Solving Diophantine Equations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Number Games Full Book.Pdf
Should you read this book? If you think it is interesting that on September 11, 2001, Flight 77 reportedly hit the 77 foot tall Pentagon, in Washington D.C. on the 77th Meridian West, after taking off at 8:20 AM and crashing at 9:37 AM, 77 minutes later, then this book is for you. Furthermore, if you can comprehend that there is a code of numbers behind the letters of the English language, as simple as A, B, C is 1, 2, 3, and using this code reveals that phrases and names such as ‘September Eleventh’, ‘World Trade Center’ and ‘Order From Chaos’ equate to 77, this book is definitely for you. And please know, these are all facts, just the same as it is a fact that Pentagon construction began September 11, 1941, just prior to Pearl Harbor. Table of Contents 1 – Introduction to Gematria, the Language of The Cabal 2 – 1968, Year of the Coronavirus & 9/11 Master Plan 3 – 222 Months Later, From 9/11 to the Coronavirus Pandemic 4 – Event 201, The Jesuit Order, Anthony Fauci & Pope Francis 5 – Crimson Contagion Pandemic Exercise & New York Times 6 – Clade X Pandemic Exercise & the Pandemic 666 Days Later 7 – Operation Dark Winter & Mr. Bright’s “Darkest Winter” Warning 8 – Donald Trump’s Vaccine Plan, Operation Warp Speed 9 – H.R. 6666, Contact Tracing, ID2020 & the Big Tech Takeover 10 – Rockefeller’s 2010 Scenarios for the Future of Technology 11 – Bill Gates’ First Birthday on Jonas Salk’s 42nd... & Elvis 12 – Tom Hanks & the Use of Celebrity to Sell the Pandemic 13 – Nadia the Tiger, Tiger King & Year of the Tiger, 2022 14 – Coronavirus Predictive -
International Refugee Assistance Project
General Docket United States Court of Appeals for the Fourth Circuit Court of Appeals Docket #: 17-1351 Docketed: 03/17/2017 Nature of Suit: 2440 Other Civil Rights Termed: 05/25/2017 Intl Refugee Assistance v. Donald J. Trump Appeal From: United States District Court for the District of Maryland at Greenbelt Fee Status: us Case Type Information: 1) Civil U.S. 2) United States 3) null Originating Court Information: District: 0416-8 : 8:17-cv-00361-TDC Court Reporter: Kathy Chiarizia, Court Reporter Coordinator (Grnblt) Court Reporter: Cindy Davis, Official Court Reporter Presiding Judge: Theodore D. Chuang, U. S. District Court Judge Date Filed: 02/07/2017 Date Date Order/Judgment Date NOA Date Rec'd Order/Judgment: EOD: Filed: COA: 03/16/2017 03/16/2017 03/17/2017 03/17/2017 Prior Cases: None Current Cases: None INTERNATIONAL REFUGEE Spencer Elijah Wittmann Amdur ASSISTANCE PROJECT, a project of the Direct: 212-549-2572 Urban Justice Center, Inc., on behalf of itself Email: [email protected] and its clients [COR NTC Retained] Plaintiff - Appellee AMERICAN CIVIL LIBERTIES UNION 18th Floor 125 Broad Street New York, NY 10004-2400 David Cole [On Brief] AMERICAN CIVIL LIBERTIES UNION 915 15th Street, NW Washington, DC 20005-0000 Justin Bryan Cox Direct: 678-404-9119 Email: [email protected] [COR NTC Retained] NATIONAL IMMIGRATION LAW CENTER 1989 College Avenue, NE Atlanta, GA 30317 Nicholas David Espiritu Email: [email protected] [COR NTC Retained] NATIONAL IMMIGRATION LAW CENTER 3435 Wilshire Boulevard Los Angeles, CA 90010 Lee P. Gelernt Direct: 212-549-2616 Email: [email protected] [COR NTC Retained] AMERICAN CIVIL LIBERTIES UNION 125 Broad Street New York, NY 10004-2400 Hugh Handeyside [On Brief] AMERICAN CIVIL LIBERTIES UNION 125 Broad Street New York, NY 10004-2400 Marielena Hincapie Direct: 213-639-3900 Email: [email protected] [COR NTC Retained] NATIONAL IMMIGRATION LAW CENTER Suite 1600 3435 Wilshire Boulevard Los Angeles, CA 90010 Omar C. -
81684-1B SP.Pdf
INTERMEDIATE ALGEBRA The Why and the How First Edition Mathew Baxter Florida Gulf Coast University Bassim Hamadeh, CEO and Publisher Jess Estrella, Senior Graphic Designer Jennifer McCarthy, Acquisitions Editor Gem Rabanera, Project Editor Abbey Hastings, Associate Production Editor Chris Snipes, Interior Designer Natalie Piccotti, Senior Marketing Manager Kassie Graves, Director of Acquisitions Jamie Giganti, Senior Managing Editor Copyright © 2018 by Cognella, Inc. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of Cognella, Inc. For inquiries regarding permissions, translations, foreign rights, audio rights, and any other forms of reproduction, please contact the Cognella Licensing Department at [email protected]. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Cover image copyright © Depositphotos/agsandrew. Printed in the United States of America ISBN: 978-1-5165-0303-2 (pbk) / 978-1-5165-0304-9 (br) iii | CONTENTS 1 The Real Number System 1 RealNumbersandTheirProperties 2:1.1 RealNumbers 2 PropertiesofRealNumbers 6 Section1.1Exercises 9 TheFourBasicOperations 11:1.2 AdditionandSubtraction 11 MultiplicationandDivision -
The Unique Natural Number Set and Distributed Prime Numbers
mp Co uta & tio d n e a li Jabur and Kushnaw, J Appl Computat Math 2017, 6:4 l p M p a Journal of A t h DOI: 10.4172/2168-9679.1000368 f e o m l a a n t r ISSN: 2168-9679i c u s o J Applied & Computational Mathematics Research Article Open Access The Unique Natural Number Set and Distributed Prime Numbers Alabed TH1* and Bashir MB2 1Computer Science, Shendi University, Shendi, Sudan 2Shendi University, Shendi, Sudan Abstract The Natural number set has a new number set behind three main subset: odd, even and prime which are unique number set. It comes from a mathematical relationship between the two main types even and odd number set. It consists of prime and T-semi-prime numbers set. However, finding ways to understand how prime number was distributed was ambiguity and it is impossible, this new natural set show how the prime number was distributed and highlight focusing on T-semi-prime number as a new sub natural set. Keywords: Prime number; T-semi-prime number; Unique number purely mathematical sciences and it has been used prime number set within theoretical physics to try and produce a theory that ties together prime numbers with quantum chaos theory [3]. However, researchers Introduction were made a big effort to find algorithm which can describe how prime The Unique natural number set is sub natural number set which number are distributed, still distribution of prime numbers throughout consist of prime and T-semi-prime numbers. T-semi-prime is natural a list of integers leads to the emergence of many unanswered and number divided by one or more prime numbers. -
A Member of the Order of Minims, Was a Philosopher, Mathematician, and Scientist Who Wrote on Music, Mechanics, and Optics
ON THE FORM OF MERSENNE NUMBERS PREDRAG TERZICH Abstract. We present a theorem concerning the form of Mersenne p numbers , Mp = 2 − 1 , where p > 3 . We also discuss a closed form expression which links prime numbers and natural logarithms . 1. Introduction. The friar Marin Mersenne (1588 − 1648), a member of the order of Minims, was a philosopher, mathematician, and scientist who wrote on music, mechanics, and optics . A Mersenne number is a number of p the form Mp = 2 − 1 where p is an integer , however many authors prefer to define a Mersenne number as a number of the above form but with p restricted to prime values . In this paper we shall use the second definition . Because the tests for Mersenne primes are relatively simple, the record largest known prime number has almost always been a Mersenne prime . 2. A theorem and closed form expression Theorem 2.1. Every Mersenne number Mp , (p > 3) is a number of the form 6 · k · p + 1 for some odd possitive integer k . Proof. In order to prove this we shall use following theorems : Theorem 2.2. The simultaneous congruences n ≡ n1 (mod m1) , n ≡ n2 (mod m2), .... ,n ≡ nk (mod mk) are only solvable when ni = nj (mod gcd(mi; mj)) , for all i and j . i 6= j . The solution is unique modulo lcm(m1; m2; ··· ; mk) . Proof. For proof see [1] Theorem 2.3. If p is a prime number, then for any integer a : ap ≡ a (mod p) . Date: January 4 , 2012. 1 2 PREDRAG TERZICH Proof. -
New Formulas for Semi-Primes. Testing, Counting and Identification
New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa. -
The Pseudoprimes to 25 • 109
MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151 JULY 1980, PAGES 1003-1026 The Pseudoprimes to 25 • 109 By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car- michael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several new quick tests for primality are proposed, including some which combine pseudoprimes with Lucas sequences. 1. Introduction. According to Fermat's "Little Theorem", if p is prime and (a, p) = 1, then ap~1 = 1 (mod p). This theorem provides a "test" for primality which is very often correct: Given a large odd integer p, choose some a satisfying 1 <a <p - 1 and compute ap~1 (mod p). If ap~1 pi (mod p), then p is certainly composite. If ap~l = 1 (mod p), then p is probably prime. Odd composite numbers n for which (1) a"_1 = l (mod«) are called pseudoprimes to base a (psp(a)). (For simplicity, a can be any positive in- teger in this definition. We could let a be negative with little additional work. In the last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1 satisfying (1), whether composite or prime.) It is well known that for each base a, there are infinitely many pseudoprimes to base a. -
Primes and Primality Testing
Primes and Primality Testing A Technological/Historical Perspective Jennifer Ellis Department of Mathematics and Computer Science What is a prime number? A number p greater than one is prime if and only if the only divisors of p are 1 and p. Examples: 2, 3, 5, and 7 A few larger examples: 71887 524287 65537 2127 1 Primality Testing: Origins Eratosthenes: Developed “sieve” method 276-194 B.C. Nicknamed Beta – “second place” in many different academic disciplines Also made contributions to www-history.mcs.st- geometry, approximation of andrews.ac.uk/PictDisplay/Eratosthenes.html the Earth’s circumference Sieve of Eratosthenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Sieve of Eratosthenes We only need to “sieve” the multiples of numbers less than 10. Why? (10)(10)=100 (p)(q)<=100 Consider pq where p>10. Then for pq <=100, q must be less than 10. By sieving all the multiples of numbers less than 10 (here, multiples of q), we have removed all composite numbers less than 100. -
On Abundancy Index of Some Special Class of Numbers
Sohag J. Math. 4, No. 2, 37-40 (2017) 37 Sohag Journal of Mathematics An International Journal http://dx.doi.org/10.18576/sjm/040202 On Abundancy Index of Some Special Class of Numbers Bhabesh Das1,∗ and Helen K. Saikia2 1 Department of Mathematics, B.P.C.College, Assam, 781127, India 2 Department of Mathematics, Gauhati University, Assam, 781014, India Received: 10 Dec. 2015, Revised: 12 Sep. 2016, Accepted: 23 Sep. 2016 Published online: 1 May 2017 σ(n) σ Abstract: For any positive integer n, abundancy index I(n) is defined as I(n) = n , where (n) is the sum of all positive divisors of n. In this paper, we have discussed non trivial lower and upper bounds of I(n) for some special class of numbers like Quasi perfect numbers, Super hyperperfect numbers, Near perfect numbers and Hyperperfect numbers. Keywords: Quasi perfect number, Super hyperperfect number, Near perfect number, Hyperperfect number p−1 1 Introduction of n. If m = 2 Mp is an even perfect number, where p p both p and Mp = 2 − 1 are primes, then n = 2m, n = 2 m We known divisor function σ(n) is the sum of all positive and n = (2p − 1)m are near perfect numbers. There are divisors of n , including 1 and n itself. The abundancy finitely many near perfect numbers other than these three p index I(n) for any positive integer n is associated with the shapes. The primes of the form Mp = 2 − 1 are called divisor function σ(n) and is defined as Mersenne primes. -
Arxiv:1412.5226V1 [Math.NT] 16 Dec 2014 Hoe 11
q-PSEUDOPRIMALITY: A NATURAL GENERALIZATION OF STRONG PSEUDOPRIMALITY JOHN H. CASTILLO, GILBERTO GARC´IA-PULGAR´IN, AND JUAN MIGUEL VELASQUEZ-SOTO´ Abstract. In this work we present a natural generalization of strong pseudoprime to base b, which we have called q-pseudoprime to base b. It allows us to present another way to define a Midy’s number to base b (overpseudoprime to base b). Besides, we count the bases b such that N is a q-probable prime base b and those ones such that N is a Midy’s number to base b. Furthemore, we prove that there is not a concept analogous to Carmichael numbers to q-probable prime to base b as with the concept of strong pseudoprimes to base b. 1. Introduction Recently, Grau et al. [7] gave a generalization of Pocklignton’s Theorem (also known as Proth’s Theorem) and Miller-Rabin primality test, it takes as reference some works of Berrizbeitia, [1, 2], where it is presented an extension to the concept of strong pseudoprime, called ω-primes. As Grau et al. said it is right, but its application is not too good because it is needed m-th primitive roots of unity, see [7, 12]. In [7], it is defined when an integer N is a p-strong probable prime base a, for p a prime divisor of N −1 and gcd(a, N) = 1. In a reading of that paper, we discovered that if a number N is a p-strong probable prime to base 2 for each p prime divisor of N − 1, it is actually a Midy’s number or a overpseu- doprime number to base 2. -
Generalized Perfect Numbers
Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 73–82 Generalized perfect numbers Antal Bege Kinga Fogarasi Sapientia–Hungarian University of Sapientia–Hungarian University of Transilvania Transilvania Department of Mathematics and Department of Mathematics and Informatics, Informatics, Tˆargu Mure¸s, Romania Tˆargu Mure¸s, Romania email: [email protected] email: [email protected] Abstract. Let σ(n) denote the sum of positive divisors of the natural number n. A natural number is perfect if σ(n) = 2n. This concept was already generalized in form of superperfect numbers σ2(n)= σ(σ(n)) = k+1 k−1 2n and hyperperfect numbers σ(n)= k n + k . In this paper some new ways of generalizing perfect numbers are inves- tigated, numerical results are presented and some conjectures are estab- lished. 1 Introduction For the natural number n we denote the sum of positive divisors by arXiv:1008.0155v1 [math.NT] 1 Aug 2010 σ(n)= X d. d|n Definition 1 A positive integer n is called perfect number if it is equal to the sum of its proper divisors. Equivalently: σ(n)= 2n, where AMS 2000 subject classifications: 11A25, 11Y70 Key words and phrases: perfect number, superperfect number, k-hyperperfect number 73 74 A. Bege, K. Fogarasi Example 1 The first few perfect numbers are: 6, 28, 496, 8128, . (Sloane’s A000396 [15]), since 6 = 1 + 2 + 3 28 = 1 + 2 + 4 + 7 + 14 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 Euclid discovered that the first four perfect numbers are generated by the for- mula 2n−1(2n − 1). -
A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000)
A NEW LARGEST SMITH NUMBER Patrick Costello Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY 40475 (Submitted September 2000) 1. INTRODUCTION In 1982, Albert Wilansky, a mathematics professor at Lehigh University wrote a short article in the Two-Year College Mathematics Journal [6]. In that article he identified a new subset of the composite numbers. He defined a Smith number to be a composite number where the sum of the digits in its prime factorization is equal to the digit sum of the number. The set was named in honor of Wi!anskyJs brother-in-law, Dr. Harold Smith, whose telephone number 493-7775 when written as a single number 4,937,775 possessed this interesting characteristic. Adding the digits in the number and the digits of its prime factors 3, 5, 5 and 65,837 resulted in identical sums of42. Wilansky provided two other examples of numbers with this characteristic: 9,985 and 6,036. Since that time, many things have been discovered about Smith numbers including the fact that there are infinitely many Smith numbers [4]. The largest Smith numbers were produced by Samuel Yates. Using a large repunit and large palindromic prime, Yates was able to produce Smith numbers having ten million digits and thirteen million digits. Using the same large repunit and a new large palindromic prime, the author is able to find a Smith number with over thirty-two million digits. 2. NOTATIONS AND BASIC FACTS For any positive integer w, we let S(ri) denote the sum of the digits of n.