DETECTION MONITORING TESTS Unified Guidance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Demand STAR Ranking Methodology
Demand STAR Ranking Methodology The methodology used to assess demand in this tool is based upon a process used by the State of Louisiana’s “Star Rating” system. Data regarding current openings, short term and long term hiring outlooks along with wages are combined into a single five-point ranking metric. Long Term Occupational Projections 2014-2014 The steps to derive a rank for long term hiring outlook (DUA Occupational Projections) are as follows: 1.) Eliminate occupations with a SOC code ending in “9” in order to remove catch-all occupational titles containing “All Other” in the description. 2.) Compile occupations by six digit Standard Occupational Classification (SOC) codes. 3.) Calculate decile ranking for each occupation based on: a. Total Projected Employment 2024 b. Projected Change number from 2014-2024 4.) For each metric, assign 1-10 points for each occupation based on the decile ranking 5.) Average the points for Project Employment and Change from 2014-2024 Short Term Occupational Projection 2015-2017 The steps to derive occupational ranks for the short-term hiring outlook are same use for the Long Term Hiring Outlook, but using the Short Term Occupational Projections 2015-2017 data set. Current Job Openings Current job openings rankings are assigned based on actual jobs posted on-line for each region for a 12 month period. 12 month average posting volume for each occupation by six digit SOC codes was captured using The Conference Board’s Help Wanted On-Line analytics tool. The process for ranking is as follows: 1) Eliminate occupations with a SOC ending in “9” in order to remove catch-all occupational titles containing “All Other” in the description 2) Compile occupations by six digit Standard Occupational Classification (SOC) codes 3) Determine decile ranking for the average number of on-line postings by occupation 4) Assign 1-10 points for each occupation based on the decile ranking Wages In an effort to prioritize occupations with higher wages, wages are weighted more heavily than the current, short-term and long-term hiring outlook rankings. -
Ranking of Genes, Snvs, and Sequence Regions Ranking Elements Within Various Types of Biosets for Metaanalysis of Genetic Data
Technical Note: Informatics Ranking of Genes, SNVs, and Sequence Regions Ranking elements within various types of biosets for metaanalysis of genetic data. Introduction In summary, biosets may contain many of the following columns: • Identifier of an entity such as a gene, SNV, or sequence One of the primary applications of the BaseSpace® Correlation Engine region (required) is to allow researchers to perform metaanalyses that harness large amounts of genomic, epigenetic, proteomic, and assay data. Such • Other identifiers of the entity—eg, chromosome, position analyses look for potentially novel and interesting results that cannot • Summary statistics—eg, p-value, fold change, score, rank, necessarily be seen by looking at a single existing experiment. These odds ratio results may be interesting in themselves (eg, associations between different treatment factors, or between a treatment and an existing Ranking of Elements within a Bioset known pathway or protein family), or they may be used to guide further Most biosets generated at Illumina include elements that are changing research and experimentation. relative to a reference genome (mutations) or due to a treatment (or some other test factor) along with a corresponding rank and The primary entity in these analyses is the bioset. It is a ranked list directionality. Typically, the rank will be based on the magnitude of of elements (genes, probes, proteins, compounds, single-nucleotide change (eg, fold change); however, other values, including p-values, variants [SNVs], sequence regions, etc.) that corresponds to a given can be used for this ranking. Directionality is determined from the sign treatment or condition in an experiment, an assay, or a single patient of the statistic: eg, up (+) or down(-) regulation or copy-number gain sample (eg, mutations). -
Conduct and Interpret a Mann-Whitney U-Test
Statistics Solutions Advancement Through Clarity http://www.statisticssolutions.com Conduct and Interpret a Mann-Whitney U-Test What is the Mann-Whitney U-Test? The Mann-Whitney U-test, is a statistical comparison of the mean. The U-test is a member of the bigger group of dependence tests. Dependence tests assume that the variables in the analysis can be split into independent and dependent variables. A dependence tests that compares the mean scores of an independent and a dependent variable assumes that differences in the mean score of the dependent variable are caused by the independent variable. In most analyses the independent variable is also called factor, because the factor splits the sample in two or more groups, also called factor steps. Other dependency tests that compare the mean scores of two or more groups are the F-test, ANOVA and the t-test family. Unlike the t-test and F-test, the Mann-Whitney U-test is a non- paracontinuous-level test. That means that the test does not assume any properties regarding the distribution of the underlying variables in the analysis. This makes the Mann-Whitney U-test the analysis to use when analyzing variables of ordinal scale. The Mann-Whitney U-test is also the mathematical basis for the H-test (also called Kruskal Wallis H), which is basically nothing more than a series of pairwise U-tests. Because the test was initially designed in 1945 by Wilcoxon for two samples of the same size and in 1947 further developed by Mann and Whitney to cover different sample sizes the test is also called Mann–Whitney–Wilcoxon (MWW), Wilcoxon rank-sum test, Wilcoxon–Mann–Whitney test, or Wilcoxon two-sample test. -
Different Perspectives for Assigning Weights to Determinants of Health
COUNTY HEALTH RANKINGS WORKING PAPER DIFFERENT PERSPECTIVES FOR ASSIGNING WEIGHTS TO DETERMINANTS OF HEALTH Bridget C. Booske Jessica K. Athens David A. Kindig Hyojun Park Patrick L. Remington FEBRUARY 2010 Table of Contents Summary .............................................................................................................................................................. 1 Historical Perspective ........................................................................................................................................ 2 Review of the Literature ................................................................................................................................... 4 Weighting Schemes Used by Other Rankings ............................................................................................... 5 Analytic Approach ............................................................................................................................................. 6 Pragmatic Approach .......................................................................................................................................... 8 References ........................................................................................................................................................... 9 Appendix 1: Weighting in Other Rankings .................................................................................................. 11 Appendix 2: Analysis of 2010 County Health Rankings Dataset ............................................................ -
Learning to Combine Multiple Ranking Metrics for Fault Localization Jifeng Xuan, Martin Monperrus
Learning to Combine Multiple Ranking Metrics for Fault Localization Jifeng Xuan, Martin Monperrus To cite this version: Jifeng Xuan, Martin Monperrus. Learning to Combine Multiple Ranking Metrics for Fault Local- ization. ICSME - 30th International Conference on Software Maintenance and Evolution, Sep 2014, Victoria, Canada. 10.1109/ICSME.2014.41. hal-01018935 HAL Id: hal-01018935 https://hal.inria.fr/hal-01018935 Submitted on 18 Aug 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Learning to Combine Multiple Ranking Metrics for Fault Localization Jifeng Xuan Martin Monperrus INRIA Lille - Nord Europe University of Lille & INRIA Lille, France Lille, France [email protected] [email protected] Abstract—Fault localization is an inevitable step in software [12], Ochiai [2], Jaccard [2], and Ample [4]). Most of these debugging. Spectrum-based fault localization applies a ranking metrics are manually and analytically designed based on metric to identify faulty source code. Existing empirical studies assumptions on programs, test cases, and their relationship on fault localization show that there is no optimal ranking metric with faults [16]. To our knowledge, only the work by Wang for all the faults in practice. -
Logrank Tests (Freedman)
PASS Sample Size Software NCSS.com Chapter 702 Logrank Tests (Freedman) Introduction This module allows the sample size and power of the logrank test to be analyzed under the assumption of proportional hazards. Time periods are not stated. Rather, it is assumed that enough time elapses to allow for a reasonable proportion of responses to occur. If you want to study the impact of accrual and follow-up time, you should use the one of the other logrank modules available in PASS. The formulas used in this module come from Machin et al. (2018). They are also given in Fayers and Machin (2016) where they are applied to sizing quality of life studies. They were originally published in Freedman (1982) and are often referred to by that name. A clinical trial is often employed to test the equality of survival distributions for two treatment groups. For example, a researcher might wish to determine if Beta-Blocker A enhances the survival of newly diagnosed myocardial infarction patients over that of the standard Beta-Blocker B. The question being considered is whether the pattern of survival is different. The two-sample t-test is not appropriate for two reasons. First, the data consist of the length of survival (time to failure), which is often highly skewed, so the usual normality assumption cannot be validated. Second, since the purpose of the treatment is to increase survival time, it is likely (and desirable) that some of the individuals in the study will survive longer than the planned duration of the study. The survival times of these individuals are then unobservable and are said to be censored. -
Pairwise Versus Pointwise Ranking: a Case Study
Schedae Informaticae Vol. 25 (2016): 73–83 doi: 10.4467/20838476SI.16.006.6187 Pairwise versus Pointwise Ranking: A Case Study Vitalik Melnikov1, Pritha Gupta1, Bernd Frick2, Daniel Kaimann2, Eyke Hullermeier¨ 1 1Department of Computer Science 2Faculty of Business Administration and Economics Paderborn University Warburger Str. 100, 33098 Paderborn e-mail: melnikov,prithag,eyke @mail.upb.de, bernd.frick,daniel.kaimann @upb.de { } { } Abstract. Object ranking is one of the most relevant problems in the realm of preference learning and ranking. It is mostly tackled by means of two different techniques, often referred to as pairwise and pointwise ranking. In this paper, we present a case study in which we systematically compare two representatives of these techniques, a method based on the reduction of ranking to binary clas- sification and so-called expected rank regression (ERR). Our experiments are meant to complement existing studies in this field, especially previous evalua- tions of ERR. And indeed, our results are not fully in agreement with previous findings and partly support different conclusions. Keywords: Preference learning, object ranking, linear regression, logistic re- gression, hotel rating, TripAdvisor 1. Introduction Preference learning is an emerging subfield of machine learning that has received increasing attention in recent years [1]. Roughly speaking, the goal in preference learning is to induce preference models from observed data that reveals information Received: 11 December 2016 / Accepted: 30 December 2016 74 about the preferences of an individual or a group of individuals in a direct or indirect way; these models are then used to predict the preferences in a new situation. -
Randomization-Based Test for Censored Outcomes: a New Look at the Logrank Test
Randomization-based Test for Censored Outcomes: A New Look at the Logrank Test Xinran Li and Dylan S. Small ∗ Abstract Two-sample tests have been one of the most classical topics in statistics with wide appli- cation even in cutting edge applications. There are at least two modes of inference used to justify the two-sample tests. One is usual superpopulation inference assuming the units are independent and identically distributed (i.i.d.) samples from some superpopulation; the other is finite population inference that relies on the random assignments of units into different groups. When randomization is actually implemented, the latter has the advantage of avoiding distribu- tional assumptions on the outcomes. In this paper, we will focus on finite population inference for censored outcomes, which has been less explored in the literature. Moreover, we allow the censoring time to depend on treatment assignment, under which exact permutation inference is unachievable. We find that, surprisingly, the usual logrank test can also be justified by ran- domization. Specifically, under a Bernoulli randomized experiment with non-informative i.i.d. censoring within each treatment arm, the logrank test is asymptotically valid for testing Fisher's null hypothesis of no treatment effect on any unit. Moreover, the asymptotic validity of the lo- grank test does not require any distributional assumption on the potential event times. We further extend the theory to the stratified logrank test, which is useful for randomized blocked designs and when censoring mechanisms vary across strata. In sum, the developed theory for the logrank test from finite population inference supplements its classical theory from usual superpopulation inference, and helps provide a broader justification for the logrank test. -
Power Comparisons of the Mann-Whitney U and Permutation Tests
Power Comparisons of the Mann-Whitney U and Permutation Tests Abstract: Though the Mann-Whitney U-test and permutation tests are often used in cases where distribution assumptions for the two-sample t-test for equal means are not met, it is not widely understood how the powers of the two tests compare. Our goal was to discover under what circumstances the Mann-Whitney test has greater power than the permutation test. The tests’ powers were compared under various conditions simulated from the Weibull distribution. Under most conditions, the permutation test provided greater power, especially with equal sample sizes and with unequal standard deviations. However, the Mann-Whitney test performed better with highly skewed data. Background and Significance: In many psychological, biological, and clinical trial settings, distributional differences among testing groups render parametric tests requiring normality, such as the z test and t test, unreliable. In these situations, nonparametric tests become necessary. Blair and Higgins (1980) illustrate the empirical invalidity of claims made in the mid-20th century that t and F tests used to detect differences in population means are highly insensitive to violations of distributional assumptions, and that non-parametric alternatives possess lower power. Through power testing, Blair and Higgins demonstrate that the Mann-Whitney test has much higher power relative to the t-test, particularly under small sample conditions. This seems to be true even when Welch’s approximation and pooled variances are used to “account” for violated t-test assumptions (Glass et al. 1972). With the proliferation of powerful computers, computationally intensive alternatives to the Mann-Whitney test have become possible. -
Practice of Epidemiology a Family Longevity Selection Score
American Journal of Epidemiology Advance Access published November 18, 2009 American Journal of Epidemiology ª The Author 2009. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of DOI: 10.1093/aje/kwp309 Public Health. All rights reserved. For permissions, please e-mail: [email protected]. Practice of Epidemiology A Family Longevity Selection Score: Ranking Sibships by Their Longevity, Size, and Availability for Study Paola Sebastiani, Evan C. Hadley*, Michael Province, Kaare Christensen, Winifred Rossi, Thomas T. Perls, and Arlene S. Ash * Correspondence to Dr. Evan Hadley, Gateway Building, MSC 9205, National Institute on Aging, 7201 Wisconsin Avenue, Bethesda, MD 20892-9205 (e-mail: [email protected]). Initially submitted February 10, 2009; accepted for publication September 1, 2009. Family studies of exceptional longevity can potentially identify genetic and other factors contributing to long life and healthy aging. Although such studies seek families that are exceptionally long lived, they also need living members who can provide DNA and phenotype information. On the basis of these considerations, the authors developed a metric to rank families for selection into a family study of longevity. Their measure, the family longevity selection score (FLoSS), is the sum of 2 components: 1) an estimated family longevity score built from birth-, gender-, and nation-specific cohort survival probabilities and 2) a bonus for older living siblings. The authors examined properties of FLoSS-based family rankings by using data from 3 ongoing studies: the New England Centenarian Study, the Framingham Heart Study, and screenees for the Long Life Family Study. FLoSS-based selection yields families with exceptional longevity, satisfactory sibship sizes and numbers of living siblings, and high ages. -
Survival Analysis Using a 5‐Step Stratified Testing and Amalgamation
Received: 13 March 2020 Revised: 25 June 2020 Accepted: 24 August 2020 DOI: 10.1002/sim.8750 RESEARCH ARTICLE Survival analysis using a 5-step stratified testing and amalgamation routine (5-STAR) in randomized clinical trials Devan V. Mehrotra Rachel Marceau West Biostatistics and Research Decision Sciences, Merck & Co., Inc., North Wales, Randomized clinical trials are often designed to assess whether a test treatment Pennsylvania, USA prolongs survival relative to a control treatment. Increased patient heterogene- ity, while desirable for generalizability of results, can weaken the ability of Correspondence Devan V. Mehrotra, Biostatistics and common statistical approaches to detect treatment differences, potentially ham- Research Decision Sciences, Merck & Co., pering the regulatory approval of safe and efficacious therapies. A novel solution Inc.,NorthWales,PA,USA. Email: [email protected] to this problem is proposed. A list of baseline covariates that have the poten- tial to be prognostic for survival under either treatment is pre-specified in the analysis plan. At the analysis stage, using all observed survival times but blinded to patient-level treatment assignment, “noise” covariates are removed with elastic net Cox regression. The shortened covariate list is used by a condi- tional inference tree algorithm to segment the heterogeneous trial population into subpopulations of prognostically homogeneous patients (risk strata). After patient-level treatment unblinding, a treatment comparison is done within each formed risk stratum and stratum-level results are combined for overall statis- tical inference. The impressive power-boosting performance of our proposed 5-step stratified testing and amalgamation routine (5-STAR), relative to that of the logrank test and other common approaches that do not leverage inherently structured patient heterogeneity, is illustrated using a hypothetical and two real datasets along with simulation results. -
Applied Biostatistics Applied Biostatistics for the Pulmonologist
APPLIED BIOSTATISTICS FOR THE PULMONOLOGIST DR. VISHWANATH GELLA • Statistics is a way of thinking about the world and decision making-By Sir RA Fisher Why do we need statistics? • A man with one watch always knows what time it is • A man with two watches always searches to identify the correct one • A man with ten watches is always reminded of the difficu lty in measuri ng ti me Objectives • Overview of Biostatistical Terms and Concepts • Application of Statistical Tests Types of statistics • Descriptive Statistics • identify patterns • leads to hypothesis generation • Inferential Statistics • distinguish true differences from random variation • allows hypothesis testing Study design • Analytical studies Case control study(Effect to cause) Cohort study(Cause to effect) • Experimental studies Randomized controlled trials Non-randomized trials Sample size estimation • ‘Too small’ or ‘Too large’ • Sample size depends upon four critical quantities: Type I & II error stat es ( al ph a & b et a errors) , th e vari abilit y of th e d at a (S.D)2 and the effect size(d) • For two group parallel RCT with a continuous outcome - sample size(n) per group = 16(S.D)2/d2 for fixed alpha and beta values • Anti hypertensive trial- effect size= 5 mmHg, S.D of the data- 10 mm Hggp. n= 16 X 100/25= 64 patients per group in the study • Statistical packages - PASS in NCSS, n query or sample power TYPES OF DATA • Quant itat ive (“how muc h?”) or categor ica l variable(“what type?”) • QiiiblQuantitative variables 9 continuous- Blood pressure, height, weight or age 9 Discrete- No.