Laminated dark blue-gray and Bernardino county, California: in Geology of the Death Valley Region, South Coast porphyritic, varying from fine to medium-grained phenocrysts. A of the basalt clasts, compared to other basalts in the area. A granodiorite, felsic hypabyssal and vesicular basalt in a matrix of termed the Lava Mountain Andesite, but geochemically these are (using the data of Smith et al., 2002), and are interpreted to be the and arkose beds. There are a few other localities of lacustrine units (Smith,1964; Smith et al., 2002). There are abaundant colluvial sample from southeastern Summit Range has an Ar-Ar biotite age The basalt lava flows in the Black Hills are distinctly different with the base of the Cenozoic section across the map area. They are JURASSIC sand-sized up to 2 meters across. The matrix is generally light gray dacites (Smith et al., 2002). These have phenocrysts of plagioclase intrusive equivalent to these lava flows. U-Pb zircon ages from Bedrock Spring Formation (upper Miocene) [Smith, 1964; in the Bedrock Springs Fm. farther south within the Brown's Ranch of 10.66 ±0.12 Ma (sample LM96-15 of Smith et al., 2002). light-gray meta-argillite interlayered with light gray to pink Geological Society, Gregory, J. and Baldwin, E.J., eds., p. 397-407. small percentage of the clasts are altered to a greenish color. The arkosic sand. At least one light gray to white felsic tuff bed occurs sample of these fresh basalt clasts has an Ar-Ar groundmass age of coarse arkose. The matrix is often orange to red-colored. The carapaces, but a definitve intrusive contact is exposed where it a fresh appearance and multiple flow units up to ~800 meters exposed only where a younger lava units cap them to protect Jl Laurel Mountain quartz diorite – Dikes and small stocks of marble. A few beds calc-silicate or calcareous meta-siltstone occur Hulin, C.D., 1925, Geology and ore deposits of the Randsburg Quadrangle, California: matrix to this unit is the same composition as the coarse clasts. 11.62 ±0.11 Ma which closely matches the age of similarly metasedimentary clasts are of chert, metacarbonate, hornfels, along with subordinate biotite, hornblende, pyroxene and sparse chemical abrasion thermal ionization mass spectrometry method redefined herein; the Almond Mountain volcanic rocks of Smith fault zone that correlate to similar upstream locations of where intrudes into a conglomerate from the Summit Range sequence. Nsm Megacrystic dacite lava – Crystal-rich dacite with cumulative thickness. The groundmass is black with phenocrysts them from erosion. In the Black Hills, northeastern Lava porphyritic diorite to quartz diorite. These units intrude Paleozoic California State Mining Bureau Bulletin 95, 152 p. in this unit as a bed 1-2 meters thick, feldspar-rich with variable quartz. Vesicles are locally abundant. Smith (1964) interpreted (CA-TIMS) give a crystallization age of 6.507 ±0.070 Ma (1964) and Smith et al. (2002) are interbedded with the volcanic/debris flow units within the Bedrock Spring Formation in these exposures. This unit yielded the only Paleozoic fossils Locally there are sand to cobble-sized material of light pink to crystal contents. Some of the layers in this tuff bed are rich in fresh-appearing, vesicular basalt lava flows that occurs in the meta-argillite, quartzite and distinctive porphyroblastic graphitic Nsh Lithic-rich felsic tuff – Pumice lapilli to block tuff with megacrysts of orthoclase up 10 cm long. This rock occurs in a of small plagioclase laths and olivine and possibly clinopyroxene. Mountains and Christmas Canyon areas they are commonly metasedimentary rocks in the Christmas Canyon area. These untis found in the Lava Mountains; crinoid stem fragments. Jennings, C.W., 1994, Fault activity map of California and adjacent areas, with rocks near Dome and Almond Mountains as vent facies (the edge (Th-corrected). One of these sills has an Ar-Ar age of 7.13 ±0.68 Ma sedimentary rocks of the Bedrock Spring Fm.] created topographic dams. locations of recent volcanic eruptions: California Division of Mines and Geology white monzogranite and rare clasts of biotite-bearing, pumice lapilli. The sedimentary source of the porphyritic dacite Black Hills (unit Nsb), ~5 km to the southeast. Other clasts types schist. One clast of fossiliferous meta-limestone was found with abundant lithics. This tuff is usually greenish-yellow colored. The dome-like mass in the western Summit Range, adjacent to the The vesicles are coarse and very abundant. An Ar-Ar age from bright white colored with local beds containing lithic clasts of are similar to the Laurel Mountain quartz diorite in the eastern El of the Dome Mountain intrusion is included on this map). Smith et (reinterpreted biotite from sample 96-2 of Smith et al., 2002). Phc Member C (Permian) – Low-grade metamorphosed Geologic Data Map 6, 92 p., scale 1:750,000. white-colored pumice. The source for the clasts in this deposit clasts is not clear, but these clasts appear similar to the upper occur in this unit, similar to the clast types present in the other abundant crinoid stems and ductile deformation. Placer gold was Nbx Volcanic debris flow deposits – Debris flow deposits or Nbf Tuffaceous arkose – Tuffaceous arkose with lesser lithic clasts are typically of dark green medium to coarse-grained Garlock fault. A similar megacrystic dacite is poorly exposed in a groundmass is 11.66 ±0.06 Ma. All three exposures of basaltic lava quartz monzonite, hornblende diorite and brownish flow-banded Paso Mountains (Carr et al., 1997). The Laurel Mountain pluton in appears to be the Late Miocene Almond Mountain Volcanics conglomerates of the sediments of Golden Valley. Locally, the top mined from this unit (Fife et al., 1988). The placer gold may be al. (2002) published a biotite Ar-Ar age for this unit of 6.4 Ma The western Summit Range has a set of intrusive units that lahars of purple porphyritic dacite lava clasts interbedded with amounts of lapilli tuff, arkose, pebble conglomerate and siltstone. small mostly buried outcrop in the northeastern Lava Mountains. flows commonly cap bedded felsic tuffs which are elsewhere rhyolite. In the western Summit Range these tuffs have a purple the El Paso Mountains intrudes similar Paleozoic rock units (see conglomerate, sedimentary breccia and arkosic sandstone. Clasts Loomis, D.P. and Burbank, D.W., 1988, The stratigraphic evolution of the El Paso Basin, Miocene lavas in the Summit Range and Lava Mountains, just granodiorite and diorite. Locally there are abundant dacite lava : Implications for Miocene development of the Garlock fault exposed a few kilometers to the southeast in the western Lava surface of this unit is reworked into a lag deposit. locally derived from gold deposits in the adjacent Paleozoic rocks, (sample LM1132) from the Browns Ranch fault zone. We we correlate to the sills of the Lava Mountain Dacite. These sills are arkosic and tuffaceous units. A few of these debris flow units have Light gray-colored tuffaceous beds occur with thicknesses A sample from the Summit Range megacrystic dacite lava dome poorly preserved or inferred to have been eroded away. color. Several similar units occur on the north side of the Garlock the descriptions for the Paleozoic rocks below that we also noted are meta-siltstone, meta-limestone, calc-silicate, quartzite, south of the Garlock fault. A likely clast source is the upper reinterpret an age of 5.91 ±0.46 Ma. The two areas of these lava clasts and with granitic clasts. Biotite is abundant in the matrix. meta-chert and meta-pumice. The matrix varies from sand to clay and uplift of the Sierra Nevada: Geological Society of America Bulletin, v. 100, p. Mountains and at Red Mountain. The dacites and andesites at Red Miocene dacite lava domes of the Summit Range volcanics that Ngv Conglomerate of felsic volcanic clasts – Light-colored, but Fife et al. (1988) interpreted the sediment source for the placer dacites (Monastero, unpub. data) and vitric, but distinctly different erosive bases, others have mixed dacite lava with felsic pumice generally between 5 and 20 cm thick and interbedded with Bedded with beds 1 to 20 cm thick. Locally lithophysae are has an Ar-Ar biotite age of 11.24 ±0.43 Ma and a sample from the Cudahy Camp Formation and Eagle Crag Volcanics (lower fault that are bright white, well-bedded ash tuffs that we correlate correlate to the eastern El Paso Mountains). 12-28. Mountain have distinctive hydrothermal alteration (Smith, 1964; deposits as being from the NW, in the now displaced El Paso flows may be left-laterally offset up to ~4 km along the Brown's in appearance from the crystal-rich vitrophyric sills we correlate lapilli and blocks. The clasts range from pebbles to blocks 1-2 arkose. Many of the beds weather with 'popcorn' textures because northeast Lava Mountains has an Ar-Ar sanidine age of 11.221 to the Early Miocene Eagle Crags Volcanics and Cudahy Camp size. Alteration is common as orange to red color of outcrops. occur in the NE Lava Mountains. This source is now left-laterally coarse cobble to boulder conglomerate locally below basalt-clast Ranch fault zone. U-Pb zircon ages from chemical abrasion present, recording vapor phase crystallization and devitrification Miocene) [correlated based on stratigraphic relationships, Monastero, F.C., Sabin, A.E., and Walker, J.D., 1997, Evidence for post-early Miocene Dibblee, 1967). displaced by subsequent motion on the Garlock fault. boulder conglomerate. The clasts in this deposit are dominantly Mountains. The ultimate source of the placer gold is probably the with in the Lava Mountain Dacite. The Summit Range vitrophyres meters across. Some of these units have weakly expressed thick of the alteration of ash to water absorbing clays. of welded tuff. ±0.018 Ma. geochemistry and age (Monastero et al., 1997)] Formation. Monastero et al. (2002) interpreted the presence of P*hb Member B (Permian and Pennsylvanian?) – Mostly gray initiation of movement on the Garlock fault from offset of the Cudahy Camp initial sediment derived from erosion of the Sierra Nevada thermal ionization mass spectrometry method (CA-TIMS) give a are finer grained with phenocrysts consisting of 2 mm long bedding, with variations in clast size and relative percent matrix. buried Cudahy Camp Formation in the same area of Teagle Wash PALEOZOIC phyllite to meta-siltstone locally with thick bedded, gray to Formation, east-central California: Geology, v. 25, p. 247-250. Nps Siltstone and sandstone older than the Christmas Canyon Nta Arkosic sand – Poorly cemented arkosic sandstone with rounded felsic volcanic rocks, but locally there are minor basaltic crystallization age of 6.522 Ma ±0.026 Ma (Th-corrected). Nbc Conglomerate – Cobble conglomerate with abundant Nsf Tuffaceous arkose –Tuffaceous arkose with lesser Nso Older dacite lava – Fine-grained and crystal poor light gray Ncx Silicified dacite breccia – Silicified breccia deposits of Formation – Well-bedded, poorly-cemented, coarse to clasts. The rounded felsic volcanic rock clasts occur up to 1.5 m in batholith, but we interpret the immediate source of the placer needles of hornblende and fine plagioclase laths. These units The matrix is similar to the composition of the clasts, only finer round cobbles to boulders of coarse-grained monzogranite and dacite lava occurs at one dome and related lava flows in the from seismic data. Several of these tuffs occur in the Garlock fault | Paleozoic metasedimentary rocks – Undifferentiated low-grade blue-gray meta-limestone. Commonly altered to orange and Monastero, F.C., Walker, J.D., Katzenstein, A.M., and Sabin, A.E., 2002, Neogene sparse pebbles and rare cobbles. This deposit is light-colored and amounts of ash tuff, lapilli tuff, arkose, pebble arkose, pebble pebble to cobble-sized, fine-grained, massive lava clasts. The evolution of the , east-central California, in Glazner, A.F., Walker, fine-grained arkosic siltstone and sandstone with thin pebble to diameter. The most likely source of the felsic volcanic clasts is the gold and sediments from erosion of the Goler Fm. in the El Paso Nla Andesite(?) lava flow – A set of distinctive red-colored, intrude rocks of the Bedrock Spring Fm. and dacites belonging to grained. One locality has extremely coarse blocks with the largest felsic volcanic rocks; similar to a conglomerate in the Summit western Summit Range, below the megacrystic dacite lava (Nsm). zone, these tuffs are strongly oxidized to red colors. metamorphic rocks occur in the Christmas Canyon area. These are yellow. contains light pink potassium feldspar grains. Outcrops of this conglomerate and siltstone. The matrix for all of these units is clasts are typically light greenish or reddish-colored. The color is J.D., and Bartley, J.M., eds., Geologic Evolution of the Mojave Desert and cobble-rich layers. Burrow casts are locally abundant in the early Miocene Cudahy Camp Fm. (Monastero et al., 1997) in the El Mountains (see discussion under exotic clast conglomerate of plagioclase porphyritic lava flows with pilotaxitic flow textures the volcanics of the Summit Range. Vitric textures occur in the being 30-40 meters across. This locality is close to the volcanic Range sequence (Nsc) and may be reworked and redeposited Feldspar and biotite phenocrysts are generally ~1 mm long. A Nx Sedimentary breccia [older than lower Miocene] – Diamictite and dominantly meta-siltstone, with or without meta-limestone *b Metasedimentary rocks of Benson Well (Pennsylvanian) – unit typically have a caliche crust. The most common pebble clast Hardcash Gulch, above). Carter (1994) also interpreted the source occurs in two locations in the map area. One set of these lavas is eastern exposures but farther west the groundmass is light tan center interpreted by Smith et al. (2002) so these blocks could be generally tuffaceous. This unit is well-bedded from a few cm to 20 due to pervasive alteration that also destroys many of the interbeds, although locally meta-limestone beds predominate Southwestern Basin and Range: Boulder, Colorado, Geological Society of America finer-grained arkosic sandstone. There are locally white, Paso Mountains across the Garlock fault. from this older unit. sample from the lava dome has an Ar-Ar biotite age of 11.37 ±0.10 breccia of angular pebble to boulder-sized clasts derived from the Interbedded light blue meta-limestone and well bedded, dark to Memoir 195, p. 199–228. type is a medium to coarse-grained light pink-gray monzogranite. for the clasts in this conglomerate to have been from the El Paso the northeast Lava Mountain Dacite lava flows in the Lava and opaque due to devitrification. We correlate these hornblende proximal deposits related to collapse of an lava dome. Generally cm thick. Pebble and cobble clasts are mostly granodiorite, phenocrysts. Geochemical analyses indicate these are dacites. The [meta-siltsone, meta-limestone, etc. rock names based on fine-grained layers that appear to be lacustrine deposits. Thin This is deposited nonconformably over Jurassic diorite. Ngh Conglomerate of hornblende diorite clasts – Cobble Nba Arkose, pebble arkose and siltstone – Dominantly arkose monzogranite and intermediate volcanic. Ma (sample GFZ-85 of Smith et al., 2002). clasts are strongly cemented with silica leaving abundant pore underlying Paleozoic metamorphic rocks and granodiorite dikes. light colored meta-siltstone. Bedding is typically on a centimeter Sabin, A. E., 1994, Geology of the Eagle Crags volcanic field, northern Mojave Desert, (5-20 cm thick), light-colored clay-rich layers are locally common Mountains. Carter (1994) correlated porphryoblastic graphitic Mountains, in the hanging wall of the Savoy fault. The other is in needle-bearing vitrophyres to the sills of the Lava Mountain these are well-indurated and have cavernous weathering The matrix is typically reddish fine sand. Much of this unit is terminology of these weakly metamorphosed rocks by Carr et al. scale and the interlayering of meta-siltstone and meta-limestone China Lake Naval Air Weapons Station, California [Ph.D. thesis]: Golden, Colorado Conglomerate of Hardcash Gulch (Pliocene(?)) Coarse-grained conglomerate to sandstone diamictite of abundant schist clasts in this deposit with the Mesquite Schist in the western the south-central Summit Range just west of the Trona-Red Dacite based on the similar mineralogy and intrusive textures. and pebble arkose with local layers of significant amounts of Nsx Volcanic debris flow deposit – Unsorted porphyritic Nst Felsic tuff and pumice lapilli tuff – Well bedded, light space between angular clasts. Similar silicified breccias of volcanic (1997) in the nearby El Paso Mountains]. The undifferentiated and are interpreted to have been ash layers. Superficially, this unit hornblende-diorite clasts, generally pebble to cobble size, but interbedded 5-15 cm thick light gray-brown siltstone. Cobble gray, felsic, pumice-lapilli tuff beds with lesser ash tuff. Locally rocks (basaltic and rhyolitic) occur as clasts in deposits north of pebble to cobble sized clasts of weakly metamorphosed siltstone occurs on 10-15 cm scale. Much of the exposure of this unit is School of Mines, 209 p. resembles the Bedrock Spring Formation, but the clast sedimentary deposits in the central and western Summit Range, El Paso Mountains. The sedimentary flow direction interpreted Mountain Road in the footwall of the Savoy fault. Both of these relationships. Two biotite samples, one from the western Nbt Lapilli tuff and ash tuff – Beds of lapilli and lesser ash tuff. breccia deposits of clasts of bluish medium-gray porphyritic and limestone, but one outcrop included in this unit is composed designation is used only for a few poor exposures and for depth altered to an orange color along with local strong fracturing and Saleeby, J., Ducea, M.N., Busby, C., Nadin, E., and Wetmore, P.H. , 2008, Chronology of between the Garlock and Savoy faults. These have exotic clasts locally coarser clasts up to 1.5 meters. Other abundant clasts are from sedimentary textures was to the north. This unit is similar to flows have associated black vitrophyric blocks below them or in devitrified dacite and another from the eastern vitrophyre of the conglomerate beds are locally abundant, but are poorly dacite lava clasts. These rocks are mostly clast-supported, but a there are abundant pebbles and cobbles of felsic and the Garlock fault, to the north of the Summit Range. Two samples projections in the cross sections. pluton emplacement and regional deformation in the southern Sierra Nevada compositions are very different. The pebble to cobble clasts in this felsic volcanic, basalt, metasedimentary clasts and coarse-grained Many are white or light blue colored, one thicker tuff unit in the cemented. The cobble clasts are notable for abundant intermediate volcanic rocks and granodiorite in the tuff. of this unit from the Christmas Canyon area have Ar-Ar solely of quartzite clasts. These deposits appear well bedded from brecciation. The limestone-bearing metaconglomerate member unit are diverse, including vesicular basalt, dacite, retrograde that have no nearby bedrock source area. the exotic clast conglomerate of the sediments of Hardcash Gulch. their lower exposures. The Summit Range exposures occur with Summit Range, have Ar/Ar ages of 7.29 ±0.11 and 7.24 ±0.83 Ma upper portion of the Bedrock Spring Formation is greenish to few exposures show matrix supported textures. These rocks are afar, but the beds are typically poorly distinguished up close. Additional low-grade metasedimentary rocks are exposed at a few present in the El Paso Mountains was not found in the Christmas batholith, California, in Wright, J.E., and Shervais, J.W., eds., Ophiolites, Arcs, and monzogranite. The basalt clasts vary from fresh-appearing, black, coarse-grained monzogranite and felsic volcanic rocks. Sparse groundmass ages of 19.00 ±0.22 and 19.37 ±0.04 Ma. Batholiths: A Tribute to Cliff Hopson: Geological Society of America Special Paper metamorphosed granodiorite and metasedimentary rocks Conglomerate of basalt clasts – Basalt clast conglomerate The top surface of this unit is commonly a lag surface, which is an apparent disconformity above 10-11 Ma dacite lavas and (Walker and Monastero, unpublished data). The ages are slightly pinkish colored. Many of these tuffs have abundant fine-grained generally bluish-gray, possibly due to original, high glass Nsc Cobble conglomerate – Conglomerate with abundant small exposures along the Garlock fault in the western Summit Canyon area. Nhb coarsely vesicular basalt to reddish, oxidized and altered, slightly tuffaceous beds occur locally; some beds in upper half of unit MESOZOIC 438, p. 297-427. (marble, meta-argillite and quartzite). The Bedrock Spring similar to that in the eastern Lava Mountains, but the basalt clasts now uplifted and actively being incised. associated rocks of the volcanics of the Summit Range. The Lava younger than the Almond Mountain volcanics and slightly older biotite. Several of these tuffs contain lithic pebbles to boulders of contents. Phenocrysts are biotite, plagioclase and pyroxene very round cobbles to boulders of coarse-grained monzogranite Ncp Porphyritic intermediate composition lavas – Thick Range. These Summit Range Paleoozic rocks are likely an vesicular basalt. Many of the clasts are well-rounded and polished; Mountains exposures occur on top of arkosic sandstones of the than the Lava Mountain Dacite, but we interpret them to better have purple or red dacite pebbles or cobbles. (hornblende also?). The matrix is a similar composition to the and a variety of felsic volcanic rocks. There are sparse clasts of basaltic-andesite and andesite lava flows that occur throughout CRETACEOUS Dg Metasedimentary rocks of Gerbracht Camp (Pennsylvanian) – Smith, E.I., Sánchez, A., Keenan, D.L., Monastero, F.C., 2002, Stratigraphy and Formation has a very different clast rock type assemblage: clasts are more altered and appear distinctly different from the fresh Nga Arkosic sandstone – Beds of poorly indurated arkosic abundant dark green schist. These lithics may be clasts ripped up allochthonous fault sliver along the Garlcok fault Geochemistry of volcanic rocks in the Lava Mountains, California: implications for the largest clast observed is a 2 meters diameter clast of Bedrock Spring Formation. The relationship with the vitrophyre is correlate with the sills of the Lava Mountain Dacite because they Summit Range Sequence (middle to upper Miocene) [defined clasts but is fine grained and appears lighter in color. These are hypabyssal felsic rocks and metamorphic rocks. Most clasts are the map area as small exposures at the base of the Cenozoic Interbedded light blue-gray to light blue meta-limestone, of monzogranite and intermediate composition volcanic rocks in basalt clasts present in the eastern Lava Mountains. Other clasts coarse-grained monzogranite. The lower portions of the exposed sandstone with a few thin layers of pebbles and cobbles. The from the country rock below this area: the Rand Schist. A sample Kr Rand Schist – after Dibblee (1967). Only on cross section, inferred Overall the Paleozoic rocks in Christmas Canyon correlate gray-brown to dark brown meta-siltstone and light tan-green the Miocene development of the Garlock Fault: Geological Society of America the topmost beds. The bedding textures indicate that the are mixed in with the basalt clasts: metasedimentary clasts clasts are of felsic to intermediate composition volcanic rocks with poorly exposed but may be the lower portions of a thick flow or are the only known, relatively young vitrophyre with intrusive of a similar tuff unit 2 km to the west of the map area has an Ar/Ar herein; these are named after rocks exposed in the Summit interpreted to be volcanic debris flow deposits, lahars or very rounded and polished. The matrix is brownish to reddish section. Several of these are purple dacite lava with from mapping by Dibblee. Exotic clasts of this chlorite-quartz Memoir 195, p. 151-160. strata often have a higher proportion of metamorphic rock clasts shallow-level related intrusions. At least some of the vitrophyre relationships in the region. Diggings area of the Summit Range] block-and-ash flows. arkosic material. This unit often occurs on top of the 11-12 Ma autobrecciation textures. Phenocrysts are coarse plagioclase (0.4 left-laterally across the Garlock fault to similar rocks in the El Paso calc-silicate. All of these units are well-bedded. The sedimentary flow direction was to the north. (generally calcsilicate hornfels, dark meta-chert, bedded with notable quartzite, meta-siltstone, dark-green schist, black sparse metasedimentary clasts and rare clasts of monzogranite. age of 7.82 ±0.22 Ma (‘Ta’ sample LM96-16 of Smith et al., 2002). A schist unit occur in the lapilli tuffs within the Bedrock Spring Fm. Mountains as defined by Carr et al. (1997). This correlation is based meta-limestone typically has beds of ~1 cm. Smith, G.I., 1964, Geology and volcanic petrology of the Lava Mountains, San meta-argillite and quartzite), intermediate-composition volcanic The direction of sediment transport interpreted from sedimentary occurs as coarse blocks in a similar composition groundmass as Almond Mountain Volcanics (upper Miocene) [Smith, 1964; sample from the thickest unit of tuff in the Lava Mountains yields Nsr Reddish dacite lava flows – Reddish to dark Nsd Bluish dacite lava – Bluish-colored porphyritic dacite lava basalt flows. The rounding and polishing of the coarse clasts in cm) and rare hornblende. Samples of this unit from the Black Hills Bernardino County, California: US Geological Survey Professional Paper, P 457, 97 p. Smith (1964) interpreted this entire unit to be lacustrine, hornfels/slate, marble, and other rock types that may correlate expected in an autobreccia. The northeastern exposures of this this unit do not fit with the low relief depositional environment for and the northeastern lava Mountains have Ar-Ar groundmass Kg Granodiorite – Medium to coarse-grained granodiorite; the on several distinctive units that occur in this rock sequence (see Smith, G.I., 2009, Late Cenozoic geology and lacustrine history of Searles Valley, Inyo but the arkosic and conglomeratic beds have sedimentary rocks and granodiorite to quartz monzodiorite. with the metamorphic rocks in the El Paso Mountains (Dibblee, textures is depositional flow to the south or southeast. This unit is redefined herein; Only a part of the Almond Mountain volcanic a U-Pb zircon age from chemical abrasion thermal ionization mass reddish-purple porphyritic dacite lava and flow breccia; many and volcanic breccia with massive or flow-banded textures. Biotite exposure in the middle of the northern Lava mountains is in place discussion of individual Paleozoic units below). interpreted to be mostly reworked and redeposited arkose unit in the Summit Range are very poorly exposed and appear to rocks of Smith (1964) and Smith et al. (2002) are interbedded with spectrometry (CA-TIMS) of 7.479 ±0.023 Ma (Th-corrected). exposures have a strong platy, parting cleavage. Plagioclase is the and feldspar are the dominant porphyritic crystals, but the Miocene units in the map area. Similar coarse to very coarse ages of 19.63 ±0.32 and 18.84 ±0.24 Ma. and San Bernardino Counties, California: U.S. Geological Survey Professional Paper textures and structures indicative of fluvial facies. This unit was 1952; renamed and redefined by Carr et al., 1997). The upper be boulder conglomerates. well rounded polished clasts occur in only one unit in the region; a mixed set of granodiorite with monzogranite. 1727, 115 p., 4 plates.