Received: 11 January 2018 | Revised: 31 May 2018 | Accepted: 1 June 2018 DOI: 10.1111/zsc.12301

ORIGINAL ARTICLE

Tectonic vicariance versus Messinian dispersal in western Mediterranean ground

Arnaud Faille1,2 | Achille Casale3 | Carles Hernando4 | Salah Aït Mouloud5 | Ignacio Ribera1

1Institute of Evolutionary Biology (CSIC‐ Universitat Pompeu Fabra), Barcelona, Abstract Spain The complex geological history of the western Mediterranean region conceals the 2MECADEV—UMR 7179 MNHN/CNRS, interpretation of the evolutionary history of its current fauna, as similar distribution Paris, patterns may have very different temporal and geographic origins. Particularly in- 3 Dipartimento di Scienze della Natura e triguing are some subterranean species in islands, which origin is usually difficult to del Territorio (Zoologia), Sassari. Private, Torino, interpret as their strongly modified morphologies obscure their relationships. We 4Badalona, Catalonia, Spain studied subterranean taxa and their likely relatives of two groups of ground beetles in 5Université Mouloud‐Mammeri, Tizi the western Mediterranean: the Duvalius lineage (“isotopic” Trechini) and Molopina Ouzou, Algeria (Pterostichini). We included specimens from the islands of Mallorca, Sardinia and

Correspondence Sicily, plus mainland and North Africa. Phylogenetic relationships were re- Arnaud Faille, Institute of Evolutionary constructed with a combination of mitochondrial and nuclear data, and divergence Biology (CSIC‐Universitat Pompeu Fabra), dates were estimated with Bayesian methods using the same a priori molecular evo- Passeig Maritim de la Barceloneta 37, 08003 Barcelona, Spain. lutionary rates for the same gene fragments in the two groups. In the Duvalius line- Email: [email protected] age, the subgenus Trechopsis, including all the highly modified cave or nivicolous Funding information species, was found to be polyphyletic: the species from Mallorca was found to be of Deutsche Forschungsgemeinschaft, Grant/ Pleistocene origin and sister to the less modified species of subgenus Duvalius from Award Number: DFG FA 1042/1‐1; Italian Trechopsis Ministero dell'Istruzione, dell'Università the same island, whereas the Algerian species of were, on the contrary, e della Ricerca Scientifica e Tecnologica, related to the Sicilian Duvalius, indicating a northern colonisation route during the Grant/Award Number: MIUR‐PRIN late Pliocene. Molopina was divided into three main lineages: the genera , 2004057217; UE program Interreg Sardinia‐Corsica‐Tuscany on Biodiversity; Percus, and the Molops groups of genera. The basal diversification of the latter was AEI/FEDER, UE, Grant/Award Number: dated within a temporal window (35–25 Ma) fully congruent with the tectonic open- CGL2010‐15755 and CGL2016‐76705‐P ing of the western Mediterranean basin and included six main lineages with uncertain relationships among them: the epigean genera (a) Molops and (b) Tanythrix; and the subterranean (c) Typhlochoromus (Eastern Alps), (d) Speomolops (Sardinia), (e) Henrotius (Mallorca) and (f) a strongly supported clade including the Pyrenean gen- era Zariquieya, Oscadytes and Molopidius. Despite the similar distribution of some of their subterranean taxa, the two studied groups show a strongly contrasting origin and mode of diversification. While the Duvalius lineage had a recent origin, with complex colonisation patterns and widespread morphological convergence among the subterranean species, the subterranean Molopina had an ancient vicariant origin resulting from the tectonic opening of the western Mediterranean basin.

Zoologica Scripta. 2018;47:565–581. wileyonlinelibrary.com/journal/zsc © 2018 Royal Swedish Academy of Sciences | 565 566 | FAILLE et al.

KEYWORDS Carabidae, dispersal, Duvalius, Messinian, Molopina, Pterostichini, subterranean Coleoptera, tectonic vicariance, Trechini, Western Mediterranean region

1 | INTRODUCTION the paradigmatic case of Euproctus salamanders in Carranza & Amat, 2005). The interpretation of the origin of the spe- The western Mediterranean fauna has a long tradition cies is complicated by the possibility of dispersal during the of phylogenetic and biogeographic studies trying to un- salinity crisis of the Messinian ending 5.3 Ma (Hsü, Ryan, derstand the complex relationships between the Balearic & Cita, 1973; Roveri et al., 2014), through land bridges that and Tyrrhenian islands with the neighbouring mainland. in many cases paralleled the tectonic connections of the Corsica and Sardinia are a classical model (e.g., Ketmaier Oligocene plates. The wide temporal interval between the two & Caccone, 2013 and references therein), sharing some en- potential connections of emerged landmasses in the western demics with a Tyrrhenian distribution (Brullo, Giusso del Mediterranean (original tectonic vicariance, between 35 and Galdo, & Garino, 2001; Cicconardi, Nardi, Emerson, Frati, & 25 Ma, and Messinian dispersal, between 7 and 5 Ma) allows Fanciulli, 2009; Ketmaier, Giusti, & Caccone, 2006; Médail the use of molecular data to discriminate between the two sce- & Quézel, 1999), but still with very different faunas in many narios, despite all the uncertainties associated with molecular groups, something that is often overlooked (see e.g., Casale clock approaches (Kumar, 2005). This has allowed to reliably & Vigna Taglianti, 1996 for ground beetles, or Caccone & reconstruct the origin of some groups as either having an old, Sbordoni, 2001; Martinsen, Venanzetti, & Bachmann, 2009 vicariant origin (e.g., Bidegaray‐Batista & Arnedo, 2011; among others for other subterranean fauna). The fauna and Ribera et al., 2010) or through dispersal during the salinity flora of Balearic Islands are in turn composed by numerous crisis (e.g., Carranza, Arnold, Geniez, Roca, & Mateo, 2008; vicariant species from the Iberian Peninsula (Moreno Saiz, Mora, Paspati, Decae, & Arnedo, 2017). There are, however, Castro Parga, & Sainz Ollero, 1998), some of them with still many groups for which their evolutionary origin is largely close relationships with southern France endemics (e.g., unknown. Gielly, Debussche, & Thompson, 2001) or Corso‐Sardinian A particularly interesting case is groups with a general species (Contandriopoulos & Cardona, 1984). There are also poor dispersal ability but with species in some of the is- some well‐documented relationships of the fauna of Sicily lands, as they have often been assumed to have an ancient, and Calabria with that of Algeria and Tunisia (Chapman tectonic origin. These notoriously include subterranean spe- & Abbott, 2005; Cosson et al., 2005; Habel, Dieker, & cies, though to being unable to disperse even through the Schmitt, 2009; Habel, Lens, Rödder, & Schmitt, 2011; land connections during the Messinian due to their general Habel, Rödder, Stefano, Meyer, & Schmitt, 2010; Marrone, reduced mobility and the lack of suitable habitat (e.g., Ribera Lo Brutto, Hundsdoerfer, & Arculeo, 2013; Pabijan et al., et al., 2010). Different groups of contain species with 2012; Pfenninger et al., 2010; Stöck, Sicilia, et al., 2008), as subterranean habits, but only a few of them have a marked well as relationships of western North Africa with south‐east tendency for repeated colonisations of the underground. In Iberia (the Baetic‐Rifean area, e.g., Dobson & Wright, 2000; the western Mediterranean, this is the case of two groups of Stöck, Dubey, et al., 2008; Molina‐Venegas, Aparicio, José terrestrial Coleoptera within the Carabidae ground beetles, Pina, Valdés, & Arroyo, 2013; Faille, Andújar, Fadrique, & the Trechini and Pterostichini Molopina. Ribera, 2014). However, despite the biogeographic relation- ships of both Sicily and Sardinia with North Africa, they do not share many endemic species, and their faunas are overall 1.1 | Trechini very different (see e.g., Vigna Taglianti, Casale, & Fattorini, Within the western Mediterranean, the Pyrenean Aphaenops 2002 for ground beetles). The origin of the Kabylian biota lineage, shown to be monophyletic by Faille et al. (2010), is has been much less studied and is still poorly understood. the most species rich among the strictly subterranean Trechini. Many of the relationships within the western Mediterranean Other genera of western Mediterranean Trechini with aphae- basin have been interpreted as the results of vicariant splits nopsoid shape, for example, Sardaphaenops Cerruti & Henrot, due to its tectonic opening during the Oligocene and early 1956 (two species endemic to Sardinia) and Paraphaenops Miocene (Meulenkamp & Sissingh, 2003; Rosenbaum, Jeannel, 1916 (two species endemic to southern Spain), were Lister, & Duboz, 2002; Schettino & Turco, 2006). However, excluded from the Aphaenops lineage by Faille, Casale, and due to lack of adequate fossil record, this was often done Ribera (2011). In addition to these radiations, belonging to without strong evidence neither of the relationships between the “anisotopic” Trechini (i.e., with the male genitalia with an the species nor their age (see e.g., the surprising resolution of asymmetric copulatory piece laying in lateral position, Jeannel, FAILLE et al. | 567 1928), there is another group of genera with mostly subterra- only Duvalius s.str. from Mallorca, D. balearicus Henrot, nean species: the Duvalius lineage or “isotopic” Trechini (i.e., was considered to be close to the only Iberian Duvalius s.str. with the male genitalia with a symmetric copulatory piece not (D. berthae Jeannel) (Henrot, 1964). Duvalius berthae has twisted with respect to the body axis, Jeannel, 1926). In Faille, been shown to be related to other Duvalius from south‐east Casale, et al. (2011) and Faille, Casale, Balke, and Ribera France (Faille et al., 2013), but its potential relationships (2013), this “isotopic” lineage was shown to be monophyletic with the Mallorcan D. balearicus have never been tested. and nested within the “anisotopic” lineages. Jeannel (1928) noted that the only species of Duvalius s.str. Within the “isotopic” Trechini, the genus Duvalius from North Africa (D. jurjurae Peyerimhoff) had strong mor- Delarouzée is the most species rich, with more than 300 phological similarities with the Sicilian species of Duvalius. species described so far (Moravec, Uéno, & Belousov, Following Jeannel (1928), Vigna Taglianti (1982) suggested 2003). The highest diversity is in the French and Italian that the Sicilian Duvalius species have a close relationship Alps, Italian and Balkan peninsulas and the Carpathian with some species from the central Apennine. Finally, the area, but the genus reaches its western limit in the western only species of Duvalius from Sardinia, D. sardous (Dodero), Mediterranean, the westernmost species being an endemic is endemic to a small massif in the central‐eastern part of from Catalonia (Jeannel, 1926, 1928). Other species are the island. Jeannel (1928) hypothesised a close relationship found in north Algeria (Kabylia, four species), the Balearic of this peculiar, isolated species with the D. brujasi Sainte‐ Islands (Mallorca, two species), Sardinia (one species) and Claire Deville species group from the Alpes Maritimes, Sicily (nine species). All of them are endogean or cave‐dwell- whereas Vigna Taglianti (1982) hypothesised some possible ing (Jeannel, 1928; Henrot, 1964; Lagar, 1976; Bellés, 1987; affinities with the Iberian D. berthae. Vigna Taglianti et al., 2002; Magrini, Baviera, & Vigna Taglianti, 2006; Magrini, Petrioli, Benelli, & Degiovanni, 2016) (Supporting Information Table S1). A previous mo- 1.2 | Molopina lecular study on Alpine Trechini showed that some locally Species of Molopina (Carabidae Pterostichini) have an Euro‐ restricted and highly modified troglobitic genera were nested Mediterranean distribution and include a number of epigean within the wider genus Duvalius (Faille et al., 2013). genera, but also some species with subterranean habits, with In the current literature, four species with marked tro- different degree of troglomorphism. The taxonomic and geo- globiomorphic features are included in Duvalius subge- graphic limits of Molopina have been contentious. Jeannel nus Trechopsis Peyerimhoff (Jeannel, 1928; Moravec et al., (1948) proposed a close relationship between the Euro‐ 2003), leaving in Duvalius s.str. the less troglobiomorphic Mediterranean taxa attributed to “Pterostichidae Molopini” species. The relationships of the four species of Trechopsis and some genera of South Africa, Madagascar, Australia and are so far unknown. It was originally described as a genus for New Zealand. However, Casale and Ribera (2010) showed a species endemic to the Djurdjura, in Algeria (D. (T.) lapiei that the clade “Molopina” with the exclusion of the austral (Peyerimhoff)). This species occurs in high altitude caves or taxa (represented in this study by several Madagascan gen- pits with snow (“tesserefts,” Peyerimhoff, 1908). The second era) was strongly supported. In Casale and Ribera (2010), described species, D. (T.) iblis (Peyerimhoff), was found in the studied Molopina included the genera Molops Bonelli, a cave, and although originally included in a different genus Tanythrix Schaum (treated here as a distinct genus: see (Aphaenops), its affinities with D. (T.) lapiei were already Vigna Taglianti, 2005), Percus Bonelli, Abax Bonelli and noted by its descriptor (Peyerimhoff, 1910) and later con- Styracoderus Chaudoir, a genus currently attributed to this firmed by Jeannel (1928), who also relegated Trechopsis to subtribe (e.g., Mateu, 1955) but shown to belong instead to a subgenus of Duvalius. A third endogean species was later Pterostichina. described from the Babor range (D. (T.) baborensis Bruneau Molopina are treated as a valid and distinct subtribe of de Miré, 1955). Subsequently, D. (T.) ferreresi Lagar was de- Pterostichini (or tribe when is treated as scribed from caves of Mallorca and considered to be very subfamily) in some recent contributions and catalogues close to the Algerian D. (T.) iblis (Lagar, 1976). Jeannel (Brandmayr & Zetto Brandmayr, 1979, 1994; Serrano, 2013; (1928) hypothesised that the North African Trechopsis are Vigna Taglianti, 2005), but was ignored by both Bousquet old relicts from a period when the Kabylian massif was at- (2003) and Lorenz (2005). Molopina are mainly character- tached to the Tyrrhenian plate (the “Tyrrhenis”). He also sug- ised by the lack of discal setae on elytra, by the presence of a gested that they might be related to some Duvalius from the keel at the base of the seventh stria (reduced in some species) eastern Mediterranean (the “Égéide”), and that the ancestors and by a membranous band at the base of the first antennal of Trechopsis might have colonised Africa from Sicily during joint of the larvae. In some genera, all species show devel- the “Nummulitique” (Paleogene) (Jeannel, 1928). oped parental care and presocial behaviour. The relationships of the species of Duvalius s.str. from Casale and Ribera (2010) did not study any subter- the western Mediterranean islands are also unknown. The ranean species of Molopina, and neither did any of the 568 | FAILLE et al. other published phylogenies of the group (Brückner, 2002, time framework for their diversification and hypothesise a 2004a,2004b; Brückner & Mossakowski, 2006; Sasakawa scenario for their biogeographic origin. & Kubota, 2007). These subterranean taxa include in the Western Mediterranean the genera Speomolops Patrizi (Sardinia), Henrotius Jeannel (Mallorca), and Oscadytes 2 | MATERIALS AND METHODS Lagar, Molopidius Jeannel and Zariquieya Jeannel (central and eastern Pyrenees), all of them monospecific except for 2.1 | Taxon sampling and DNA sequencing Zariquieya, with two species (Faille, Fresneda, & Bourdeau, We sampled representatives of species of the genus Duvalius 2011) (Supporting Information Table S1). Three further from the westernmost part of its distribution area, including taxa of Molopina from the eastern Alps and the Balkans are Spain, France, Italy, Algeria and Western Mediterranean treated either as subgenera of Molops (e.g., Lorenz, 2005) or Islands: Mallorca, Sardinia and Sicily (Figure 1; Supporting as distinct genera (e.g., Bousquet, 2003), including the sub- Information Table S2). As outgroups, we included 41 species terranean Typhlochoromus Moczarski with two species in the of Western European Duvalius of different species groups eastern Alps. (Faille et al., 2013) as well as representatives of other gen- In this contribution, we present the first estimation of era of Western European Trechini, both isotopic (Agostinia, the phylogenetic relationships of the subterranean species Anophthalmus Sturm, Luraphaenops, Trichaphaenops) and of the Duvalius lineage and of Molopina in the western anisotopic (Aphaenops Bonvouloir, Geotrechus Jeannel, Mediterranean. For the Duvalius lineage, we include spe- Trechus Clairville). Trees were rooted on the split between cies from Mallorca, Sicily and Sardinia, plus species from the sampled anisotopic and the isotopic genera, following the European and North African mainland. For Molopina, we previous works on the group (e.g., Faille et al., 2013). include a sample of all epigean genera plus all subterranean For Molopina, we included examples of all the western taxa from the western Mediterranean and one from the east- Mediterranean genera of the subtribe (Casale & Ribera, ern Alps. In addition to establish the phylogenetic relation- 2010; Jeannel, 1948; Mateu, 1955), as well as one species ships of the subterranean taxa, we provide an approximate of Typhlochoromus, a subgenus of Molops (Bousquet, 2003)

FIGURE 1 Distribution of the subterranean species of the Duvalius lineage in the western Mediterranean FAILLE et al. | 569

FIGURE 2 Distribution of the subterranean species of Molopina in the western Mediterranean (except the epigean genera Percus and Abax). 1, Oscadytes; 2, Zariquieya; 3, Molopidius; 4, Henrotius; 5, Speomolops; 6, Typhlochoromus; 7, Henrotiochoromus; 8, Molops (including Tanythrix and Stenochoromus). In red, hypogean genera considered to be a valid genus by some authors (e.g., Casale fragment of the large ribosomal unit, LSU). For Molopina, & Vigna Taglianti, 2005; Lorenz, 2005; Vigna Taglianti, we also sequenced the mitochondrial protein‐coding genes 2005) (Figure 2; Supporting Information Table S2). As out- NADH5 and an additional fragment of NADH1, and the ribo- groups we included a number of genera of Pterostichini, somal 12S (see Supporting Information Table S3 for the prim- including some Madagascan genera and Styracoderus, for- ers used). Sequences were assembled and edited with Bioedit merly included in Molopina. Trees were rooted in these 7 (Hall, 1999), Sequencher 4.6 (Gene Codes Corporation, Madagascan genera, following Casale and Ribera (2010). Ann Arbor, MI, USA) or Geneious v.6 (Biomatters Ltd, Specimens were collected by hand and immediately killed Auckland, New Zealand). Some of the sequences were ob- in 96% ethanol or by means of pitfall traps containing propylene tained from Faille et al. (2010) and Faille, Casale et al. (2011), glycol as preserving agent. DNA was extracted non‐destruc- Faille, Bourdeau, and Fresneda (2012), Faille et al. (2013) tively from whole specimens using a standard phenol‐chloro- for Trechini and from Düring and Brückner (2000), Brückner form extraction or commercial extraction kits (mostly Qiagen, (2002, 2004a,2004b), Brückner and Mossakowski (2006) and Hilden, ). Voucher specimens have been deposited in Casale and Ribera (2010) for Molopina. New sequences (242) Instituto de Biología Evolutiva (IBE, Barcelona), Zoologische have been deposited in EMBL databases (see Supporting Staatssammlung, München (ZSM, Munich) and Muséum Information Table S2 for Accession Numbers). National d’Histoire Naturelle (MNHN, Paris); DNA aliquots are kept in the DNA collections of ZSM and IBE. We sequenced two mitochondrial fragments, including 2.2 | Phylogenetic analyses four genes (3′end of partial cytochrome c oxidase subunit I, Protein‐coding and ribosomal genes were aligned with the COI; and a continuous fragment, rrnL+trnL+nad1, including online version of MAFFT v.6 (Katoh & Toh, 2008) using the 3′ end of the gene for the large ribosomal RNA subunit, the the EINS‐i and QINS‐i algorithms, respectively, with other leucine transfer RNA gene, and the 5′ end of the NADH de- parameters set to their defaults. hydrogenase subunit 1 gene) and two nuclear genes (5′ end of Phylogenetic analyses were conducted with maximum‐ the small ribosomal RNA subunit gene, SSU; and an internal likelihood (ML) and Bayesian inference (BI) using the 570 | FAILLE et al. CIPRES Science Gateway (Miller, Pfeiffer, & Schwartz, nuclear genes. The use of the same evolutionary rates and 2010). ML trees were obtained using RAxML v.7.2 models for the same genes in the two groups allows for a (Stamatakis, 2006). Data sets were partitioned by gene, with direct comparison between the estimated ages. the 16S divided into two fragments in Molopina as for some taxa the sequence data were incomplete. We applied an in- dependent GTR+G evolutionary model to each partition and 3 | RESULTS obtained node support values with 1,000 bootstrap replicates. For the Bayesian analyses, we used BEAST 1.8 3.1 | Duvalius phyletic lineage (Drummond, Suchard, Xie, & Rambaut, 2012), initially with the same partitions and evolutionary models as in the ML 3.1.1 | General topology (analyses with analyses. In the Duvalius phylogeny, we deleted duplicated outgroups) terminals, combining the two specimens of D. berthae in a The BEAST analysis using a partition by gene failed to con- single chimera. In all analyses, we used a Yule speciation verge, so we used two partitions, one for the mitochondrial model as tree prior and established an arbitrary age for the genes with a GTR+G+I evolutionary model and one for root. We set a lognormal relaxed clock with flat priors for the nuclear, with a HKY+G+I evolutionary model (a GTR all partitions and run 100 MY generations sampling every model also failed to converge adequately). 5,000, assessing convergence with TRACER v1.6 (Rambaut, The topologies of the ML (RAxML) and Bayesian Suchard, Xie, & Drummond, 2014). analyses (BEAST) were very similar, with the same For the calibration analyses in BEAST, we excluded well‐supported nodes (Figure 3, Supporting Information outgroups and rooted the trees according to the topologies Figure S1). The monophyly of the group of west- obtained in the ML and BEAST analyses with outgroups. ern Duvalius species plus the genera Anophthalmus, There are no known fossils of Molopina, Duvalius or other Trichaphaenops, Luraphaenops and Agostinia (the “iso- isotopic genera. Among the wider Trechina, there are some topics”) was well supported, although neither Duvalius recently described fossils of Trechus sensu lato from Baltic nor any of its two subgenera (Duvalius and Trechopsis) amber that have been related to different species groups was recovered as monophyletic. The species D. delphin- within this large, polyphyletic genus (Schmidt, Belousov, ensis was sister to the species of Anophthalmus, and all & Michalik, 2016; Schmidt & Faille, 2015; Schmidt, the other subterranean genera were nested within Duvalius Hoffmann, & Michalik, 2016). A calibration using these (forming what we call Duvalius sensu lato from now on), fossils would require a comprehensive phylogeny of in agreement with Faille et al. (2013). Within Duvalius, Trechus sensu lato to precisely estimate the relationship there were some well‐defined species groups. First, a of the putative relatives of the fossils with the Duvalius clade of Duvalius species from the Maritime and Ligurian lineage, something that at the moment is not feasible. To Alps including Agostinia, confirmed to be closer to the calibrate the trees we thus opted for using the rates esti- species of the gentilei species group than to the carantii mated for some of the same genes for the related ground group. Duvalius sicardi Fagniez, D. cailloli (Sainte‐Claire genus Carabus Linnaeus by Andújar, Serrano, and Deville) and D. perrinae Giordan form a well‐supported Gómez‐Zurita (2012), Andújar, Soria‐Carrasco, Serrano, clade. and Gómez‐Zurita (2014) using a combination of fossils and biogeographic events. We used a normal prior distri- bution with values 0.0145 subs/branch/MY for the 3′ end 3.1.2 | Calibrated Bayesian analyses of COI (Molopina) or 0.0130 for a fragment combining The run with a strict clock for the mitochondrial partitions had the 5′ and 3′ ends (Duvalius), 0.0016 for 16S, 0.0159 for a better AICM than that using a relaxed clock (Table 1), so NADH5 (only in Molopina) and 0.0013 for 28S, all with we used a partitioned model by genes, all with a GTR+G+I a standard deviation of 0.0001. Preliminary results (not evolutionary model and a strict clock. For the nuclear genes, shown) demonstrated that the exclusion of NADH5 in the we used a HKY+G+I model, as a GTR model failed to con- calibration did not have any substantial effect in the esti- verge adequately, with a relaxed lognormal clock and flat mated age of the root of the Molopina tree. We use flat priors. priors for the rates of other genes. For the mitochondrial The root of the tree (crown diversification of the sam- genes, we compared a strict or a lognormal relaxed clock pled Duvalius sensu lato + Anophthalmus) was estimated using AICM in TRACER and used a relaxed clock for all to have occurred at the end of the Miocene, ca. 6 Ma (95%

FIGURE 3 Phylogeny of the western Mediterranean species of the Duvalius lineage. Phylogram obtained with ML in RAxML. Numbers in nodes, bootstrap support. In red, highly modified troglomorphic species; in red bold species of the subgenus Trechopsis. See Supporting Information Table S2 for details on the specimens [Colour figure can be viewed at wileyonlinelibrary.com] FAILLE et al. | 571

Duvalius carantii L542 100 Duvalius carantii L283 50 Duvalius lanai L476 80 Duvalius pecoudi L275 63 Duvalius roberti AF129 74 Duvalius cailloli L192 82 Duvalius perrinae L426 92 Duvalius sicardi L241

85 Duvalius joffrei L23 57 Duvalius ochsi L172 95 55 Duvalius waillyi L434 Agostinia launi L435 63 Duvalius gentilei L294

Duvalius opermanni L754 Duvalius boldorii L352

Duvalius klimai L462 (a) (b) Duvalius erichsonii L480

Duvalius goemeriensis L451 100 Duvalius bokori L450

Duvalius szaboi L453 100 Duvalius microphthalmus L456

Duvalius cadurcus L312 100 Duvalius lespesi L243 99 Duvalius exaratus L394

Duvalius raymondi L433 100 99 Duvalius raymondi L427 Duvalius berthae AF115 (E)

Mallorca Duvalius (T.) ferreresi L807 (C) 100 Duvalius balearicus L809 (D) Duvalius (T.) lapiei L619 (A) Algeria 67 (c) (d) Duvalius (T.) iblis L618 (B) 87 Duvalius ribaudoi L813 Sicily 55 68 Duvalius aliciae L812 (F) Sardinia Duvalius sardous L743

Trichaphaenops gounellei L17 52 Luraphaenops gaudini AF116

Duvalius convexicollis L171 63 Duvalius pastorellii L662

Duvalius diniensis L428 Duvalius lineage (“isotopics”) 100 100 Duvalius brujasi L429

Anophthalmus schmidti L695 85 Anophthalmus tolminensis L686

Duvalius delphinensis L422 (e) (f)

Trechus quadristriatus AF96 95 Trechus obtusus L28 100

100 Trechus fulvus AF98 Trechus aff. schaufussi AF101

100 Aphaenops cerberus AF30 “anisotopic” 96 Aphaenops ehlersi AF64 lineage 69 Geotrechus discontignyi AF92 100 Aphaenops leschenaulti AF1

0.02 572 | FAILLE et al. TABLE 1 Evolutionary model and mitochondrial clock Molopidius, Oscadytes and Zariquieya (Figure 5). In the comparisons for the Duvalius lineage and Molopina, including AICM Bayesian analysis, however, most relationships were values. Best AICM values shown in bold, models that failed to well supported, with the two epigean genera (Molops and converge adequately by a dash Tanythrix) sisters and sister to all the subterranean genera. Evolutionary Within the later, the relationships of the two island en- model nuclear Mitochondrial clock AICM demics (Speomolops and Henrotius) with a clade includ- Duvalius GTR Strict – ing all the mainland genera were unresolved (Supporting Information Figure S2). HKY Strict 18,283.3 Within the genus Percus, with only epigean species, GTR Relaxed – relationships were in general very well supported. Percus HKY Relaxed 18,378.8 villae Kraatz (French and Italian Maritime Alps) was Molopina GTR Strict 45,275.5 sister to the rest of the genus, which was divided into HKY Strict 45,033.2 an Iberobalear lineage and a lineage including Corsica, GTR Relaxed 45,006.4 Sardinia, mainland Italy and North Africa. The Balearic HKY Relaxed 45,108.8 endemic P. plicatus Dejean was sister to all the Iberian species (traditionally included in a separate subgenus, Pseudopercus Motschulsky). The sampled species present confidence interval 7.5–4.8 Ma), with the origin of the in Corsica and Sardinia (P. strictus Dejean and P. grandi- two species from Mallorca (D. (Trechopsis) ferreresi and collis Audinet‐Serville) were sister to P. lineatus Solier, Duvalius (s.str.) balearicus) at ca. 4.2 Ma (c.i. 5.2–3.2). from Sicily, Algeria and Tunisia (Figure 5, Supporting Surprisingly, and despite their strongly different degree of Information Figure S2). troglomorphism, these two species were sisters, with a very recent separation dating from the Pleistocene (0.7–0.01 Ma) (Figure 4). All sampled Algerian, Sicilian and Sardinian spe- 3.2.2 | Calibrated Bayesian analyses cies formed a well‐supported clade, with an uncertain sis- In the BEAST runs, we constrained the separation between ter group (Figure 4). The Algerian species (D. (Trechopsis) Percus and the rest of Molopina, according to the topology lapiei and D. (T.) iblis) were sister, with a separation dating with outgroups. The best AICM corresponded to the combi- from ca. 2.5 Ma, and in turn sister to the two studied Sicilian nation of a GTR+G+I evolutionary model for all partitions species (D. aliciae Magrini, Baviera and Petrioli and D. ri- and a relaxed molecular clock (Table 1). The topology of the baudoi Magrini, Petrioli and Degiovanni). The separation ingroup was very similar to that obtained for the analyses between Algerian and Sicilian species was estimated to have with outgroups, with only some internal nodes of the Molops occurred during the Pliocene, ca. 3.2 Ma (c.i. 4.2–2.5). In group showing a different topology (Figure 6). Topological turn, the separation of the Sicilian+Algerian species from changes affected specially the placement of the two island the Sardinian D. sardous was estimated to have occurred ca. endemics, Speomolops and Henrotius. 4.2 Ma (c.i. 5.3–3.2), with a stem age for the whole clade of The basal diversification of Molopina was estimated to ca. 5 Ma (Figure 4). have occurred in the upper Eocene (ca. 41 Ma, Figure 6). Within the Molops group of genera, the diversification (with the exception of the Pyrenean lineage) was estimated to have 3.2 Molopina | occurred in a remarkably narrow temporal window, starting at 35 Ma (c.i. 41–28) and ending in the origin of the six main 3.2.1 General topology (analyses with | lineages between 30 and 28 Ma (Figure 6). The diversifica- outgroups) tion within the Pyrenean lineage of subterranean Molopina In the ML and Bayesian analyses with outgroups, Molopina was posterior, during the Miocene, between 17 Ma for the was strongly supported and divided into two equally well‐ origin of Molopidius and ca. 9 Ma for the separation between supported clades, the genus Percus and the remaining the two species of Zariquieya (Figure 6). genera. Within the latter, Abax was sister to a group of Within the genus Percus, the basal separation between genera including Molops, Tanythrix and all the subter- P. villae and the rest of species was also dated at ca. 28.6 Ma ranean taxa (the Molops group) (Figure 5, Supporting (c.i. 35–23), simultaneous with the basal diversification of Information Figure S2). Within the Molops group, only the Molops group. The estimated age for the separation of two intergeneric nodes were well supported in the ML the Balearic endemic (P. plicatus) from the Iberian species analysis: the sister relationship between the Mallorcan was ca. 19 Ma (c.i. 24–15), and that of the group of species Henrotius and the genus Molops, and the monophyly of from the Tyrrhenian islands, mainland Italy and North Africa all the central and eastern Pyrenean subterranean genera: 14.5 Ma (c.i. 19–11) (Figure 6). FAILLE et al. | 573

1 Duvalius carantii L283 0.1 Ma 0.84 0.5 Ma Duvalius carantii L542 0.98 Duvalius lanai L476 0.8 Ma 0.90 Duvalius pecoudi L275 1.0 Ma 1 Duvalius roberti AF129 1.3 Ma 1 Duvalius cailloli L192 0.34 Ma 1 Duvalius perrinae L426 0.7 Ma Duvalius sicardi L241 1 2.3 Ma Duvalius ochsi L172 0.5 Ma 1 Duvalius waillyi L434 0.7 Ma 0.67 1.5 Ma Duvalius joffrei L23 3.3 Ma 0.99 Agostinia launi L435 1.8 Ma Duvalius gentilei L294

0.5 Duvalius opermanni L754 3.0 Ma Duvalius boldorii L352

1 Duvalius microphthalmus L456 0.34 0.76 4.0 Ma Duvalius szaboi L453 3.3 Ma 1 Duvalius goemeriensis L451 0.46 Duvalius bokori L450 3.6 Ma 1 Duvalius cadurcus L312 0.1 1 Duvalius lespesi L243 4.2 Ma 2.2 Ma 3.7 Ma 0.53 Duvalius exaratus L394 Duvalius erichsonii L480 3.7 Ma Duvalius klimai L462 0.56 4.6 Ma Mallorca 1 Duvalius (T.) ferreresi L807 0.3 Ma Duvalius balearicus L809

1 Duvalius raymondi L433 0.4 Ma 1 3.2 Ma Duvalius raymondi L427 4.8 Ma Duvalius berthae AF115

0.87 Luraphaenops gaudini AF116 3.4 Ma Trichaphaenops gounellei L17 5.1 Ma Algeria 0.96 Duvalius (T.) lapiei L619 2.6 Ma 1 Duvalius (T.) iblis L618 3.2 Ma 0.82 Duvalius aliciae L812 1 2.8 Ma 4.2 Ma 1 Sicily Duvalius ribaudoi L813 Sardinia 4.9 Ma Duvalius sardous L743 5.4 Ma Duvalius convexicollis L171

1 Duvalius brujasi L429 1.2 Ma 6.0 Ma 0.53 4.4 Ma Duvalius diniensis L428 Duvalius pastorellii L662

1 Anophthalmus tolminensis L686 3.7 Ma 1 4.7 Ma Anophthalmus schmidti L695 Duvalius delphinensis L422 6 Ma 5 4 3 2 1 0

Miocene Pliocene Pleistocene

FIGURE 4 Bayesian calibrated phylogeny of the Duvalius lineage. Ultrametric tree obtained with BEAST. Number inside nodes, estimated age; numbers above branches, posterior probability of the node. Dotted line marks the end of the Messinian salinity crisis 5.3 Ma. In red, highly modified troglomorphic species; in red bold species of the subgenus Trechopsis. See Supporting Information Table S2 for details on the specimens. Habitus photographs, A. Faille [Colour figure can be viewed at wileyonlinelibrary.com] 574 | FAILLE et al.

Zariquieya boumortensis GBK 83 93 Zariquieya troglodytes AI271 (A) Oscadytes rovirai AI270 (B) 100 Molopidius spinicollis AI269 (C) 100 (b) Molopidius spinicollis AI268 (a) Typhlochoromus marcelloi AI1291 (D) Molops AN288 100 84 Molops piceus AI362 (E) Molops group 87 Henrotius jordai AI1242 (F) Speomolops sardous AI1292 (G) 100 Speomolops sardous AI272 Tanythrix edurus GBK 100 Tanythrix senilis AI473 93 Abax oblongus GBK (d) 81 (c) Abax fiorii GBK 100 71 Abax exaratus AI1295 Abax parallelepipedus GBK 100 Abax Abax ovalis AN297 100 Abax carinatus GBK 88 Molopina Abax pyrenaeus AI267 (H) 100 Percus patruelis GBK 75 Percus politus AI266 100 Percus stultus GBK 57 100 Percus guiraoi GBK (e) (f) Percus plicatus RA1085 (I) 76 Percus strictus AI265 100 Percus 100 100 Percus grandicollis RA812 100 Percus lineatus GBK Percus villae GBK Sterocorax globosus AI474 100 93 Styracoderus atramentarius AI1181

100 Corax ghilianii AI1068

Pterostichus AN150 (g) Astigis salzmanni AI1293 89 Laemostenus atlanticus AN122 100 (h) 56 Laemostenus carinatus AN253 Platyderus presahariensis AI472 Eucamptognathus androyanus AI477 100 100 Eucamptognathus oopterus AI476 Eudromus striaticollis AI478

0.03

(i)

FIGURE 5 Phylogeny of the western Mediterranean species of Molopina. Phylogram obtained with ML in RAxML. Numbers in nodes, bootstrap support. In red, subterranean species. See Supporting Information Table S2 for details on the specimens. Habitus photographs, a–c & h, F. Ciampor; d, R. Panin, e–g & i, A. Faille [Colour figure can be viewed at wileyonlinelibrary.com] FAILLE et al. | 575

1 Zariquieya troglodytes AI271 10.5 Ma 1 16.3 Ma Zariquieya boumortensis GBK Pyrenees 1 Oscadytes rovirai AI270 19.1 Ma Molopidius spinicollis AI268 0.87 1 28.2 Ma 0.38 Ma Molopidius spinicollis AI269 eastern Alps Typhlochoromus marcelloi AI1291 32.6 Ma 1 Tanythrix edurus GBK 12.0 Ma 0.65 Tanythrix senilis AI473 29.0 Ma 0.61 Sardinia 1 Speomolops sardous AI1292 34.6 Ma 0.34 Ma Speomolops sardous AI272

1 Molops AN288 15.4 Ma 29.9 Ma Molops piceus AI362 Mallorca Henrotius jordai AI1242 1 38.3 Ma 0.77 Abax fiorii GBK 0.5 Ma 1 Abax oblongus GBK 1.0 Ma 10.9 Ma Abax exaratus AI1295 0.98 Abax parallelepipedus GBK 12.4 Ma 1 Abax ovalis AN297 16.6 Ma

1 Abax pyrenaeus AI267 12.4 Abax carinatus GBK 40.9 Ma 0.98 Percus politus AI266 9.3 Ma 1 Percus patruelis GBK 11.5 Ma 1 Percus stultus GBK 1 7.8 Ma 19.3 Ma Percus guiraoi GBK

1 Percus plicatus RA1085 22.7 Ma 1 Percus grandicollis RA812 2.0 Ma 1 1 28.6 Ma 14.5 Ma Percus strictus AI265 Percus lineatus GBK

Percus villae GBK

40 30 20 10 0 Eocene Oligocene Miocene Plio. Ple.

FIGURE 6 Bayesian calibrated phylogeny of Molopina. Ultrametric tree obtained with BEAST. Number inside nodes, estimated age; numbers above branches, posterior probability of the node. Dotted line marks the end of the Messinian salinity crisis 5.3 Ma; purple band marks the tectonic opening of the western Mediterranean basin. In red, subterranean species. See Supporting Information Table S2 for details on the specimens [Colour figure can be viewed at wileyonlinelibrary.com] opening of the western Mediterranean basin in Molopina, and 4 DISCUSSION | a Messinian or post‐Messinian diversification in the Duvalius lineage. Our results clearly establish two contrasting temporal and ge- ologic scenarios for the origin of the subterranean taxa of the Duvalius lineage and Molopina in the western Mediterranean 4.1 | Duvalius phyletic lineage islands. Despite the lack of fossil record or other unambigu- The reconstructed topology of the western Duvalius group ous calibration points, the use of the same evolutionary rates plus the genus Anophthalmus is consistent with previ- in the same genes in both lineages allows for a clear discrimi- ous results (Faille et al., 2013), including the position of nation between an Oligocene origin associated to the tectonic 576 | FAILLE et al. D. delphinensis as sister species of Anophthalmus, supported some reptiles (Carranza et al., 2008) and amphibians (e.g., also by some morphological characters (shape of male geni- Stöck, Dubey, et al., 2008; Stöck, Sicilia, et al.,2008). The talia and pubescence of the head). The crown age of the iso- connection between Sicily and Tunisia might have been facil- topic lineage was estimated to be of Messinian origin, while itated by the lower sea level during the glacial phases, reduc- most of the lineage diversification took place during the ing the distance between the two continents and causing the Pliocene and Early Pleistocene. In Faille et al. (2013) (with emergence of potential stepping‐stone islands (Husemann, a wider sampling of genera) the crown age was estimated to Schmitt, Zachos, Ulrich, & Habel, 2014). be somewhat older, of Tortonian origin, but the diversifica- The separation between D. sardous and the Sicilian‐ tion was still estimated to have occurred mostly during the Algerian species was estimated to date from the early Pliocene, Pliocene and Pleistocene. approximately at the same age than the two Mallorcan spe- The westernmost Mediterranean species of the Duvalius cies. Sicily does not belong to the Corso‐Sardinian tectonic lineage, D. berthae from the Catalan coastal range, was plate, but during the Tortonian and Messinian it was linked previously considered to be close to D. lespesi (Fairmaire) to North Africa, Calabria and the southern Apennines, which from southern France (Jeannel, 1928), the Sardinian D. sar- in turn were closely linked to Corsica, Sardinia and the dous (Vigna Taglianti, 1982) or the Mallorcan D. baleari- Tuscan area (Rosenbaum et al., 2002). The connection be- cus. It was, however, confirmed to be related to D. raymondi tween Sicily and North Africa remained until the Pliocene (Delarouzée) from Provence (Southern France) with strong (Lo Presti & Oberprieler, 2011; Rosenbaum et al., 2002), in support, with an estimated separation in the Late Pliocene, a agreement with our estimations, but the Sicily strait is con- relationship already suggested in a recent work (Faille et al., sidered to have been a strong barrier during the Pleistocene, 2013). The two species of Duvalius from Mallorca were re- separating the European and African biota much more effi- covered as sister with strong support despite their remarkable ciently than the Gibraltar strait (Husemann et al., 2014; Lo morphological differences. The relationships of these two Presti & Oberprieler, 2011). species are, however, uncertain, as the sister relationship with The subgenus Trechopsis, which originally included the Ibero‐Provençal D. berthae‐D. raymondi clade in the ML some species from Southern Greece and Western Anatolia and uncalibrated BEAST analyses was poorly supported and (Coiffait, 1973; Jeannel, 1934a,1934b), is currently restricted not recovered in the calibrated BEAST analysis. In any case, to four Western Mediterranean species highly specialised to the estimated age of the Mallorcan lineage is clearly poste- the subterranean environment, with “aphaenopsian” habi- rior to the tectonic separation of the Balearic Islands from tus (Casale, 1979; Casale & Laneyrie, 1982; Moravec et al., continental Spain during the Oligocene, and more compatible 2003). Our results clearly demonstrated its polyphyly, with with a Messinian origin as suggested for other terrestrial and the Mallorcan D. (T.) ferreresi not directly related to the low dispersers groups (Chueca, Gómez‐Moliner, Forés, & Algerian species, implying that their similarities in body Madeira, 2017). The separation between the two Mallorcan shape are the result of evolutionary convergence. The puta- species was estimated to be of Pleistocene origin, which tive relationships between the oriental and African species would imply that D. (Trechopsis) ferreresi developed its tro- formerly included in Trechopsis (now treated as Duvalius glomorphic features in a very short time—and in parallel to huetheri group sensu Casale & Laneyrie, 1982) remains that of the other species of Trechopsis from North Africa (see unexplored, although the polyphyly of Trechopsis suggests below). that their similarity may also be the result of convergence. Among the other island species, Duvalius sardous, tradi- Duvalius jurjurae, the only Duvalius sensu stricto in Africa, tionally considered to be close to D. brujasi (south France), is known only from a couple of exemplars from the Djurdjura. was found sister to a clade including the Algerian Trechopsis Although we failed to find an exemplar for the molecular and Sicilian Duvalius. The paraphyly of the island species analysis, the species will most likely be included in the clade with respect to the Algerian implies that the separation be- of the Algerian Trechopsis+Sicilian Duvalius, as its morpho- tween Sardinian and Sicilian species occurred prior to the logical proximity with Sicilian species was already evidenced colonisation of Africa by Duvalius. The northern origin of by Jeannel (1928). the Algerian Duvalius is in agreement with the complete lack of species belonging to this group in other African regions, which is rich in Trechini of other species groups (genus 4.2 | Molopina Trechus in the widest sense), especially in the Moroccan, The distribution of subterranean Pterostichini Molopina Ethiopian and East African mountains (Jeannel, 1927). A presents a classical “Tyrrhenian” pattern, with morphologi- colonisation of North Africa from Sicily is also known in cally specialised species in the Iberian peninsula, Pyrenees, other organisms (e.g., firs of the genus Abies, Sánchez‐Robles Sardinia and Mallorca. No subterranean species is known so et al., 2014), although the contrary pattern—that is, a south- far from Sicily, the Maghreb or the eastern Mediterranean, ern origin of Sicilian fauna—is also found in, for example, although the remains of a specimen sampled in a cave in FAILLE et al. | 577 Southern Anatolia were attributed to Molopina (Casale & with a distribution centred in the central and eastern Alps and Vigna Taglianti, 1999; Vigna Taglianti, 1980). The ancient the Balkan peninsula, and a mostly western lineage with an origin of Molopina and an early differentiation of the gen- ancestor with at least some subterranean habits and some tro- era were already hypothesised by Brandmayr and Zetto glomorphic characters, likely similar to the current Pyrenean Brandmayr (1979), based in part in the study of the pecu- Molopidius or the eastern Typhlochoromus. The monophyly of liar system of parental care in these presocial ground beetles. subterranean lineages previously thought to have independently They hypothesised that the presocial behaviour is ancestral in colonised the subterranean environment is a recurrent result in Molops, as all species show strongly reduced ovipositors and multiple groups (e.g., Faille et al., 2010; Faille, Casale et al., the same life specialisation (what they call “aestivation”), 2011, 2013; Ribera et al., 2010), but in the case of Molopina considered to be of recent origin. However, what they con- the evidence is still insufficient. Other than the low support sider to be the ancient Molopina, the stenotopic endogeous of the internal relationships in most analyses, the morpholog- or cave‐dwelling genera with only one or few species, were ical and geographic evidence supports a closer relationship of thought to be the relics of Oligocene or at least pre‐Miocene Typhlochoromus with the eastern lineages of the Molops group forms, which were once living on the land masses around the (Busulini, 1957). There are also no molecular data available of Tethys (Brandmayr & Zetto Brandmayr, 1979). Although the the Balkan‐Dinaric subterranean genera Stenochoromus and breeding behaviour of the subterranean species is unknown, Henrotiochoromus, which may provide valuable information neither Speomolops nor Typhlochoromus or Stenochoromus on the evolution of the eastern Molopina. show reduced terminalia in the female genitalia, suggesting the lack of presocial habits. Among the troglobitic species, ACKNOWLEDGEMENTS only the larval stages of Speomolops sardous have been de- scribed so far (Casale, Di Giulio, Marcia, & Molinu, 2010), We are particularly grateful for their support in obtaining ma- from five‐third‐instar larvae collected 20–30 cm below the terial and data to Giuseppe Grafitti, Paolo Marcia, Alessandro surface of a sandy bank near one of the freshwater subter- Molinu and Carlo Onnis in Sardinia, Paolo Magrini in Sicily, ranean lakes where adults were very abundant. The larvae and Charles Bourdeau, Alexandra Cieslak, Javier Fresneda, were never observed walking on the surface. This demon- Enrico Lana, Miquel Palmer, Germana Rondolini, Mateu strates that the larva of this species has obligate underground, Vadell and all the collectors listed in Supporting Information fossorial behaviour, in sandy soil periodically flooded by the Table S2 in Mallorca and other areas. We thank Ana Izquierdo subterranean river of the cave. (MNCN, Madrid), Rocio Alonso and Anabela Cardoso (IBE, Our results unambiguously show that the subterranean Barcelona) for laboratory work. We also thank F. Ciampor genera (Molopidius, Speomolops, Henrotius, Zariquieya, (Bratislava) and R. Panin (Lviv) for the habitus photographs Oscadytes and Typhlochoromus) are members of this sub- of some Molopina, and J. Schmidt (Rostock) and one anony- tribe. They were all also included in the Molops group, one of mous referee for comments to the manuscript. Zoological the three lineages within Molopina (the other two, the genera researches of AC were supported by the Italian Ministero Percus and Abax do not have any known subterranean species). dell’Istruzione, dell’Università e della Ricerca Scientifica The intergeneric relationships within the Molops groups were, e Tecnologica (MIUR‐PRIN 2004057217 “Zoogeography however, poorly supported with the exception of the monophyly of Mediterranean—Southern African disjunct distributions of the subterranean Pyrenean genera, which were estimated to by a multimethod approach”), and the UE program Interreg have diversified during the Miocene, after the opening of the Sardinia‐Corsica‐Tuscany on Biodiversity. Molecular work western Mediterranean basin. It is remarkable that all basal was supported by projects DFG FA 1042/1‐1, CGL2010‐15755 lineages of the Molops group, with uncertain relationships be- and CGL2016‐76705‐P (AEI/FEDER, UE). tween them, were estimated to have originated in a relatively narrow temporal window which fully overlaps with the tectonic ORCID opening of the western Mediterranean basin (Rosenbaum et al., 2002; Schettino & Turco, 2006). In the only analysis with some Arnaud Faille http://orcid.org/0000-0003-3274-5915 supported basal nodes, the uncalibrated Bayesian (Supporting Ignacio Ribera http://orcid.org/0000-0002-2791-7615 Information Figure S2), all subterranean taxa were recovered monophyletic and the cladogenetic order reflected the temporal succession of the separation of the plates: first, the Sardinian spe- REFERENCES Speomolops Henrotius cies ( ), then the Mallorcan ( ) and, within Andújar, C., Serrano, J., & Gómez‐Zurita, J. (2012). Winding up the the continental taxa, first the eastern species (Typhlochoromus) molecular clock in the genus Carabus (Coleoptera: Carabidae): and finally the diversification within the Pyrenean group. This Assessment of methodological decisions on rate and node age scenario would imply an early division between an eastern lin- estimation. BMC Evolutionary Biology, 12, 40. https://doi. eage formed by epigean forest species (Molops and Tanythrix), org/10.1186/1471-2148-12-40 578 | FAILLE et al. Andújar, C., Soria‐Carrasco, V., Serrano, J., & Gómez‐Zurita, J. (2014). resurrection of the genus Calotriton and the description of a Congruence test of molecular clock calibration hypotheses based new endemic species from the Iberian Peninsula. Zoological on Bayes factor comparisons. Methods in Ecology and Evolution, Journal of the Linnean Society, 145, 555–582. https://doi. 5, 226–242. org/10.1111/j.1096-3642.2005.00197.x Bellés, X. (1987). Fauna cavernícola i intersticial de la Península Carranza, S., Arnold, E. N., Geniez, P., Roca, J., & Mateo, J. A. (2008). Ibèrica i les illes Balears. Monografies Cientifiques 4. Consell Radiation, multiple dispersal and parallelism in the skinks, Superior d'Investigacions Científiques. Mallorca, Spain: Editorial Chalcides and Sphenops (Squamata: Scincidae), with comments Moll. on Scincus and Scincopus and the age of the Sahara Desert. Bidegaray‐Batista, L., & Arnedo, M. A. (2011). Gone with the plate: Molecular Phylogenetics and Evolution, 46, 1071–1094. https:// The opening of the Western Mediterranean basin drove the diver- doi.org/10.1016/j.ympev.2007.11.018 sification of ground‐dweller spiders. BMC Evolutionary Biology, Casale, A. (1979). Note su alcuni Duvalius del Peloponneso, con de- 11, 317. https://doi.org/10.1186/1471-2148-11-317 scrizione di una nuova specie (Coleoptera, Carabidae, Subf. Bousquet, Y. (2003). Tribe pterostichini. In I. Löbl, & A. Smetana ). Entomologica Basiliensia, 4, 173–186. (Eds.), Catalogue of palaearctic coleoptera, vol. 1, Archostemata, Casale, A., Di Giulio, A., Marcia, P., & Molinu, A. (2010). The third Myxophaga, (pp. 469–521). Stenstrup, Denmark: instar larva of Speomolops sardous Patrizi, 1955, a cave‐dwelling Apollo Books. molopine beetle endemic to Eastern Sardinia, with notes on its Brandmayr, P., & Zetto Brandmayr, T. (1979). The evolution of parental habitat (Coleoptera, Carabidae). Italian Journal of Zoology, 77, care phenomena in Pterostichini, with particular reference to the 159–167. https://doi.org/10.1080/11250000903015182 genera Abax and Molops. In P. J. den Boer, H. U. Thiele & F. Casale, A., & Laneyrie, R. (1982). Trechodinae et Trechinae du monde. Weber (Eds.), On the evolution of behaviour in carabid beetles Tableau des sous‐familles, tribus, séries phylétiques, genres, et (pp. 35–49). Miscellaneous Papers, 18, Landbouwhogeschool catalogue général des espèces. Mémoires de Biospéologie, 9, Wageningen. 1–226. Brandmayr, P., & Zetto Brandmayr, T. (1994). The evolutionary his- Casale, A., & Ribera, I. (2010). Are Molopina of the Euro‐Mediterranean tory of the genus Abax (Coleoptera, Carabidae). In K. Desender, region related to the Madagascan, South African and Australian M. Dufrêne, M. Loreau, M. L. Luff & J.‐P. Maelfait (Eds.), Pterostichini? (Coleoptera, Carabidae). Biogeographia, 29, Carabid beetles. Ecology and evolution (pp. 19–24). Dordrecht, 33–44. the , Boston, MA, London, UK: Kluwer Academic Casale, A., & Vigna Taglianti, A. (1996). Coleotteri Carabidi di Sardegna Publishers. https://doi.org/10.1007/978-94-017-0968-2 e delle piccole isole circumsarde, e loro significato biogeografico Brückner, M. (2002). Phylogenie und biogeographie der Gattung Percus (Coleoptera, Carabidae). Biogeographia, 18, 391–427. Bonelli 1810 (Coleoptera: Carabidae): eine molekularsystem- Casale, A., & Vigna Taglianti, A. (1999). Caraboid beetles (excl. atische Analyse. PhD dissertation, Verlag Mainz. Cicindelidae) of Anatolia, and their biogeographical significance Brückner, M. (2004a). Genetic differentiation in Percus corsicus (Coleoptera, Caraboidea). Biogeographia, 20, 277–406. (Coleoptera, Carabidae). Mitteilungen der Deutschen Gesellschaft Casale, A., & Vigna Taglianti, A. (2005). Coleotteri Caraboidei fuer Allgemeine und Angewandte EntomologieMaerz, 14, 83–86. delle Alpi centrali e orientali, e loro significato biogeografico Brückner, M. (2004b). The phylogeny of the subgenus Pseudopercus (Coleoptera Caraboidea). Biogeographia, 26, 129–201. (Coleoptera, Carabidae): Conflicts between mitochondrial and Chapman, M. A., & Abbott, R. J. (2005). The origin of a novel form nuclear DNA sequences. Mitteilungen der Deutschen Gesellschaft of Senecio (Asteraceae) restricted to sand dunes in south- fuer Allgemeine und Angewandte EntomologieMaerz, 14, 77–82. ern Sicily. New Phytologist, 166, 1051–1062. https://doi. Brückner, M., & Mossakowski, D. (2006). Phylogeny of the genus org/10.1111/j.1469-8137.2005.01393.x Percus (Coleoptera: Carabidae) – nuclear genes and the basal Chueca, L. J., Gómez‐Moliner, B. J., Forés, M., & Madeira, M. J. (2017). splits. In J. Serrano, M. Koivula & G. Lövei (Eds.), Proceedings Biogeography and radiation of the land snail genus Xerocrassa of the XII European Carabidologists’ Meeting. Entomol. Fennica, (Geomitridae) in the Balearic Islands. Journal of Biogeography, 17, 195–199. 44, 760–772. https://doi.org/10.1111/jbi.12923 Brullo, S., Giusso del Galdo, G., & Garino, R. (2001). The orophilous Cicconardi, F., Nardi, F., Emerson, B. C., Frati, F., & Fanciulli, P. P. communities of the Pino‐Juniperetea class in the central and (2009). Deep phylogeographic divisions and long‐term persistence Eastern Mediterranean area. Feddes Repertorium, 112, 261–308. of forest invertebrates (Hexapoda: Collembola) in the North‐ https://doi.org/10.1002/fedr.20011120308 Western Mediterranean basin. Molecular Ecology, 19, 386–400. Bruneau de Miré, P. (1955). Un Duvalius nord‐Africain nouveau (Col. Coiffait, H. (1973). Contribution à la connaissance des Coléoptères des Trechidae). Revue Française d'Entomologie, 22, 254–256. grottes d'Anatolie. Annales de Spéléologie, 28, 685–688. Busulini, E. (1957). Note speleologiche ‐ 1. Diagnosi preliminare di Contandriopoulos, J., & Cardona, M. A. (1984). Caractère original de la una nuova specie troglobia del genere Molops Bon. (Coleoptera‐ flore endémique des Baléares. Botanica Helvetica, 94, 101–132. Carab.). Bollettino del Museo civico di Storia Naturale di Venezia, Cosson, J.‐F., Hutterer, R., Libois, R., Sarà, M., Taberlet, P., & Vogel, P. 9[1956], 10. (2005). Phylogeographical footprints of the Strait of Gibraltar and Caccone, A., & Sbordoni, V. (2001). Molecular biogeogra- Quaternary climatic fluctuations in the western Mediterranean: A phy of cave life: A study using mitochondrial DNA from case study with the greater white‐toothed shrew, Crocidura rus- Bathysciine beetles. Evolution, 55, 122–130. https://doi. sula (Mammalia: Soricidae). Molecular Ecology, 14, 1151–1162. org/10.1111/j.0014-3820.2001.tb01278.x https://doi.org/10.1111/j.1365-294X.2005.02476.x Carranza, S., & Amat, F. (2005). Taxonomy, biogeography and evo- Dobson, M., & Wright, A. (2000). Faunal relationships and zoo- lution of Euproctus (Amphibia: Salamandridae), with the geographical affinities of mammals in north‐west Africa. FAILLE et al. | 579 Journal of Biogeography, 27, 417–424. https://doi. Henrot, Η. (1964). Un Duvalius nouveau de l’île de Majorque (Col. org/10.1046/j.1365-2699.2000.00384.x Carabidae). Bulletin de la Société Entomologique de France, 69, Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). 15–17. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Hsü, K. J., Ryan, W. B. F., & Cita, M. B. (1973). Late Miocene desic- Molecular Biology and Evolution, 29, 1969–1973. https://doi. cation of the Mediterranean. Nature, 242, 240–244. https://doi. org/10.1093/molbev/mss075 org/10.1038/242240a0 Düring, A., & Brückner, M. (2000). The evolutionary history of the tribe Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W., & Habel, J. C. Molopini: A first molecular approach. In P. Brandmayr, G. Lövei, (2014). Palaearctic biogeography revisited: Evidence for the exis- T. Zetto Brandmayr, A. Casale & A. Vigna Taglianti (Eds.), tence of a North African refugium for Western Palaearctic biota. Natural history and applied ecology of Carabid Beetles (pp. 1–4). Journal of Biogeography, 41, 81–94. https://doi.org/10.1111/ Sofia‐Moscow, Russia: Pensoft. jbi.12180 Faille, A., Andújar, C., Fadrique, F., & Ribera, I. (2014). Late Miocene Jeannel, R. (1926). Monographie des Trechinae. Morphologie com- origin of a Ibero‐Maghrebian clade of ground beetles with mul- parée et distribution d'un groupe de Coléoptères. L'Abeille, 32, tiple colonisations of the subterranean environment. Journal of 221–550. Biogeography, 41, 1979–1990. https://doi.org/10.1111/jbi.12349 Jeannel, R. (1927). Monographie des Trechinae 2. Morphologie com- Faille, A., Bourdeau, C., & Fresneda, J. (2012). Molecular phylogeny parée et distribution géographique d'un groupe de coléoptères. of the Trechus brucki group, with description of two new species L'Abeille, 33, 1–592. from the Pyreneo‐Cantabrian area (France, Spain) (Coleoptera, Jeannel, R. (1928). Monographie des Trechinae. Morphologie comparée Carabidae, Trechinae). ZooKeys, 217, 11–51. https://doi. et distribution d'un groupe de Coléoptères. Troisième Livraison: org/10.3897/zookeys.217.3136 Les Trechini cavernicoles. L'Abeille, 35, 1–808. Faille, A., Casale, A., Balke, M., & Ribera, I. (2013). A molecular Jeannel, R. (1934a). Diagnoses préliminaires de deux coléoptères cav- phylogeny of Alpine subterranean Trechini. BMC Evolutionary ernicoles de l’ Asie Mineure. Bulletin de la Société Entomologique Biology, 13, 248. https://doi.org/10.1186/1471-2148-13-248 de France, 39, 20–21. Faille, A., Casale, A., & Ribera, I. (2011). Phylogenetic relation- Jeannel, R. (1934b). Coléoptères cavernicoles de la grotte de Fersine, en ships of west Mediterranean troglobitic Trechini ground beetles Asie Mineure. Annales de la Société Entomologique de France, (Coleoptera: Carabidae). Zoologica Scripta, 40, 282–295. https:// 103, 159–174, 345–346 [rectification]. doi.org/10.1111/j.1463-6409.2010.00467.x Jeannel, R. (1948). Coléoptères carabiques de la région malgache Faille, A., Fresneda, J., & Bourdeau, C. (2011). Les Molopina hy- (Deuxième Partie). Faune de l'Empire Français, X (pp. 373–765). pogés des Pyrénées avec la description d'une nouvelle espèce Paris, France: Editions du Muséum. de Zariquieya Jeannel, 1924 d'Espagne (Coleoptera, Carabidae, Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT mul- Pterostichini). Zoosystema, 33, 429–441. https://doi.org/10.5252/ tiple sequence alignment program. Briefings in Bioinformatics, 9, z2011n4a1 286–298. https://doi.org/10.1093/bib/bbn013 Faille, A., Ribera, I., Deharveng, L., Bourdeau, C., Garnery, L., Queinnec, Ketmaier, V., & Caccone, A. (2013). Twenty years of molecular bio- E., & Deuve, T. (2010). A molecular phylogeny shows the sin- geography in the West Mediterranean Islands of Corsica and gle origin of the Pyrenean subterranean Trechini ground beetles Sardinia: Lessons learnt and future prospects. In M. Silva‐Opps (Coleoptera: Carabidae). Molecular Phylogenetics and Evolution, (Ed.), Current progress in biological research, Chapter 4 (pp. 54, 97–106. https://doi.org/10.1016/j.ympev.2009.10.008 71–93). Rijeka, : Intech. Gielly, L., Debussche, M., & Thompson, J. D. (2001). Geographic iso- Ketmaier, V., Giusti, F., & Caccone, A. (2006). Molecular phylogeny lation and evolution of the Mediterranean endemic Cyclamen: and historical biogeography of the land snail genus Solatopupa Insights from chloroplast trnL (UAA) intron sequence varia- (Pulmonata) in the peri‐Tyrrhenian area. Molecular Phylogenetics tion. Plant Systematics and Evolution, 230, 75–88. https://doi. and Evolution, 39, 439–451. https://doi.org/10.1016/j. org/10.1007/s006060170005 ympev.2005.12.008 Habel, J. C., Dieker, P., & Schmitt, T. (2009). Biogeographical connec- Kumar, S. (2005). Molecular clocks: Four decades of evolution. Nature tions between the Maghreb and the Mediterranean peninsulas of Reviews. Genetics, 6, 654–662. https://doi.org/10.1038/nrg1659 southern Europe. Biological Journal of the Linnean Society, 98, Lagar, A. (1976). La cueva de Sa Campana y el karst de Castellots 693–703. https://doi.org/10.1111/j.1095-8312.2009.01300.x (Mallorca). Biospeleología. Speleon, 22(1975–1976), 69–72. Habel, J. C., Lens, L., Rödder, D., & Schmitt, T. (2011). From Africa Lo Presti, R. M., & Oberprieler, C. (2011). The central Mediterranean to Europe and back: Refugia and range shifts cause high ge- as a phytodiversity hotchpotch: Phylogeographical patterns of netic differentiation in the Marbled White butterfly Melanargia the Anthemis secundiramea group (Compositae, Anthemideae) galathea. BMC Evolutionary Biology, 11, 215. https://doi. across the Sicilian Channel. Journal of Biogeography, 38, 1109– org/10.1186/1471-2148-11-215 1124. https://doi.org/10.1111/j.1365-2699.2010.02464.x Habel, J. C., Rödder, D., Stefano, S., Meyer, M., & Schmitt, T. (2010). Lorenz, W. (2005). Systematic list of extant ground beetles of the Strong genetic cohesiveness between Italy and North Africa in world (Insecta Coleoptera “Geadephaga”: Trachypachidae and four butterfly species. Biological Journal of the Linnean Society, Carabidae. incl. Paussinae, Cicindelinae, Rhysodinae). Tutzing: 99, 818–830. https://doi.org/10.1111/j.1095-8312.2010.01394.x Lorenz, W. Hall, T. A. (1999). BioEdit: A user‐friendly biological sequence align- Magrini, P., Baviera, C., & Vigna Taglianti, A. (2006). Note sul ge- ment editor and analysis program for Windows 95/98/NT. Nucleic nere Duvalius in Sicilia con descrizione di due nuove specie Acids Symposium Series, 41, 95–98. (Coleoptera, Carabidae). Fragmenta Entomologica, 38, 33–53. 580 | FAILLE et al. Magrini, P., Petrioli, A., Benelli, A., & Degiovanni, A. (2016). Un nuovo Pfenninger, M., Vela, E., Jesse, R., Elejalde, M. A., Liberto, F., Magnin, Duvalius endogeo della Sicilia del "gruppo siculus" (Coleoptera, F., & Martínez‐Ortí, A. (2010). Temporal speciation pattern in Carabidae, Trechinae). Giornale Italiano di Entomologia, 14, the western Mediterranean genus Tudorella P. Fischer, 1885 291–298. (Gastropoda, Pomatiidae) supports the Tyrrhenian vicariance hy- Marrone, F., Lo Brutto, S., Hundsdoerfer, A. K., & Arculeo, M. pothesis. Molecular Phylogenetics and Evolution, 54, 427–436. (2013). Overlooked cryptic endemism in copepods: systematics https://doi.org/10.1016/j.ympev.2009.09.024 and natural history of the calanoid subgenus Occidodiaptomus Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Borutzky 1991 (Copepoda, Calanoida, Diaptomidae). Molecular Tracer v1. 6. Retrieved from http://beast.bio.ed.ac.uk/Tracer Phylogenetics and Evolution, 66, 190–202. https://doi. Ribera, I., Fresneda, J., Bucur, R., Izquierdo, A., Vogler, A. P., Salgado, J. org/10.1016/j.ympev.2012.09.016 M., & Cieslak, A. (2010). Ancient origin of a Western Mediterranean Martinsen, L., Venanzetti, F., & Bachmann, L. (2009). Phylogeography radiation of subterranean beetles. BMC Evolutionary Biology, 10, and mitochondrial DNA divergence in Dolichopoda cave crickets 29. https://doi.org/10.1186/1471-2148-10-29 (Orthoptera, Rhahidophoridae). Hereditas, 146, 33–45. https:// Rosenbaum, G., Lister, G. S., & Duboz, C. (2002). Reconstruction of doi.org/10.1111/j.1601-5223.2008.02068.x the tectonic evolution of the western Mediterranean since the Mateu, J. (1955). Los Molopini Bon. de la Península Ibérica. Eos, 31, Oligocene. Journal of the Virtual Explorer, 8, 107–130. 297–301. Roveri, M., Flecker, R., Krijgsman, W., Lofi, J., Lugli, S., Manzi, V., … Médail, F., & Quézel, P. (1999). Biodiversity hotspots in the Stoica, M. (2014). The Messinian Salinity Crisis: Past and future Mediterranean basin: Setting global conservation prior- of a great challenge for marine sciences. Marine Geology, 352, ities. Conservation Biology, 13, 1510–1513. https://doi. 25–58. https://doi.org/10.1016/j.margeo.2014.02.002 org/10.1046/j.1523-1739.1999.98467.x Sánchez‐Robles, J. M., Balao, F., Terrab, A., García‐Castaño, J. L., Meulenkamp, J. E., & Sissingh, W. (2003). Tertiary palaeogeography and Ortiz, M. A., Vela, E., & Talavera, S. (2014). Phylogeography of tectonostratigraphic evolution of the Northern and Southern Peri‐ SW Mediterranean firs: Different European origins for the North Tethys platforms and the intermediate domains of the African‐ African Abies species. Molecular Phylogenetics and Evolution, Eurasian convergent plate boundary zone. Palaeogeography, 79, 42–53. https://doi.org/10.1016/j.ympev.2014.06.005 Palaeoclimatology, Palaeoecology, 196, 209–228. https://doi. Sasakawa, K., & Kubota, K. (2007). Phylogeny and genital evolu- org/10.1016/S0031-0182(03)00319-5 tion of Carabid beetles in the genus Pterostichus and its allied Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES genera (Coleoptera: Carabidae) inferred from two nuclear gene Science Gateway for inference of large phylogenetic trees. In: sequences. Annals of the Entomological Society of America, Proceedings of the Gateway Computing Environments Workshop 100, 100–109. https://doi.org/10.1603/0013-8746(2007)100[10 (GCE), 14 Nov. 2010, New Orleans, pp 1–8. 0:PAGEOC]2.0.CO;2 Molina‐Venegas, R., Aparicio, A., José Pina, F., Valdés, B., & Arroyo, J. Schettino, A., & Turco, E. (2006). Plate tectonics of the Western (2013). Disentangling environmental correlates of vascular plant Mediterranean region during the Oligocene and Early Miocene. biodiversity in a Mediterranean hotspot. Ecology and Evolution, Geophysical Journal International, 166, 1398–1423. https://doi. 3, 3879–3894. https://doi.org/10.1002/ece3.762 org/10.1111/j.1365-246X.2006.02997.x Mora, E., Paspati, A., Decae, A. E., & Arnedo, M. (2017). Rafting Schmidt, J., Belousov, I., & Michalik, P. (2016). X‐ray microscopy re- spiders or drifting islands? Origins and diversification of the veals endophallic structures in a new species of the endemic trap‐door spiders from the Balearic Islands, Western genus Trechus Clairville, 1806 from Baltic amber (Coleoptera: Mediterranean. Journal of Biogeography, 44, 924–936. https:// Carabidae: Trechini). ZooKeys, 614, 113–127. doi.org/10.1111/jbi.12885 Schmidt, J., & Faille, A. (2015). Confirmation of occurrence of Moravec, P., Uéno, S.‐I., & Belousov, I. A. (2003). Tribe Trechini. In Trechus Clairville, 1806 in the Baltic amber forests, with I. Löbl, & A. Smetana (Eds.), Catalogue of palaearctic coleop- description of a flightless edaphic species, and remarks tera, vol. 1, Archostemata, Myxophaga, Adephaga (pp. 288–346). on Trechoides Motschulsky, 1856 (Coleoptera: Carabidae: Stenstrup, Denmark: Apollo Books. Trechini). Zootaxa, 4028, 539–550. https://doi.org/10.11646/ Moreno Saiz, J. C., Castro Parga, I., & Sainz Ollero, H. (1998). zootaxa.4028.4.5 Numerical analyses of distributions of Iberian and Balearic Schmidt, J., Hoffmann, H., & Michalik, P. (2016). Blind life in the Baltic endemic monocotyledons. Journal of Biogeography, 25, 179– amber forests: Description of an eyeless species of the ground beetle 194. https://doi.org/10.1046/j.1365-2699.1998.251118.x genus Trechus Clairville, 1806 (Coleoptera: Carabidae: Trechini). Pabijan, M., Crottini, A., Reckwell, D., Irisarri, I., Hauswaldt, J. S., Zootaxa, 4083, 431–443. https://doi.org/10.11646/zootaxa.4083.3.7 & Vences, M. (2012). A multigene species tree for Western Serrano, J. (2013). New catalogue of the family carabidae of the Iberian Mediterranean painted frogs (Discoglossus). Molecular península (Coleoptera). Murcia, Spain: Servicio de Publicaciones Phylogenetics and Evolution, 64, 690–696. https://doi. de la Universidad de Murcia. org/10.1016/j.ympev.2012.05.017 Stamatakis, A. (2006). RAxML‐VI‐HPC: Maximum likelihood‐based Peyerimhoff, P. (1908). Nouveaux Coléoptères du Nord‐Africain phylogenetic analyses with thousands of taxa and mixed mod- (sizième note: Faune du Djurdjura). Bulletin de la Société els. Bioinformatics, 22, 2688–2690. https://doi.org/10.1093/ Entomologique de France, 8, 117–125. bioinformatics/btl446 Peyerimhoff, P. (1910). Nouveaux Coléoptères du Nord‐Africain (onz- Stöck, M., Dubey, S., Klütsch, C., Litvinchuk, S. N., Scheidt, U., & ième note: Faune cavernicole du Djurdjura). Bulletin de la Société Perrin, N. (2008). Mitochondrial and nuclear phylogeny of cir- Entomologique de France, 8, 149–154. cum‐Mediterranean tree frogs from the Hyla arborea group. FAILLE et al. | 581 Molecular Phylogenetics and Evolution, 49, 1019–1024. https:// Vigna Taglianti, A., Casale, A., & Fattorini, S. (2002). I Carabidi doi.org/10.1016/j.ympev.2008.08.029 della Sicilia ed il loro significato biogeografico (Coleoptera, Stöck, M., Sicilia, A., Belfiore, N. M., Buckley, D., Lo Brutto, S., Lo Carabidae). Bollettino Dell'Accademia Gioenia di Scienze Valvo, M., & Arculeo, M. (2008). Post‐Messinian evolution- Naturali in Catania, 35, 435–464. ary relationships across the Sicilian channel: Mitochondrial and nuclear markers link a new green toad from Sicily to African relatives. BMC Evolutionary Biology, 8, 56. https://doi. org/10.1186/1471-2148-8-56 SUPPORTING INFORMATION Vigna Taglianti, A. (1980). Nouvelles données sur la systématique et Additional supporting information may be found online la répartition géographique des Coléoptères Carabiques cav- in the Supporting Information section at the end of the ernicoles et endogés du Proche‐Orient (Coleoptera, Carabidae). article. Mémoires de Biospéologie, 7, 163–172. Vigna Taglianti, A. (1982). Le attuali conoscenze sui Coleotteri Carabidi cavernicoli italiani. Lavori della Società Italiana di Biogeografia, Faille A, Casale A, 7(1078), 339–430. How to cite this article: Vigna Taglianti, A. (2005). Checklist e corotipi delle specie di Carabidae Hernando C, Aït Mouloud S, Ribera I. Tectonic della fauna italiana. Appendice B. In P. Brandmayr, T. Zetto & R. vicariance versus Messinian dispersal in western Pizzolotto (Eds.), I Coleotteri Carabidi per la valutazione am- Mediterranean ground beetles. Zool Scr. 2018;47:565– bientale e la conservazione della biodiversità (pp. 186–225). 581. https://doi.org/10.1111/zsc.12301 APAT, Manuale operativo 34/2005.I.G.E.R., Roma. Duvalius carantii L542 1 Duvalius carantii L283 0.77 Duvalius lanai L476 0.99 Duvalius pecoudi L275 0.93 Duvalius roberti AF129 1 Duvalius perrinae L426 0.99 1 Duvalius cailloli L192 Duvalius sicardi L241 1 Duvalius joffrei L23 0.61 Duvalius ochsi L172 1 Duvalius waillyi L434 Agostinia launi L435 0.98 Duvalius gentilei L294 Duvalius opermanni L754 Duvalius lespesi L243 1 1 Duvalius cadurcus L312 Duvalius exaratus L394 Duvalius goemeriensis L451 1 Duvalius bokori L450 0.66 Duvalius klimai L462 0.88 Duvalius erichsonii L480 Duvalius szaboi L453 1 Duvalius microphthalmus L456 0.53 Duvalius boldorii L352 Duvalius raymondi L427 1 1 Duvalius raymondi L433 Duvalius berthae AF115 0.79 Duvalius balearicus L809 Mallorca 1 Duvalius (T.) ferreresi L807 Trichaphaenops gounellei L17 0.98 Luraphaenops gaudini AF116

Sicily Duvalius aliciae L812 0.8 Duvalius ribaudoi L813 1 Duvalius (T.) lapiei L619 0.91 1 0.99 Algeria Duvalius (T.) iblis L618 Sardinia Duvalius sardous L743 Duvalius convexicollis L171 Duvalius diniensis L428 Duvalius lineage (“isotopics”) 1 1 Duvalius brujasi L429 Duvalius pastorellii L662 Anophthalmus schmidti L695 1 0.99 0.84 Anophthalmus tolminensis L686 Duvalius delphinensis L422 Geotrechus discontignyi AF92 0.99 Aphaenops ehlersi AF64 1 Aphaenops leschenaulti AF1 0.98 Aphaenops cerberus AF30 Trechus obtusus L28 1 1 1 Trechus quadristriatus AF96 1 Trechus fulvus AF98 Trechus aff. schaufussi AF101 Zariquieya boumortensis GBK 1 1 Zariquieya troglodytes AI271 Oscadytes rovirai AI270 1 Molopidius spinicollis AI268 0.97 1 Molopidius spinicollis AI269 0.66 Typhlochoromus marcelloi AI1291 1 Henrotius jordai AI1242 Speomolops sardous AI272 Molops group 1 0.97 Speomolops sardous AI1292 Molops piceus AI362 1 Molops AN288 1 Tanythrix edurus GBK 1 Tanythrix senilis AI473 1 Abax oblongus GBK 0.72 Abax angustatus GBK 1 0.56 Abax exaratus AI1295 0.99 Abax parallelepipedus GBK Abax 1 Abax ovalis AN297 Abax carinatus GBK 1 Abax pyrenaeus AI267 Molopina 1 Percus guiraoi GBK 1 Percus stultus GBK 1 Percus patruelis GBK 1 1 Percus politus AI266 Percus plicatus RA1085 1 Percus strictus AI265 Percus 1 1 1 1 Percus grandicollis RA812 Percus lineatus GBK Percus villai GBK Styracoderus atramentarius AI1181 1 Sterocorax globosus AI474 1 Pterostichus AN150 0.99 1 Corax ghilianii AI1068 1 Laemostenus carinatus AN253 1 0.82 Laemostenus atlanticus AN122 Platyderus presahariensis AI472 Astigis salzmanni AI1293 Eucamptognathus androyanus AI477 1 1 Eucamptognathus oopterus AI476 Eudromus striaticollis AI478 Genus Subgenus species Author year Country Ecology included original combination Trechini Duvalius Trechopsis lapiei Peyerimhoff 1908 Algeria nivicolous X Trechopsis Duvalius Trechopsis iblis Peyerimhoff 1910 Algeria hypogean X Aphaenops Duvalius Trechopsis baborensis Bruneau de Miré 1955 Algeria hypogean Duvalius (Trechopsis) Duvalius Duvalius jurjurae Peyerimhoff 1909 Algeria hypogean Trechus Duvalius Trechopsis ferreresi Lagar 1976 Spain (Mallorca) hypogean X Duvalius (Trechopsis) Duvalius Duvalius berthae Jeannel 1910 Spain hypogean X Trechus Duvalius Duvalius balearicus Henrot 1964 Spain (Mallorca) hypogean X Duvalius Duvalius Duvalius sardous Dodero 1917 Italy (Sardinia) hypogean X Trechus Duvalius Duvalius aliciae Magrini, Baviera, Petrioli 2007 Italy (Sicily) hypogean X Duvalius Duvalius Duvalius adelphus Magrini, Petrioli, Degiovanni, Bastianini 2008 Italy (Sicily) hypogean Duvalius Duvalius Duvalius hartigi Magrini, Baviera, Vigna Taglianti 2007 Italy (Sicily) hypogean Duvalius Duvalius Duvalius ioannis Magrini, Petrioli, Benelli, Degiovanni 2016 Italy (Sicily) hypogean Duvalius Duvalius Duvalius marii Vanni, Magrini, Pennisi 1992 Italy (Sicily) hypogean Duvalius Duvalius Duvalius petriolii Magrini, Baviera, Vigna Taglianti 2007 Italy (Sicily) hypogean Duvalius Duvalius Duvalius ribaudoi Magrini, Petrioli, Degiovanni 2010 Italy (Sicily) hypogean X Duvalius Duvalius Duvalius siculus Baudi di Selve 1882 Italy (Sicily) hypogean Anophthalmus Duvalius Duvalius silvestrii Gestro 1896 Italy (Sicily) hypogean Anophthalmus

Molopina Henrotius jordai Reitter 1914 Spain (Mallorca) hypogean X Hypogeobium Molopidius spinicollis Dejean 1828 France, Spain hypogean X Feronia Oscadytes rovirai Lagar 1975 Spain hypogean X Oscadytes Percus corrugatus Billberg 1815 Italy (Sicily) epigean Scarites Percus corsicus Audinet-Serville 1821 France (Corsica) epigean Harpalus Percus cylindricus Chaudoir 1868 Italy (Sardinia) epigean Percus Percus espagnoli Lagar 1965 Spain (Balearic Isl.) epigean Percus Percus grandicollis Audinet-Serville 1821 France (Corsica), Italy (Sardinia) epigean X Harpalus Percus lineatus Solier 1835 Italy (Sicily), Algeria, Tunisia epigean X Feronia Percus plicatus Dejean 1828 Spain (Balearic Isl.) epigean X Feronia Percus reichei Kraatz 1858 France (Corsica) epigean Percus Percus strictus Dejean 1828 France (Corsica), Italy (Sardinia) epigean X Feronia

Additional file 2: Table S2. Material used in the study, with locality data, voucher number and accession numbers of the sequences. In bold, newly obtained sequences.

N° Species code localities Collectors Ecology SSU LSU Cox1 rrnL+trnL+NAD1 rrnS NAD5

Trechini

1 Agostinia Jeannel, 1928

A. launi Gestro, 1892 ZSM-L435 Italy- Val Pesio- Grotta superiore delle Camosciere A. Faille & E. Lana Hypogean HG514778 HG514897 - HG514544+HG514544+HG514544

2 Anophthalmus Sturm, 1844

A. schmidti gspani Reitter, 1918 ZSM-L695 - Škofja Loka, Monte Ljubnik- Kevderca na Lubniku G. Colombetta Hypogean HG514830 HG514959 HG514708 HG514600+HG514600+HG514600

A. tolminensis J. Müller, 1922 ZSM-L686 Slovenia- Zatolmin (Tolmin)- Zadlaška jama G. Colombetta Hypogean - HG514956 HG514707 HG514597+HG514597+HG514597

3 Duvalius Delarouzée, 1859

Duvalius Delarouzée, 1859

D. aliciae Magrini, Baviera & Petrioli, 2007 ZSM-L812 Italy- Sicily- Scopello- Grotta del Sughero C. Bourdeau, A. Faille & J. Fresneda Hypogean LS453018 LS453019 LS453432 LS451181

D. balearicus Henrot, 1964 ZSM-L809 Spain- Mallorca- Pollença- Cova Cometa des Morts C. Bourdeau, A. Casale, A. Faille, J. Fresneda & I. Ribera Hypogean LS479176 LS479177 - LS479179

D. berthae (Jeannel, 1910) MNHN-AF115 Spain- Pratdip- Cova d’en Xoles C. Bourdeau, P. Déliot, F. Fadrique & A. Faille Hypogean - GQ293606 GQ293626 FR729588+FR729588+FR729588

D. boldorii vaghezzae Ghidini, 1937 ZSM-L352 Italy- Marmentino- Piani di Vaghezza M. Grottolo Hypogean HG514762 HG514876 HG514645 HG514526+HG514526+HG514526

D. brujasi (Sainte-Claire Deville, 1901) ZSM-L429 France- Andon, Canaux- Grotte du Cafard A. Coache. A. Faille, Raingeard I. & J. Hypogean HG514774 HG514893 HG514660 HG514540+HG514540+HG514540

D. cailloli cailloli (Sainte-Claire Deville, 1902) IBE-L192 France- Sospel- Grotte de Sues J.M. Lemaire Hypogean HG514722 HG514839 HG514620 HG514505+HG514505+HG514505

D. carantii (Sella, 1874) ZSM-L283 Italy- Vernante, Sotterranei militari A. Faille, J. Fresneda & E. Lana Hypogean HG514737 HG514852 HG514632 HG514516+HG514516+HG514516

D. carantii (Sella, 1874) ZSM-L542 Italy- Certosa di Pesio- Grotta superiore delle Camosciere A. Faille & E. Lana Hypogean - - HG514689 HG514577+HG514577+HG514577

D. convexicollis (Peyerimhoff, 1904) IBE-AF4 France- Saint-Auban- Faille du Pensier Lemaire, J.M. Hypogean HG514718 FR734005 FR733923 FR729589+FR729589+FR729589

D. delphinensis delphinensis (Abeille de Perrin, 1869) ZSM-L422 France- Saint Nazaire-en-Royans- Grotte de Thaïs A. Faille Hypogean HG514770 HG514888 - HG514535+HG514535+HG514535

D. diniensis diniensis (Peyerimhoff, 1904) ZSM-L428 France- Dignes-les-Bains- Doline de Cousson A. Faille Hypogean HG514773 HG514892 HG514659 HG514539+HG514539+HG514539

D. exaratus exaratus (Schaum, 1860) ZSM-L394 - Gallizien, Obir- Wildensteiner Wasserfall A. Faille Epigean - HG514882 HG514651 HG514529+HG514529+HG514529

D. gentilei gentilei (Gestro, 1885) ZSM-L294 Italy- Ponte di Nava- Grotta dell' Orso A. Faille & E. Lana Hypogean HG514745 HG514860 HG514639 HG514519+HG514519+HG514519

D. lanai Casale & Giachino, 2010 ZSM-L476 Italy- Montaldo di Mondovì- Pozzo del Rospo E. Lana & Pastorelli Hypogean HG514797 HG514918 HG514677 HG514562+HG514562+HG514562

D. lespesii cadurcus Jeannel, 1955 ZSM-L312 France- Caylus- Igue de Cabeque J. Raingeard Hypogean HG514748 - HG514641 HG514522+HG514522+HG514522

D. lespesii lespesii (Fairmaire, 1867) IBE-L243 France- Janoye, Penne- Gte des trois cloches J. Raingeard Hypogean - HG514845 HG514627 HG514510+HG514510+HG514510

D. ochsi joffrei Ochs, 1926 IBE-L23 France- Duranus- Faille du Chaos de la Vésubie J. Fresneda Hypogean HG514729 - HG514625 HG514509+HG514509+HG514509

D. ochsi ochsi (Dodero, 1921) IBE -L172 France- Cipières- Aven de la Bulle J.M. Lemaire Hypogean HG514719 HG514836 HG514617 HG514502+HG514502+HG514502

D. pastorellii Casale & Magrini, 2013 ZSM-L662 Italy- Genova - Val Graveglia-Miniera di Scrava Pastorelli & Calvini Hypogean HG514825 HG514952 HG514703 HG514593+HG514593+HG514593

D. pecoudi Jeannel, 1937 ZSM-L275 Italy- Limonetto - Galleria di Napoleone A. Faille Epigean/Hypogean HG514734 HG514850 HG514630 HG514514+HG514514+HG514514

D. perrinae Giordan, 1989 ZSM-L426 France- Peille, Plateau de Segra- Aven Vigne A. Faille & J.M. Lemaire Hypogean HG514771 HG514890 HG514657 HG514537+HG514537+HG514537

D. raymondi magdalenae (Abeille de Perrin, 1869) ZSM-L433 France- Plan d´Aups Ste Baume- Grotte aux Œufs A. Faille Hypogean HG514776 HG514895 HG514662 HG514542+HG514542+HG514542

D. raymondi raymondi (Delarouzée, 1859) ZSM-L427 France- Néoules- Régaï de Néoules A. Faille Hypogean HG514772 HG514891 HG514658 HG514538+HG514538+HG514538

D. ribaudoi Magrini, Petrioli & Degiovanni 2010 ZSM-L813 Italy- Sicily- Piana Albanesi - Grotta del Garrone C. Bourdeau, A. Faille, J. Fresneda & I. Ribera Hypogean LS453026 LS453027 LS453436 LS451185

D. roberti (Abeille de Perrin, 1903) MNHN-AF129 France- Peira Cava- Gte de Peira Cava A. Coache Hypogean HG514714 GQ293605 HG514615 GQ293691 +GQ293785 +GQ293837

D. sardous (Dodero, 1917) ZSM-L743 Italy- Sardinia-Lodè (Mt. Albo) unnamed cave L. Mereu Hypogean - LS479178 - LS479180

D. sicardi cayrosensis Giordan, 1985 IBE-L241 France- Ft de Cairos, Fontan- Fontaine d'Abéon J. Raingeard Hypogean - HG514844 HG514626 HG514974

D. waillyi Giordan & Raffaldi, 1982 ZSM-L434 France- Utelle- Grotte des deux Gourdes A. Faille Hypogean HG514777 HG514896 HG514663 HG514543+HG514543+HG514543

Euduvalius Jeannel, 1928

D. erichsonii netolitzkyi (J. Müller, 1908) ZSM-L480 Croatia- Makluta ča, Dugopolje D. Čeplík Hypogean HG514800 HG514921 HG514680 HG514565+HG514565+HG514565

Hungarotrechus Bokor, 1922

D. bokori valyanus Bokor, 1922 ZSM-L450 -Koniarska planina Mts., Priepast´ pod Veterníkom J. Lakota Hypogean HG514785 HG514904 HG514666 HG514550+HG514550+HG514550

D. goemoeriensis Bokor, 1922 ZSM-L451 Slovakia- Drien čanský kras, Hrušovo env. Ponor u Ridzo ňov cave D. Čeplík Hypogean HG514786 HG514905 HG514667 HG514551+HG514551+HG514551

D. klimai Janák & Moravec, 2008 ZSM-L462 - Stara planina mts. Berkovica, Kom Mts R. Lohaj Hypogean HG514790 HG514911 HG514671 HG514557+HG514557+HG514557

D. microphthalmus (L. Miller, 1859) ZSM-L456 Slovakia- Hri ňová env. Polana Mts. D. Čeplík Hypogean HG514787 HG514908 HG514669 HG514554+HG514554+HG514554

D. szaboi szaboi (Csiki, 1914) ZSM-L453 Slovakia- Muránska planina Mts., Dolina za Nehovým J. Lakota Hypogean - HG514907 HG514668 HG514553+HG514553+HG514553

Neoduvalius J. Müller, 1913

D. opermanni Scheibel, 1933 ZSM-L754 Croatia- Ogulin, Slunj Rakovica- Stara Kršlja Dumen ćića cave R. Lohaj Hypogean - HG514971 HG514712 HG514613+HG514613+HG514613

Trechopsis Peyerimhoff, 1908

D. ferreresi Lagar, 1976 ZSM-L807 Spain- Mallorca- Escorca- Cova de Sa Campana C. Bourdeau, A. Faille & J. Fresneda Hypogean LS453020 LS453021 LS453433 LS451182

D. iblis (Peyerimhoff, 1910) ZSM-L618 Algeria- Azerou Tidjer- Ifri Maareb S. Ait Mouloud & A. Faille Hypogean LS453022 LS453023 LS453434 LS451183 D. lapiei (Peyerimhoff, 1908) ZSM-L619 Algeria- Ait Aggad- tessereft Akhernaq S. Ait Mouloud, A. Berkal & A. Faille epigean/nivicolous LS453024 LS453025 LS453435 LS451184

4 Luraphaenops Giordan,1984

L. gaudini (Jeannel, 1952) MNHN-AF116 France- Dévoluy- Puits des Bauges J-Y. Bigot Hypogean GQ293543 GQ293604 FR733925 GQ293692 +GQ293787 +GQ293838

Outgroups

5 Aphaenops Bonvouloir, 1862

A. leschenaulti Bonvouloir, 1861 MNHN-AF1 France- Bagnères-de-Bigorre- Grotte de Castelmouly C. Bourdeau, P. Déliot & A. Faille Hypogean FR733945 GQ293593 GQ293629 GQ293739 +GQ293757 +GQ293822

A. (Cerbaphaenops) cerberus (Dieck, 1869) MNHN-AF30 France- Moulis- Grotte du Sendé P. Déliot & A. Faille Hypogean FR733948 GQ293589 GQ293646 GQ293718 +GQ293779 +GQ293835

A. (Hydraphaenops) ehlersi (Abeille de Perrin, 1872) MNHN-AF64 France- Arbas- Goueil-di-Her C. Bourdeau, P. Déliot & A. Faille Hypogean FR733957 GQ293565 GQ293683 FR729571+FR729571+FR729571

6 Geotrechus Jeannel, 1919

G. discontignyi (Fairmaire, 1863) MNHN-AF92 France- Bagnères-de-Bigorre- Grotte du Tuco C. Bourdeau, P. Déliot & A. Faille Hypogean FR733966 GQ293560 FR733901 FR729572+FR729572+FR729572

7 Trechus Clairville, 1806

T. fulvus Dejean, 1831 MNHN-AF98 Spain- Penilla, Santiurde de Toranzo- Cueva del Pis C. Bourdeau, P. Déliot & A. Faille Epigean/Hypogean FR733972 GQ293613 HE817938 GQ293729

T. obtusus Erichson, 1837 IBE–AF2 Portugal- Madeira, Estrada de Nicho A. Arraiol Epigean FR733976 FR733997 HE817937 FR729579+FR729579+FR729579

T. quadristriatus (Schrank, 1781) MNHN-AF96 Spain- Egea, Collau de la Plana del Turbón P. Déliot, A. Faille & J. Fresneda Epigean GQ293534 GQ293619 FR733908 GQ293743 +GQ293745 +GQ293841

T. aff. schaufussi Putzeys, 1870 MNHN-AF101 Spain- Ciudad Real-Navas de Estena-"El Boqueron" A. Faille Epigean GQ293532 GQ293620 FR733910 GQ293737 +GQ293788 +GQ293820

8 Trichaphaenops Jeannel,1916

T. gounellei (Bedel, 1879) MNCN-AF6 France- Vassieux-en-Vercors- Baume Cervière A. Faille Hypogean FR733985 FR734006 FR733924 FR729590 +FR729590 +FR729590

Molopina

1 Abax Bonelli, 1810

A. florii Jakobson, 1907 (= angustatus Fiori, 1896) GBK Epigean --- AF533282+AF533282+AF533282

A. exaratus (Dejean, 1828) MNCN-AI1295 Italy- Piemonte- Boccheto Sessera- 1300m M. Negro Epigean LS453006 LS453010 LS453426 LS451175 LS453011 -

A. oblongus oblongus (Dejean, 1831) GBK Epigean --- AF533283+AF533283+AF533283

A. ovalis (Duftschmid, 1812) cf IBE-AN297 Bulgaria- Rakitovo- env. Lepenitsa cave- 1070m A. Faille, J. Fresneda & I. Ribera Epigean LS453012 LS453013 LS453427 LS451176 LS453014 LS451208

A. parallelepipedus inferior (Seidlitz, 1887) GBK Epigean --- AF190034+AF190034+AF190034 AF190024 AF190044

A. pyrenaeus (Dejean, 1828) MNCN-AI267 Spain C. Hernando Epigean LS453015 LS453016 LS453428 LS451177 LS453017 LS451209

Abacopercus Ganglbauer, 1891

A. carinatus (Duftschmid, 1812) GBK Epigean --- AF190035+AF190035+AF190035 AF190025 AF190045

2 Henrotius Jeannel, 1953

H. jordai (Reitter, 1914) MNCN-AI1242 Spain- Mallorca- Pollença- Cova de Can Sio C. Hernando & I. Ribera Hypogean LS453037 LS453038 LS453440 LS451189 LS453039 -

3 Molopidius (Jemnici, 1942)

M. spinicollis (Dejean, 1828) MNCN-AI268 Spain- 1 C. Hernando Hypogean LS453046 LS453048 LS453442 LS451191 LS453050 LS451216

M. spinicollis (Dejean, 1828) MNCN-AI269 Spain- 2 C. Hernando Hypogean LS453047 LS453049 LS453443 LS451192 LS453051 LS451217

4 Molops Bonelli, 1810

Molops sp. IBE-AN288 Bulgaria- Yagodina- cave next river Vacha 950m A. Faille, J. Fresneda & I. Ribera Epigean LS453055 - LS453444 LS451193 LS453056

M. piceus (Panzer, 1793) MNCN-AI362 Slovakia- Nizke Tatry Mts.- Jánska dolina valey F. Ciampor Epigean LS453052 LS453053 LS453445 LS451194 LS453054 LS451218

5 Oscadytes Lagar, 1975

O. rovirai Lagar, 1975 MNCN-AI270 Spain C. Hernando Hypogean LS453057 LS453058 LS453446 LS451195 LS453059 LS451219

6 Percus Bonelli, 1810

P. grandicollis (Audinet-Serville, 1821) IBE-RA812 France- Corsica- Zonza P. Marcia Epigean LS453060 - LS453447 LS451196

P. lineatus (Solier, 1835) GBK Epigean - AY334316 - AF537166+AF537166+AF537166 AY334359 AF537183

P. plicatus (Dejean, 1828) IBE-RA1085 Spain- Mallorca- 1 km E Costitx, under stones in fields- 110m I. Ribera Epigean - LS453061 LS453448 LS451197 LS453062 LS451220

P. strictus (Dejean, 1828) MNCN-AI265 Italy- Sardinia A. Casale Epigean LS453066 LS453067 LS453450 LS451199 LS453068 LS451222

P. villae Kraatz, 1858 GBK Epigean - AY334317 - AF190036+AF190036+AF190036 AF190026 AF190046

Pseudopercus Motschulsky, 1866

P. guiraoi Perez Arcas, 1869 GBK Epigean - AY334313 - AY334343+AY334343+AY334343 AY334356 AY334308

P. patruelis (L. Dufour, 1820) GBK Epigean - AY334311 - AF190038+AF190038+AF190038 AF190028 AF190048

P. politus (Dejean, 1831) MNCN-AI266 Spain M. Baena Epigean LS453063 LS453064 LS453449 LS451198 LS453065 LS451221

P. stultus (L. Dufour, 1820) GBK Epigean - AY334314 - AY334344+AY334344+AY334344 AY334357 AY334309

7 Speomolops Patrizi, 1955

S. sardous Patrizi, 1955 MNCN-AI272 Italy- Sardinia-Dorgali-Grotta del Bue Marino A. Casale Hypogean LS453082 LS453084 LS453454 LS451203 LS451226 S. sardous Patrizi, 1955 MNCN-AI1292 Italy- Sardinia-Dorgali-Grotta del Bue Marino A. Casale Hypogean LS453081 LS453083 LS453453 LS451202 LS453085 LS451225

8 Tanythrix Schaum, 1858

T. edurus (Dejean, 1828) GBK Epigean --- AF190032+AF190032+AF190032 AF190022 AF190042

T. senilis (Schaum, 1859) MNCN-AI473 Italy- Piemonte, Val Sessera, Moncerchio A. Casale Epigean LS453089 LS453090 LS453457 LS451206 LS453091 LS451228

9 Typhlochoromus Moczarski, 1913

T. marcelloi Busulini, 1957 MNCN-AI1291 Italy- Friuli VC Campone m 950, MSS trap A. Casale Hypogean LS453092 - LS453458 LS451207 LS453093 LS451229

10 Zariquieya Jeannel, 1924

Z. boumortensis Faille, Fresneda, Bourdeau, 2011 IBE-M10 Spain- Lleida, La Guàrdia d’Ares, Avenc de Pla Fornesa C. Bourdeau, A. Faille & J. Fresneda Hypogean -- FR846363 FR846365+FR846367+FR848328

Z. troglodytes (Jeannel, 1924) MNCN-AI271 Spain- Girona- Terrades- Bauma de Bruguer C. Hernando Hypogean LS453094 LS453095 FR846364 FR846366+FR846368+FR848329 LS453096 LS451230

Outgroups

11 Laemostenus Bonelli, 1810

Actenipus Jeannel, 1937

L. carinatus (Chaudoir, 1859) IBE-AN253 Italy- Sardinia(SS)-Thiesi- Grotta Monte Majore A. Casale Epigean LS453043 LS453044 LS453429 LS451178 LS453045 LS451210

Sphodroides Schaufuss, 1865

L. atlanticus atlanticus Escalera, 1913 IBE-AN122 Morocco- Kef Hmam- Tleta de Akhssass- 1000 m. I.Ribera Epigean LS453040 LS453041 LS453441 LS451190 LS453042 LS451215

12 Abacetus Dejean, 1828

Astigis Rambur, 1838

A. salzmanni ( Germar, 1824) MNCN-AI1293 Italy- Piemonte- Bosco Marengo G. Allegro Epigean LS453007 LS453008 LS453430 LS451179 LS453009

13 Platyderus Stephens, 1827

P. insignitus presahariensis Lagar, 1978 MNCN-AI472 Morocco- Kef Aziza C. Hernando Hypogean? LS453069 LS453070 LS453451 LS451200 LS453071 LS451223

14 Pterostichus Bonelli, 1810

Pterostichus sp. IBE-AN150 Bulgaria- Yagodina- cave next river Vacha 950m A. Faille, J. Fresneda & I. Ribera Epigean LS453078 LS453079 LS453452 LS451201 LS453080 LS451224

Corax Putzeys, 1846

P. ghilianii (Putzeys, 1846) MNCN-AI1068 Spain- Ávila, Sa. Gredos- S. Puerto de Casillas, Pinus forest- 1425m I. Ribera & A. Cieslak Epigean LS453072 LS453073 LS453431 LS451180 LS453074 LS451211

Sterocorax Ortuño, 1990

S. globosus (Fabricius, 1792) MNCN-AI474 Spain- Cáceres- rd. N-Va PK219.5, Arroyo de la Vid- 525m I. Ribera Epigean LS453075 LS453076 LS453455 LS451204 LS453077 LS451227

15 Styracoderus Chaudoir, 1874

S. atramentarius (Rosenhauer, 1856) MNCN-AI1181 Granada, Puerto de la Ragua C. Andújar Epigean LS453086 LS453087 LS453456 LS451205 LS453088

16 Eucamptognathus Chaudoir, 1837

E. androyanus Tschitscherine, 1903 MNCN-AI477 Madagascar- Andasibe, PN Indri, forest stream, 980m M. Balke, R. Ranaivosolo & P. Razafindraire Epigean LS453028 LS453029 LS453437 LS451186 LS453030 LS451212

E. oopterus Tschitscherine, 1898 MNCN-AI476 Madagascar- Andasibe, PN Indri, forest stream, 980m M. Balke, R. Ranaivosolo & P. Razafindraire Epigean LS453031 LS453032 LS453438 LS451187 LS453033 LS451213

17 Eudromus Klug, 1835

E. striaticollis (Brullé, 1834) MNCN-AI478 Madagascar- Andasibe, PN Indri, forest stream, 980m M. Balke, R. Ranaivosolo & P. Razafindraire Epigean LS453034 LS453035 LS453439 LS451188 LS453036 LS451214