DETECTION MONITORING TESTS Unified Guidance

Total Page:16

File Type:pdf, Size:1020Kb

DETECTION MONITORING TESTS Unified Guidance PART III. DETECTION MONITORING TESTS Unified Guidance PART III. DETECTION MONITORING TESTS This third part of the Unified Guidance presents core procedures recommended for formal detection monitoring at RCRA-regulated facilities. Chapter 16 describes two-sample tests appropriate for some small facilities, facilities in interim status, or for periodic updating of background data. These tests include two varieties of the t-test and two non-parametric versions-- the Wilcoxon rank-sum and Tarone-Ware procedures. Chapter 17 discusses one-way analysis of variance [ANOVA], tolerance limits, and the application of trend tests during detection monitoring. Chapter 18 is a primer on several kinds of prediction limits, which are combined with retesting strategies in Chapter 19 to address the statistical necessity of performing multiple comparisons during RCRA statistical evaluations. Retesting is also discussed in Chapter 20, which presents control charts as an alternative to prediction limits. As discussed in Section 7.5, any of these detection-level tests may also be applied to compliance/assessment and corrective action monitoring, where a background groundwater protection standard [GWPS] is defined as a critical limit using two- or multiple-sample comparison tests. Caveats and limitations discussed for detection monitoring tests are also relevant to this situation. To maintain continuity of presentation, this additional application is presumed but not repeated in the following specific test and procedure discussions. Although other users and programs may find these statistical tests of benefit due to their wider applicability to other environmental media and types of data, the methods described in Parts III and IV are primarily tailored to the RCRA setting and designed to address formal RCRA monitoring requirements. In particular, the series of prediction limit tests found in Chapter 18 is designed to address the range of interpretations of the sampling rules in §264.97(g), §264.98(d) and §258.54. Further, all of the regulatory tests listed in §264.97(i) and §258.53(h) are discussed, as well as the Student’s t-test requirements of §265.93(b). Taken as a whole, the set of detection monitoring methods presented in the Unified Guidance should be appropriate for almost all the situations likely to be encountered in practice. Professional statistical consultation is recommended for the rest. March 2009 PART III. DETECTION MONITORING TESTS Unified Guidance This page intentionally left blank March 2009 Chapter 16. Two-Sample Tests Unified Guidance CHAPTER 16. TWO-SAMPLE TESTS 16.1 PARAMETRIC T-TESTS................................................................................................................................. 16-1 16.1.1 Pooled Variance T-Test ...................................................................................................................... 16-4 16.1.2 Welch’s T-Test .................................................................................................................................... 16-7 16.1.3 Welch’s T-Test and Lognormal Data................................................................................................ 16-10 16.2 WILCOXON RANK-SUM TEST .................................................................................................................... 16-14 16.3 TARONE-WARE TWO-SAMPLE TEST FOR CENSORED DATA ...................................................................... 16-20 This chapter describes statistical tests between two groups of data, known as two-sample tests. These tests may be appropriate for the smallest of RCRA sites performing upgradient-to-downgradient comparisons on a very limited number of wells and constituents. They may also be required for certain facilities in interim status, and can be more generally used to compare older versus newer data when updating background. Two versions of the classic Student’s t-test are first discussed: the pooled variance t-test and Welch’s t-test. Since both these tests expect approximately normally-distributed data as input, two non- parametric alternatives to the t-test are also described: the Wilcoxon rank-sum test (also known as the Mann-Whitney) and the Tarone-Ware test. The latter is particularly helpful when the sample data exhibit a moderate to larger fraction of non-detects and/or multiple detection/reporting limits. 16.1 PARAMETRIC T-TESTS BACKGROUND AND PURPOSE A statistical comparison between two sets of data is known as a two-sample test. While several varieties of two-sample tests exist, the most common is the parametric t-test. This test compares two distinct statistical populations. The goal of the two-sample t-test is to determine whether there is any statistically significant difference between the mean of the first population when compared against the mean of the second population, based on the results observed in the two respective samples. In groundwater monitoring, the typical hypothesis at issue is whether the average concentration at a compliance point is the same as (or less than) the average concentration in background, or whether the compliance point mean is larger than the background mean, as represented in equation [16.1] below: H : µ ≤ µ vs. H : µ > µ [16.1] 0 C BG A C BG A natural statistic for comparing two population means is the difference between the sample means, x − x . When this difference is small, a real difference between the respective population ( C BG ) means is considered unlikely. However, when the sample mean difference is large, the null hypothesis is rejected, since in that case a real difference between the populations seems plausible. Note that an observed difference between the sample means does not automatically imply a true population difference. Sample means can vary for many reasons even if the two underlying parent populations are 16-1 March 2009 Chapter 16. Two-Sample Tests Unified Guidance identical. Indeed, the Student’s t-test was invented precisely to determine when an observed sample difference should be considered significant (i.e., more than a chance fluctuation), especially when the sizes of the two samples tend to be small, as is the usual case in groundwater monitoring. Although the null hypothesis (H0) represented in equation [16.1] allows for a true compliance point mean to be less than background, the behavior of the t-test statistic is assessed at the point where H0 is most difficult to verify — that is, when H0 is true and the two population means are identical. Under the assumption of equal population means, the test statistic in any t-test will tend to follow a Student’s t- distribution. This fact allows the selection of critical points for the t-test based on a pre-specified Type I error or false positive rate (α). Unlike the similarly symmetric normal distribution, however, the Student’s t-distribution also depends on the number of independent sample values used in the test, represented by the degrees of freedom [df]. The number of degrees of freedom impacts the shape of the t-distribution, and consequently the magnitude of the critical (percentage) points selected from the t-distribution to provide a basis of comparison against the t-statistic (see Figure 16-1). In general, the larger the sample sizes of the two groups being compared, the larger the corresponding degrees of freedom, and the smaller the critical points (in absolute value) drawn from the Student’s t-distribution. In a one-sided hypothesis test of whether compliance point concentrations exceed background concentrations, a smaller critical point corresponds to a more powerful test. Therefore, all other things being equal, the larger the sample sizes used in the two-sample t-test, the more protective the test will be of human health and the environment. Figure 16-1. Student’s t-Distribution for Varying Degrees of Freedom 0.4 0.3 1 df 3 df 7 df 0.2 25 df 0.1 0.0 -5.0 -2.5 0.0 2.5 5.0 t-value In groundwater monitoring, t-tests can be useful in at least two ways. First, a t-test can be employed to compare background data from one or more upgradient wells against a single compliance 16-2 March 2009 Chapter 16. Two-Sample Tests Unified Guidance well. If more than one background well is involved, all the upgradient data would be pooled into a single group or sample before applying the test. Second, a t-test can be used to assess whether updating of background data is appropriate (see Chapter 5 for further discussion). Specifically, the two-sample t-test can be utilized to check whether the more recently collected data is consistent with the earlier data assigned initially as the background data pool. If the t-test is non-significant, both the initial background and more recent observations may be considered part of the same statistical population, allowing the overall background data set to grow and to provide more accurate information about the characteristics of the background population. The Unified Guidance describes two versions of the parametric t-test, the pooled variance Student’s t-test and a modification to the Student’s t-test known as Welch’s t-test. This guidance prefers the latter t-test to use of Cochran’s Approximation to the Behrens-Fisher (CABF) Student’s t-test. Initially codified in the 1982 RCRA regulations, the CABF t-test is no longer explicitly cited in the 1988 revision to those regulations. Both the pooled variance and Welch’s t-tests are more standard in statistical usage than the CABF t-test. When the parametric assumptions of the two-sample t-test
Recommended publications
  • Demand STAR Ranking Methodology
    Demand STAR Ranking Methodology The methodology used to assess demand in this tool is based upon a process used by the State of Louisiana’s “Star Rating” system. Data regarding current openings, short term and long term hiring outlooks along with wages are combined into a single five-point ranking metric. Long Term Occupational Projections 2014-2014 The steps to derive a rank for long term hiring outlook (DUA Occupational Projections) are as follows: 1.) Eliminate occupations with a SOC code ending in “9” in order to remove catch-all occupational titles containing “All Other” in the description. 2.) Compile occupations by six digit Standard Occupational Classification (SOC) codes. 3.) Calculate decile ranking for each occupation based on: a. Total Projected Employment 2024 b. Projected Change number from 2014-2024 4.) For each metric, assign 1-10 points for each occupation based on the decile ranking 5.) Average the points for Project Employment and Change from 2014-2024 Short Term Occupational Projection 2015-2017 The steps to derive occupational ranks for the short-term hiring outlook are same use for the Long Term Hiring Outlook, but using the Short Term Occupational Projections 2015-2017 data set. Current Job Openings Current job openings rankings are assigned based on actual jobs posted on-line for each region for a 12 month period. 12 month average posting volume for each occupation by six digit SOC codes was captured using The Conference Board’s Help Wanted On-Line analytics tool. The process for ranking is as follows: 1) Eliminate occupations with a SOC ending in “9” in order to remove catch-all occupational titles containing “All Other” in the description 2) Compile occupations by six digit Standard Occupational Classification (SOC) codes 3) Determine decile ranking for the average number of on-line postings by occupation 4) Assign 1-10 points for each occupation based on the decile ranking Wages In an effort to prioritize occupations with higher wages, wages are weighted more heavily than the current, short-term and long-term hiring outlook rankings.
    [Show full text]
  • Ranking of Genes, Snvs, and Sequence Regions Ranking Elements Within Various Types of Biosets for Metaanalysis of Genetic Data
    Technical Note: Informatics Ranking of Genes, SNVs, and Sequence Regions Ranking elements within various types of biosets for metaanalysis of genetic data. Introduction In summary, biosets may contain many of the following columns: • Identifier of an entity such as a gene, SNV, or sequence One of the primary applications of the BaseSpace® Correlation Engine region (required) is to allow researchers to perform metaanalyses that harness large amounts of genomic, epigenetic, proteomic, and assay data. Such • Other identifiers of the entity—eg, chromosome, position analyses look for potentially novel and interesting results that cannot • Summary statistics—eg, p-value, fold change, score, rank, necessarily be seen by looking at a single existing experiment. These odds ratio results may be interesting in themselves (eg, associations between different treatment factors, or between a treatment and an existing Ranking of Elements within a Bioset known pathway or protein family), or they may be used to guide further Most biosets generated at Illumina include elements that are changing research and experimentation. relative to a reference genome (mutations) or due to a treatment (or some other test factor) along with a corresponding rank and The primary entity in these analyses is the bioset. It is a ranked list directionality. Typically, the rank will be based on the magnitude of of elements (genes, probes, proteins, compounds, single-nucleotide change (eg, fold change); however, other values, including p-values, variants [SNVs], sequence regions, etc.) that corresponds to a given can be used for this ranking. Directionality is determined from the sign treatment or condition in an experiment, an assay, or a single patient of the statistic: eg, up (+) or down(-) regulation or copy-number gain sample (eg, mutations).
    [Show full text]
  • Conduct and Interpret a Mann-Whitney U-Test
    Statistics Solutions Advancement Through Clarity http://www.statisticssolutions.com Conduct and Interpret a Mann-Whitney U-Test What is the Mann-Whitney U-Test? The Mann-Whitney U-test, is a statistical comparison of the mean. The U-test is a member of the bigger group of dependence tests. Dependence tests assume that the variables in the analysis can be split into independent and dependent variables. A dependence tests that compares the mean scores of an independent and a dependent variable assumes that differences in the mean score of the dependent variable are caused by the independent variable. In most analyses the independent variable is also called factor, because the factor splits the sample in two or more groups, also called factor steps. Other dependency tests that compare the mean scores of two or more groups are the F-test, ANOVA and the t-test family. Unlike the t-test and F-test, the Mann-Whitney U-test is a non- paracontinuous-level test. That means that the test does not assume any properties regarding the distribution of the underlying variables in the analysis. This makes the Mann-Whitney U-test the analysis to use when analyzing variables of ordinal scale. The Mann-Whitney U-test is also the mathematical basis for the H-test (also called Kruskal Wallis H), which is basically nothing more than a series of pairwise U-tests. Because the test was initially designed in 1945 by Wilcoxon for two samples of the same size and in 1947 further developed by Mann and Whitney to cover different sample sizes the test is also called Mann–Whitney–Wilcoxon (MWW), Wilcoxon rank-sum test, Wilcoxon–Mann–Whitney test, or Wilcoxon two-sample test.
    [Show full text]
  • Different Perspectives for Assigning Weights to Determinants of Health
    COUNTY HEALTH RANKINGS WORKING PAPER DIFFERENT PERSPECTIVES FOR ASSIGNING WEIGHTS TO DETERMINANTS OF HEALTH Bridget C. Booske Jessica K. Athens David A. Kindig Hyojun Park Patrick L. Remington FEBRUARY 2010 Table of Contents Summary .............................................................................................................................................................. 1 Historical Perspective ........................................................................................................................................ 2 Review of the Literature ................................................................................................................................... 4 Weighting Schemes Used by Other Rankings ............................................................................................... 5 Analytic Approach ............................................................................................................................................. 6 Pragmatic Approach .......................................................................................................................................... 8 References ........................................................................................................................................................... 9 Appendix 1: Weighting in Other Rankings .................................................................................................. 11 Appendix 2: Analysis of 2010 County Health Rankings Dataset ............................................................
    [Show full text]
  • Learning to Combine Multiple Ranking Metrics for Fault Localization Jifeng Xuan, Martin Monperrus
    Learning to Combine Multiple Ranking Metrics for Fault Localization Jifeng Xuan, Martin Monperrus To cite this version: Jifeng Xuan, Martin Monperrus. Learning to Combine Multiple Ranking Metrics for Fault Local- ization. ICSME - 30th International Conference on Software Maintenance and Evolution, Sep 2014, Victoria, Canada. 10.1109/ICSME.2014.41. hal-01018935 HAL Id: hal-01018935 https://hal.inria.fr/hal-01018935 Submitted on 18 Aug 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Learning to Combine Multiple Ranking Metrics for Fault Localization Jifeng Xuan Martin Monperrus INRIA Lille - Nord Europe University of Lille & INRIA Lille, France Lille, France [email protected] [email protected] Abstract—Fault localization is an inevitable step in software [12], Ochiai [2], Jaccard [2], and Ample [4]). Most of these debugging. Spectrum-based fault localization applies a ranking metrics are manually and analytically designed based on metric to identify faulty source code. Existing empirical studies assumptions on programs, test cases, and their relationship on fault localization show that there is no optimal ranking metric with faults [16]. To our knowledge, only the work by Wang for all the faults in practice.
    [Show full text]
  • Logrank Tests (Freedman)
    PASS Sample Size Software NCSS.com Chapter 702 Logrank Tests (Freedman) Introduction This module allows the sample size and power of the logrank test to be analyzed under the assumption of proportional hazards. Time periods are not stated. Rather, it is assumed that enough time elapses to allow for a reasonable proportion of responses to occur. If you want to study the impact of accrual and follow-up time, you should use the one of the other logrank modules available in PASS. The formulas used in this module come from Machin et al. (2018). They are also given in Fayers and Machin (2016) where they are applied to sizing quality of life studies. They were originally published in Freedman (1982) and are often referred to by that name. A clinical trial is often employed to test the equality of survival distributions for two treatment groups. For example, a researcher might wish to determine if Beta-Blocker A enhances the survival of newly diagnosed myocardial infarction patients over that of the standard Beta-Blocker B. The question being considered is whether the pattern of survival is different. The two-sample t-test is not appropriate for two reasons. First, the data consist of the length of survival (time to failure), which is often highly skewed, so the usual normality assumption cannot be validated. Second, since the purpose of the treatment is to increase survival time, it is likely (and desirable) that some of the individuals in the study will survive longer than the planned duration of the study. The survival times of these individuals are then unobservable and are said to be censored.
    [Show full text]
  • Pairwise Versus Pointwise Ranking: a Case Study
    Schedae Informaticae Vol. 25 (2016): 73–83 doi: 10.4467/20838476SI.16.006.6187 Pairwise versus Pointwise Ranking: A Case Study Vitalik Melnikov1, Pritha Gupta1, Bernd Frick2, Daniel Kaimann2, Eyke Hullermeier¨ 1 1Department of Computer Science 2Faculty of Business Administration and Economics Paderborn University Warburger Str. 100, 33098 Paderborn e-mail: melnikov,prithag,eyke @mail.upb.de, bernd.frick,daniel.kaimann @upb.de { } { } Abstract. Object ranking is one of the most relevant problems in the realm of preference learning and ranking. It is mostly tackled by means of two different techniques, often referred to as pairwise and pointwise ranking. In this paper, we present a case study in which we systematically compare two representatives of these techniques, a method based on the reduction of ranking to binary clas- sification and so-called expected rank regression (ERR). Our experiments are meant to complement existing studies in this field, especially previous evalua- tions of ERR. And indeed, our results are not fully in agreement with previous findings and partly support different conclusions. Keywords: Preference learning, object ranking, linear regression, logistic re- gression, hotel rating, TripAdvisor 1. Introduction Preference learning is an emerging subfield of machine learning that has received increasing attention in recent years [1]. Roughly speaking, the goal in preference learning is to induce preference models from observed data that reveals information Received: 11 December 2016 / Accepted: 30 December 2016 74 about the preferences of an individual or a group of individuals in a direct or indirect way; these models are then used to predict the preferences in a new situation.
    [Show full text]
  • Randomization-Based Test for Censored Outcomes: a New Look at the Logrank Test
    Randomization-based Test for Censored Outcomes: A New Look at the Logrank Test Xinran Li and Dylan S. Small ∗ Abstract Two-sample tests have been one of the most classical topics in statistics with wide appli- cation even in cutting edge applications. There are at least two modes of inference used to justify the two-sample tests. One is usual superpopulation inference assuming the units are independent and identically distributed (i.i.d.) samples from some superpopulation; the other is finite population inference that relies on the random assignments of units into different groups. When randomization is actually implemented, the latter has the advantage of avoiding distribu- tional assumptions on the outcomes. In this paper, we will focus on finite population inference for censored outcomes, which has been less explored in the literature. Moreover, we allow the censoring time to depend on treatment assignment, under which exact permutation inference is unachievable. We find that, surprisingly, the usual logrank test can also be justified by ran- domization. Specifically, under a Bernoulli randomized experiment with non-informative i.i.d. censoring within each treatment arm, the logrank test is asymptotically valid for testing Fisher's null hypothesis of no treatment effect on any unit. Moreover, the asymptotic validity of the lo- grank test does not require any distributional assumption on the potential event times. We further extend the theory to the stratified logrank test, which is useful for randomized blocked designs and when censoring mechanisms vary across strata. In sum, the developed theory for the logrank test from finite population inference supplements its classical theory from usual superpopulation inference, and helps provide a broader justification for the logrank test.
    [Show full text]
  • Power Comparisons of the Mann-Whitney U and Permutation Tests
    Power Comparisons of the Mann-Whitney U and Permutation Tests Abstract: Though the Mann-Whitney U-test and permutation tests are often used in cases where distribution assumptions for the two-sample t-test for equal means are not met, it is not widely understood how the powers of the two tests compare. Our goal was to discover under what circumstances the Mann-Whitney test has greater power than the permutation test. The tests’ powers were compared under various conditions simulated from the Weibull distribution. Under most conditions, the permutation test provided greater power, especially with equal sample sizes and with unequal standard deviations. However, the Mann-Whitney test performed better with highly skewed data. Background and Significance: In many psychological, biological, and clinical trial settings, distributional differences among testing groups render parametric tests requiring normality, such as the z test and t test, unreliable. In these situations, nonparametric tests become necessary. Blair and Higgins (1980) illustrate the empirical invalidity of claims made in the mid-20th century that t and F tests used to detect differences in population means are highly insensitive to violations of distributional assumptions, and that non-parametric alternatives possess lower power. Through power testing, Blair and Higgins demonstrate that the Mann-Whitney test has much higher power relative to the t-test, particularly under small sample conditions. This seems to be true even when Welch’s approximation and pooled variances are used to “account” for violated t-test assumptions (Glass et al. 1972). With the proliferation of powerful computers, computationally intensive alternatives to the Mann-Whitney test have become possible.
    [Show full text]
  • Practice of Epidemiology a Family Longevity Selection Score
    American Journal of Epidemiology Advance Access published November 18, 2009 American Journal of Epidemiology ª The Author 2009. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of DOI: 10.1093/aje/kwp309 Public Health. All rights reserved. For permissions, please e-mail: [email protected]. Practice of Epidemiology A Family Longevity Selection Score: Ranking Sibships by Their Longevity, Size, and Availability for Study Paola Sebastiani, Evan C. Hadley*, Michael Province, Kaare Christensen, Winifred Rossi, Thomas T. Perls, and Arlene S. Ash * Correspondence to Dr. Evan Hadley, Gateway Building, MSC 9205, National Institute on Aging, 7201 Wisconsin Avenue, Bethesda, MD 20892-9205 (e-mail: [email protected]). Initially submitted February 10, 2009; accepted for publication September 1, 2009. Family studies of exceptional longevity can potentially identify genetic and other factors contributing to long life and healthy aging. Although such studies seek families that are exceptionally long lived, they also need living members who can provide DNA and phenotype information. On the basis of these considerations, the authors developed a metric to rank families for selection into a family study of longevity. Their measure, the family longevity selection score (FLoSS), is the sum of 2 components: 1) an estimated family longevity score built from birth-, gender-, and nation-specific cohort survival probabilities and 2) a bonus for older living siblings. The authors examined properties of FLoSS-based family rankings by using data from 3 ongoing studies: the New England Centenarian Study, the Framingham Heart Study, and screenees for the Long Life Family Study. FLoSS-based selection yields families with exceptional longevity, satisfactory sibship sizes and numbers of living siblings, and high ages.
    [Show full text]
  • Survival Analysis Using a 5‐Step Stratified Testing and Amalgamation
    Received: 13 March 2020 Revised: 25 June 2020 Accepted: 24 August 2020 DOI: 10.1002/sim.8750 RESEARCH ARTICLE Survival analysis using a 5-step stratified testing and amalgamation routine (5-STAR) in randomized clinical trials Devan V. Mehrotra Rachel Marceau West Biostatistics and Research Decision Sciences, Merck & Co., Inc., North Wales, Randomized clinical trials are often designed to assess whether a test treatment Pennsylvania, USA prolongs survival relative to a control treatment. Increased patient heterogene- ity, while desirable for generalizability of results, can weaken the ability of Correspondence Devan V. Mehrotra, Biostatistics and common statistical approaches to detect treatment differences, potentially ham- Research Decision Sciences, Merck & Co., pering the regulatory approval of safe and efficacious therapies. A novel solution Inc.,NorthWales,PA,USA. Email: [email protected] to this problem is proposed. A list of baseline covariates that have the poten- tial to be prognostic for survival under either treatment is pre-specified in the analysis plan. At the analysis stage, using all observed survival times but blinded to patient-level treatment assignment, “noise” covariates are removed with elastic net Cox regression. The shortened covariate list is used by a condi- tional inference tree algorithm to segment the heterogeneous trial population into subpopulations of prognostically homogeneous patients (risk strata). After patient-level treatment unblinding, a treatment comparison is done within each formed risk stratum and stratum-level results are combined for overall statis- tical inference. The impressive power-boosting performance of our proposed 5-step stratified testing and amalgamation routine (5-STAR), relative to that of the logrank test and other common approaches that do not leverage inherently structured patient heterogeneity, is illustrated using a hypothetical and two real datasets along with simulation results.
    [Show full text]
  • Applied Biostatistics Applied Biostatistics for the Pulmonologist
    APPLIED BIOSTATISTICS FOR THE PULMONOLOGIST DR. VISHWANATH GELLA • Statistics is a way of thinking about the world and decision making-By Sir RA Fisher Why do we need statistics? • A man with one watch always knows what time it is • A man with two watches always searches to identify the correct one • A man with ten watches is always reminded of the difficu lty in measuri ng ti me Objectives • Overview of Biostatistical Terms and Concepts • Application of Statistical Tests Types of statistics • Descriptive Statistics • identify patterns • leads to hypothesis generation • Inferential Statistics • distinguish true differences from random variation • allows hypothesis testing Study design • Analytical studies Case control study(Effect to cause) Cohort study(Cause to effect) • Experimental studies Randomized controlled trials Non-randomized trials Sample size estimation • ‘Too small’ or ‘Too large’ • Sample size depends upon four critical quantities: Type I & II error stat es ( al ph a & b et a errors) , th e vari abilit y of th e d at a (S.D)2 and the effect size(d) • For two group parallel RCT with a continuous outcome - sample size(n) per group = 16(S.D)2/d2 for fixed alpha and beta values • Anti hypertensive trial- effect size= 5 mmHg, S.D of the data- 10 mm Hggp. n= 16 X 100/25= 64 patients per group in the study • Statistical packages - PASS in NCSS, n query or sample power TYPES OF DATA • Quant itat ive (“how muc h?”) or categor ica l variable(“what type?”) • QiiiblQuantitative variables 9 continuous- Blood pressure, height, weight or age 9 Discrete- No.
    [Show full text]