Genotype–Phenotype Correlation and Mutation Spectrum in a Large Cohort of Patients with Inherited Retinal Dystrophy Revealed by Next-Generation Sequencing

Total Page:16

File Type:pdf, Size:1020Kb

Genotype–Phenotype Correlation and Mutation Spectrum in a Large Cohort of Patients with Inherited Retinal Dystrophy Revealed by Next-Generation Sequencing © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Open Genotype–phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing Xiu-Feng Huang, MB1, Fang Huang, MD1, Kun-Chao Wu, MD1, Juan Wu, MD1, Jie Chen, MD, PhD1, Chi-Pui Pang, PhD2, Fan Lu, MD, OD1, Jia Qu, MD1 and Zi-Bing Jin, MD, PhD1 Purpose: Inherited retinal dystrophy (IRD) is a leading cause of correlations were discovered, and phenotypic trends noted. Three blindness worldwide. Because of extreme genetic heterogeneity, cases are reported, including the identification of AHI1 as a novel the etiology and genotypic spectrum of IRD have not been clearly candidate gene for nonsyndromic retinitis pigmentosa. defined, and there is limited information on genotype–phenotype Conclusion: This study revealed novel genotype–phenotype corre- correlations. The purpose of this study was to elucidate the muta- lations, including a novel candidate gene, and identified 124 genetic tional spectrum and genotype–phenotype correlations of IRD. defects within a cohort with IRD . The identification of novel geno- Methods: We developed a targeted panel of 164 known retinal dis- type–phenotype correlations and the spectrum of mutations greatly ease genes, 88 candidate genes, and 32 retina-abundant microRNAs, enhance the current knowledge of IRD phenotypic and genotypic used for exome sequencing. A total of 179 Chinese families with IRD heterogeneity, which will assist both clinical diagnoses and personal- were recruited. ized treatments of IRD patients. Genet Med advance online publication 6 November 2014 Results: In 99 unrelated patients, a total of 124 mutations in known retinal disease genes were identified, including 79 novel muta- Key Words: exome sequencing; genotype–phenotype correlations; tions (detection rate, 55.3%). Moreover, novel genotype–phenotype novel mutations; retinal dystrophy INTRODUCTION patients with Leber congenital amaurosis and juvenile RP, iden- Inherited retinal dystrophy (IRD) is a class of monogenic, tifying a genetic predisposition in 40.2% (72/179) of the cases.8 vision-impairing disorders that are caused by retinal degen- Further verifying this approach, Chen et al. used targeted eration. IRD includes retinitis pigmentosa (RP) and allied sequencing of 189 genes in members of 41 Chinese families diseases. The common manifestation is a pathological change with IRD and identified mutations occurring in 14 families.9 in rod and/or cone photoreceptor cells, which are the special- In pilot studies, we successfully performed molecular diagnoses ized and light-sensitive neurons in the retina.1 More than 200 in patients with Usher syndrome and Bardet–Biedl syndrome disease-causing genes associated with IRD have been identi- by assessing a panel of 144 known genes.7,10 Despite success in fied (RetNet, https://sph.uth.edu/retnet/), demonstrating the previous studies, there is still a large proportion of patients with extreme genetic heterogeneity of the disease and therefore IRD who have unidentified genetic mutations.2 In addition, making molecular diagnosis technically challenging, because it there are few thorough studies of the relationship between spe- entails the commitment of substantial time and resources.2 cific genotypes and phenotypes. Next-generation sequencing (NGS) is a powerful new Because NGS allows for the screening of limited networked approach that enables the simultaneous screening of multiple genes in addition to genes known to be associated with the onset genes; it has quickly come to be used extensively in molecular of IRD, targeted exome sequencing of additional candidate diagnosis by sequencing the exome.3–5 Notably, this approach genes is a rapid and cost-effective method of revealing novel has been used for the development of next-generation molecu- disease-causing genes.9,10 Many novel or unrecognized genes lar diagnosis of hereditary eye disorders.6–8 Abu-Safieh and col- interact with known targets of IRD.12,13 In addition, variations leagues6 designed an autozygome-guided screening panel in in microRNA (miRNA) expression could lead to a significant which they were able to successfully identify IRD in patients abnormality in the retina.14 Taken together, this information with six novel candidate genes. In another study, 163 known suggests that networked genes and miRNAs potentially interact IRD genes were screened for by exome sequencing in 179 with key IRD genes, possibly inducing a disease state. 1The Eye Hospital of Wenzhou Medical University, State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, Wenzhou, China; 2Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong, China. Correspondence: Zi-Bing Jin ([email protected]) or Jia Qu ([email protected]) Submitted 19 June 2014; accepted 19 September 2014; advance online publication 6 November 2014. doi:10.1038/gim.2014.138 GEnEticS in mEdicinE | Volume 17 | Number 4 | April 2015 271 ORIGINAL RESEARCH ARTICLE HUANG et al | Inherited retinal dystrophy revealed by next-generation sequencing In this study, we developed a panel of 164 known genes caus- program (http://soap.genomics.org.cn/). Single-nucleotide ing retinal disease, 88 possible candidate genes, and 32 retinal polymorphisms were initially identified by the SOAPsnp pro- miRNAs for genomic DNA capture. This panel was used in gram (http://soap.genomics.org.cn/) after filtering polymerase NGS of the exomes of 179 unrelated patients with IRD. We dis- chain reaction duplicates using SAMtools (http://samtools. covered 124 pathological mutations in 99 patients, including 79 sourceforge.net/). Insertions or deletions were analyzed using novel mutations in previously identified IRD genes. Moreover, BWA (http://bio-bwa.sourceforge.net/) and GATK programs several genotype–phenotype correlations were uncovered, (https://www.broadinstitute.org/gatk/) and then were extracted including identification of AHI1 as a novel candidate gene for using the 1000 Genome, dbSNP135, and HapMap databases, nonsyndromic RP. The identification of novel genotype–phe- as well as an in-house database of 500 exomes. Sequence vari- notype correlations and the mutation spectrum not only greatly ants were standardized according to Human Genome Variant enhance knowledge of IRD phenotypic and genotypic hetero- Society variation nomenclature (http://www.hgvs.org/mut- geneity but also will assist in both the clinical diagnosis and the nomen/) and checked using the Mutalyzer program (http:// development of personalized treatments for IRD. www.lovd.nl/mutalyzer/). Missense variants were assessed with PolyPhen-2 and SIFT, as described previously.19 The splice-site MATERIALS AND METHODS effect was predicted using the BDGP (http://www.fruitfly.org/ Study subjects seq_tools/splice.html) and ASSP programs (http://wangcom- The study protocol was designed in accordance with the tenets puting.com/assp/index.html). of the Declaration of Helsinki and approved by the Ethics Committee of the Eye Hospital of Wenzhou Medical University. Sanger sequencing validation and cosegregation analysis A group of 179 Chinese patients diagnosed with IRD by retina All of the candidate mutations were confirmed by direct Sanger specialists were recruited for this study. Informed consent was sequencing using an ABI 3500 Genetic Analyzer (Applied obtained from all participants. Patients’ initial symptoms and Biosystems, Carlsbad, CA). Variants, including nonsense or complaints included poor vision or night blindness during their frameshift mutations, were considered mutation candidates, first or second decade of life. All patients received a clinical expanding the validation that was performed within kinships diagnosis based on clinical eye examinations. A detailed fam- to analyze cosegregation. ily history was obtained from the probands and/or their rela- tives. Peripheral blood samples were collected from the affected RESULTS patients as well as from unaffected relatives. Patients with IRD The study group included 127 isolated cases (70.9%) and 34 Design of targeted capture panel autosomal recessive cases (19.0%); the remaining 18 cases We developed a panel for targeted DNA capture and sequenc- (10.1%) were either autosomal dominant (n = 12) or X-linked ing by selecting 164 known IRD-related genes from RetNet (n = 6). Diagnoses of participating subjects included RP, cone– and OMIM (Supplementary Table S1 online). The panel also rod dystrophy, Leber congenital amaurosis, Stargardt disease, included a cluster of 88 possible candidate genes with expres- congenital stationary night blindness, Bietti crystalline dystro- sion patterns that were spatiotemporally related to retinal devel- phy, and Usher syndrome (Supplementary Table S4 online). opment15,16 (Supplementary Table S2 online) and 32 abundant retinal miRNAs17,18 (Supplementary Table S3 online). The tar- Exome sequencing of paneled genes geted capture panel included a total of 252 genes, which com- The genomic DNA derived from the 179 patients with IRD was prised 3,376 exons and 615,029-nt coding regions. The panel subjected to massive parallel NGS, which covered a panel of 252 was constructed using the GenCap custom enrichment kit genes and 32 miRNA regions. On average, the mean coverage (MyGenostics, Beijing, China) according to the manufacturer’s depth was 191.5× and included 98.2% of the targeted regions instructions. (Figure 1). These results suggested
Recommended publications
  • Minireview Cilia and Flagella Revealed: from Flagellar Assembly
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Cell, Vol. 117, 693–697, June 11, 2004, Copyright 2004 by Cell Press Cilia and Flagella Revealed: From Minireview Flagellar Assembly in Chlamydomonas to Human Obesity Disorders William J. Snell,* Junmin Pan, and Qian Wang This flow of materials is driven by the IFT machinery. Department of Cell Biology Flagellar proteins synthesized in the cell body are car- University of Texas Southwestern Medical School ried to the tip of the flagellum (the site of assembly of 5323 Harry Hines Boulevard the axoneme) by IFT particles, which are composed of Dallas, Texas 75390 at least 17 highly conserved proteins that form A and B complexes. The plus end-directed microtubule motor protein kinesin II is essential for movement of particles The recent identification in Chlamydomonas of the in- and their cargo toward the tip (anterograde transport) traflagellar transport machinery that assembles cilia of the flagellum, and a cytoplasmic dynein carries IFT and flagella has triggered a renaissance of interest in particles back to the cell body (retrograde transport). these organelles that transcends studies on their well- Thus, IFT particles function as constantly moving molec- characterized ability to move. New studies on several ular trucks on a closed loop. The tracks they travel on fronts have revealed that the machinery for flagellar are the microtubule doublets of the ciliary/flagellar axo- assembly/disassembly is regulated by homologs of neme, microtubule motors power them, and the individ- mitotic proteins, that cilia play essential roles in sensory ual structural components (e.g., microtubule subunits, transduction, and that mutations in cilia/basal body pro- dynein arms, and radial spoke proteins) of the cilium/ teins are responsible for cilia-related human disorders flagellum are their cargo.
    [Show full text]
  • A Decision Support System for Reporting High Throughput Sequencing of Cancers in Clinical Diagnostic Laboratories Kenneth D
    Doig et al. Genome Medicine (2017) 9:38 DOI 10.1186/s13073-017-0427-z SOFTWARE Open Access PathOS: a decision support system for reporting high throughput sequencing of cancers in clinical diagnostic laboratories Kenneth D. Doig1,2,3,8*, Andrew Fellowes2, Anthony H. Bell2, Andrei Seleznev2, David Ma2, Jason Ellul1, Jason Li1, Maria A. Doyle1, Ella R. Thompson2,3, Amit Kumar1,6,7, Luis Lara1,3, Ravikiran Vedururu2, Gareth Reid2, Thomas Conway1, Anthony T. Papenfuss1,3,5,6 and Stephen B. Fox2,3,4 Abstract Background: The increasing affordability of DNA sequencing has allowed it to be widely deployed in pathology laboratories. However, this has exposed many issues with the analysis and reporting of variants for clinical diagnostic use. Implementing a high-throughput sequencing (NGS) clinical reporting system requires a diverse combination of capabilities, statistical methods to identify variants, global variant databases, a validated bioinformatics pipeline, an auditable laboratory workflow, reproducible clinical assays and quality control monitoring throughout. These capabilities must be packaged in software that integrates the disparate components into a useable system. Results: To meet these needs, we developed a web-based application, PathOS, which takes variant data from a patient sample through to a clinical report. PathOS has been used operationally in the Peter MacCallum Cancer Centre for two years for the analysis, curation and reporting of genetic tests for cancer patients, as well as the curation of large-scale research studies. PathOS has also been deployed in cloud environments allowing multiple institutions to use separate, secure and customisable instances of the system. Increasingly, the bottleneck of variant curation is limiting the adoption of clinical sequencing for molecular diagnostics.
    [Show full text]
  • Yan Et Al. Supplementary Material
    SUPPLEMENTARY MATERIAL FOR: CELL ATLAS OF THE HUMAN FOVEA AND PERIPHERAL RETINA Wenjun Yan*, Yi-Rong Peng*, Tavé van Zyl*, Aviv Regev, Karthik Shekhar, Dejan Juric, and Joshua R, Sanes^ *Co-First authors ^Author for correspondence, [email protected] Figure S1 tSNE visualization showing contributions to cell types by batch for photoreceptors (a), horizontal cells (b), bipolar cells (c), amacrine cells (d), retinal ganglion cells (e) and non-neuronal cells (f). Each dot represents one cell. Colors distinguish retina samples. Source of each sample is shown in Table S1. Overall, batch eFFects were minimal. Figure S2 Violin and superimposed box plots showing expression of OPN4 in RGC clusters Figure S3 Heat maps showing expression patterns of disease genes by cell classes in the Fovea and periphery. Only genes expressed by more than 20% of cells in any individual class in either Fovea or peripheral cells are plotted. Table S1 Information on donors from whom retinal cells were obtained for scRNA-seq proFiling. Table S2 Publications reporting single cell or single nucleus profiling on cells from human retina. 1 Figure S1 a b c PR HC BP H1 H2F1 H2F2 H3 tSNE1 tSNE1 H4 tSNE1 H5 H9 H11 tSNE2 tSNE2 tSNE2 e AC f RGC g Non-neuronal tSNE1 tSNE1 tSNE1 tSNE2 tSNE2 tSNE2 Figure S2 OPN4 4 2 log Expression 0 MG-ON MG-OFF PG-OFF PG-ON hRGC5 hRGC6 hRGC7 hRGC8 hRGC9 hRGC10 hRGC11 hRGC12 Figure S3 Fovea Fovea Peripheral Peripheral Rods Cones BP HC AC RGC Muller Astro MicG Endo Rods Cones BP HC AC RGC Muller Astro MicG Endo ARL13B MAPK8IP3 EXOC6 LSM4 Expression
    [Show full text]
  • Ciliopathies Gene Panel
    Ciliopathies Gene Panel Contact details Introduction Regional Genetics Service The ciliopathies are a heterogeneous group of conditions with considerable phenotypic overlap. Levels 4-6, Barclay House These inherited diseases are caused by defects in cilia; hair-like projections present on most 37 Queen Square cells, with roles in key human developmental processes via their motility and signalling functions. Ciliopathies are often lethal and multiple organ systems are affected. Ciliopathies are London, WC1N 3BH united in being genetically heterogeneous conditions and the different subtypes can share T +44 (0) 20 7762 6888 many clinical features, predominantly cystic kidney disease, but also retinal, respiratory, F +44 (0) 20 7813 8578 skeletal, hepatic and neurological defects in addition to metabolic defects, laterality defects and polydactyly. Their clinical variability can make ciliopathies hard to recognise, reflecting the ubiquity of cilia. Gene panels currently offer the best solution to tackling analysis of genetically Samples required heterogeneous conditions such as the ciliopathies. Ciliopathies affect approximately 1:2,000 5ml venous blood in plastic EDTA births. bottles (>1ml from neonates) Ciliopathies are generally inherited in an autosomal recessive manner, with some autosomal Prenatal testing must be arranged dominant and X-linked exceptions. in advance, through a Clinical Genetics department if possible. Referrals Amniotic fluid or CV samples Patients presenting with a ciliopathy; due to the phenotypic variability this could be a diverse set should be sent to Cytogenetics for of features. For guidance contact the laboratory or Dr Hannah Mitchison dissecting and culturing, with ([email protected]) / Prof Phil Beales ([email protected]) instructions to forward the sample to the Regional Molecular Genetics Referrals will be accepted from clinical geneticists and consultants in nephrology, metabolic, laboratory for analysis respiratory and retinal diseases.
    [Show full text]
  • Phosphoinositide 3-Kinase-C2α Regulates Polycystin-2 Ciliary Entry
    BASIC RESEARCH www.jasn.org Phosphoinositide 3-Kinase-C2a Regulates Polycystin-2 Ciliary Entry and Protects against Kidney Cyst Formation † Irene Franco,* Jean Piero Margaria,* Maria Chiara De Santis,* Andrea Ranghino, ‡ Daniel Monteyne, Marco Chiaravalli,§ Monika Pema,§ Carlo Cosimo Campa,* ‡| Edoardo Ratto,* Federico Gulluni,* David Perez-Morga, Stefan Somlo,¶ Giorgio R. Merlo,* Alessandra Boletta,§ and Emilio Hirsch* *Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy; †Renal Transplantation Center “A. Vercellone”, Division of Nephrology, Dialysis and Transplantation, Department of Medical Sciences, Città della Salute e della Scienza, Hospital and Research Center for Experimental Medicine (CeRMS) and Center for Molecular Biotechnology, University of Torino, Turin, Italy; ‡Laboratoire de Parasitologie Moléculaire, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, Gosselies, Charleroi, Belgium; §Division of Genetics and Cell Biology, Dibit San Raffaele Scientific Institute, Milan, Italy; |Center for Microscopy and Molecular Imaging (CMMI), Université Libre de Bruxelles, Gosselies, Belgium; and ¶Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut. ABSTRACT Signaling from the primary cilium regulates kidney tubule development and cyst formation. However, the mechanism controlling targeting of ciliary components necessary for cilium morphogenesis and signaling is largely unknown. Here, we studied the function of class II phosphoinositide 3-kinase-C2a (PI3K-C2a)inrenal tubule-derived inner medullary collecting duct 3 cells and show that PI3K-C2a resides at the recycling endo- some compartment in proximity to the primary cilium base. In this subcellular location, PI3K-C2a controlled the activation of Rab8, a key mediator of cargo protein targeting to the primary cilium.
    [Show full text]
  • Locus Reference Genomic Sequences: an Improved Basis for Describing Human DNA Variants
    Dalgleish et al. Genome Medicine 2010, 2:24 http://genomemedicine.com/content/2/4/24 CORRESPONDENCE Open Access Locus Reference Genomic sequences: an improved basis for describing human DNA variants Raymond Dalgleish1*, Paul Flicek 2, Fiona Cunningham2, Alex Astashyn3, Raymond E Tully3, Glenn Proctor2, Yuan Chen2, William M McLaren2, Pontus Larsson2, Brendan W Vaughan2, Christophe Béroud4, Glen Dobson5, Heikki Lehväslaiho6, Peter EM Taschner7, Johan T den Dunnen7, Andrew Devereau5, Ewan Birney2, Anthony J Brookes1 and Donna R Maglott3 Introduction Abstract In 1993 Ernest Beutler wrote an eloquent letter to the As our knowledge of the complexity of gene editor of the American Journal of Human Genetics high- architecture grows, and we increase our understanding lighting the defi ciencies of the systems then used to of the subtleties of gene expression, the process of describe DNA variants [1]. Th at same year, the editor of accurately describing disease-causing gene variants Human Mutation invited Arthur Beaudet and Lap-Chee has become increasingly problematic. In part, this is Tsui to produce a nomenclature for variants in genes and due to current reference DNA sequence formats that proteins [2]. From these simple beginnings, the last 17 do not fully meet present needs. Here we present the years have borne witness to the steady development of Locus Reference Genomic (LRG) sequence format, the nomenclature used to describe sequence variation which has been designed for the specifi c purpose that is now maintained under the auspices of the Human of gene variant reporting. The format builds on Genome Variation Society (HGVS) [3,4]. To some, the the successful National Center for Biotechnology present nomenclature may seem like an arcane art-form Information (NCBI) RefSeqGene project and provides jealously guarded by zealots.
    [Show full text]
  • Evidence of Oligogenic Inheritance in Nephronophthisis
    JASN Express. Published on September 12, 2007 as doi: 10.1681/ASN.2007020243 CLINICAL RESEARCH www.jasn.org Evidence of Oligogenic Inheritance in Nephronophthisis Julia Hoefele,*† Matthias T.F. Wolf,* John F. O’Toole,* Edgar A. Otto,* Ulla Schultheiss,* Georges Deˆschenes,‡ Massimo Attanasio,* Boris Utsch,* Corinne Antignac,§ and ʈ Friedhelm Hildebrandt* ʈ Departments of *Pediatrics and Human Genetics, University of Michigan, Ann Arbor, Michigan; †Department of Pediatrics, University Children’s Hospital, University of Munich, Munich, Germany; and ‡Hoˆpital Robert Debre´, Pediatric Nephrology, AP-HP, and §INSERM, U574, Universite´ Paris Descartes, Faculte de Me´dicine Rene´ Descartes, and Hoˆpital Necker-Enfants Malades, AP-HP, Department of Genetics, Paris, France ABSTRACT Nephronophthisis is a recessive cystic renal disease that leads to end-stage renal failure in the first two decades of life. Twenty-five percent of nephronophthisis cases are caused by large homozygous deletions of NPHP1, but six genes responsible for nephronophthisis have been identified. Because oligogenic inheritance has been described for the related Bardet-Biedl syndrome, we evaluated whether mutations in more than one gene may also be detected in cases of nephronophthisis. Because the nephrocystins 1 to 4 are known to interact, we examined patients with nephronophthisis from 94 different families and sequenced all exons of the NPHP1, NPHP2, NPHP3, and NPHP4 genes. In our previous studies involving 44 families, we detected two mutations in one of the NPHP1–4 genes. Here, we detected in six families two mutations in either NPHP1, NPHP3, or NPHP4, and identified a third mutation in one of the other NPHP genes. Furthermore, we found possible digenic disease by detecting one individual who carried one mutation in NPHP2 and a second mutation in NPHP3.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Ion Channels 3 1
    r r r Cell Signalling Biology Michael J. Berridge Module 3 Ion Channels 3 1 Module 3 Ion Channels Synopsis Ion channels have two main signalling functions: either they can generate second messengers or they can function as effectors by responding to such messengers. Their role in signal generation is mainly centred on the Ca2 + signalling pathway, which has a large number of Ca2+ entry channels and internal Ca2+ release channels, both of which contribute to the generation of Ca2 + signals. Ion channels are also important effectors in that they mediate the action of different intracellular signalling pathways. There are a large number of K+ channels and many of these function in different + aspects of cell signalling. The voltage-dependent K (KV) channels regulate membrane potential and + excitability. The inward rectifier K (Kir) channel family has a number of important groups of channels + + such as the G protein-gated inward rectifier K (GIRK) channels and the ATP-sensitive K (KATP) + + channels. The two-pore domain K (K2P) channels are responsible for the large background K current. Some of the actions of Ca2 + are carried out by Ca2+-sensitive K+ channels and Ca2+-sensitive Cl − channels. The latter are members of a large group of chloride channels and transporters with multiple functions. There is a large family of ATP-binding cassette (ABC) transporters some of which have a signalling role in that they extrude signalling components from the cell. One of the ABC transporters is the cystic − − fibrosis transmembrane conductance regulator (CFTR) that conducts anions (Cl and HCO3 )and contributes to the osmotic gradient for the parallel flow of water in various transporting epithelia.
    [Show full text]
  • Intrafamilial Variability and Clinical Heterogeneity in Two Siblings With
    r Biomar ula ke c rs le o & M D f i a o g l Journal of Molecular Biomarkers n a o n Nabhan, et al., J Mol Biomark Diagn 2015, 6:2 r s i u s o J DOI: 10.4172/2155-9929.1000217 ISSN: 2155-9929 & Diagnosis Case Report Open Access Intrafamilial Variability and Clinical Heterogeneity in Two Siblings with NPHP4 loss of Function Mutations Marwa M Nabhan1,2, Susann Brenzinger3, Sahar N Saleem4, Edgar A Otto3, Friedhelm Hildebrandt3,5 and Neveen A Soliman1,2* 1Center of Pediatric Nephrology and Transplantation, Department of Pediatrics, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt 2Egyptian Group for Orphan Renal Diseases (EGORD), Cairo, Egypt 3Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 4Radiology Department, Kasr Al Ainy School of Medicine, Cairo University, Cairo, Egypt 5Howard Hughes Medical Institute, Chevy Chase, USA *Corresponding author: Neveen A Soliman, Center of Pediatric Nephrology & Transplantation, Department of Pediatrics, Kasr Al Aini School of Medicine, Cairo University, Cairo, Egypt, Tel: 0201062132300; Fax: 020223630039; E-mail: [email protected] Rec date: Nov 27, 2014; Acc date: Jan 26, 2015; Pub date: Jan 28, 2015 Copyright: © 2015 Nabhan MM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Joubert syndrome–related disorders (JSRDs) are a group of clinically and genetically pleiotropic conditions that share a midbrain-hindbrain malformation, the pathognomonic molar tooth sign (MTS) visible on brain imaging, with variable involvement of other organs and systems mainly the eyes and the kidneys.
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • The Retinitis Pigmentosa 1 Protein Is a Photoreceptor Microtubule-Associated Protein
    The Journal of Neuroscience, July 21, 2004 • 24(29):6427–6436 • 6427 Neurobiology of Disease The Retinitis Pigmentosa 1 Protein Is a Photoreceptor Microtubule-Associated Protein Qin Liu,1 Jian Zuo,2 and Eric A. Pierce1 1F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and 2Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105 The outer segments of rod and cone photoreceptor cells are highly specialized sensory cilia made up of hundreds of membrane discs stacked into an orderly array along the photoreceptor axoneme. It is not known how the alignment of the outer segment discs is controlled, although it has been suggested that the axoneme may play a role in this process. Mutations in the retinitis pigmentosa 1 (RP1) gene are a common cause of retinitis pigmentosa (RP). Disruption of the Rp1 gene in mice causes misorientation of outer segment discs, suggesting a role for RP1 in outer segment organization. Here, we show that the RP1 protein is part of the photoreceptor axoneme. Amino acids 28–228 of RP1, which share limited homology with the microtubule-binding domains of the neuronal microtubule-associated protein (MAP) doublecortin, mediate the interaction between RP1 and microtubules, indicating that the putative doublecortin (DCX) domains in RP1 are functional. The N-terminal portion of RP1 stimulates the formation of microtubules in vitro and stabilizes cytoplas- mic microtubules in heterologous cells. Evaluation of photoreceptor axonemes from mice with targeted disruptions of the Rp1 gene shows that Rp1 proteins that contain the DCX domains also help control axoneme length and stability in vivo.
    [Show full text]