United States Patent Office

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office - 2,859,240 United States Patent Office Patented Nov. 4, 1958 2 or alcohol; a reaction which is typical of aliphatic alpha 2,859,240 hydro-alpha-hydroxy acids. This same decomposition to an aldehyde having one less carbon atom in the carbon PRODUCTION OF ACRYLATES BY CATALYTIC chain is also typical of procedures known to the prior DEHYDRATION OF LACT CACID AND ALKYL art in which lactic acid or the like is heated in the pres LACTATES ence of strong acids such as sulfuric or phosphoric acid. Reynold E. Holmen, White Bear Township, Ramsey In view of such prior art experience, it is not sur County, Milan, assignor to Minnesota Mining & Maiau prising that any methods for the preparation of acrylates facturing Company, St. Paul, Minn., a corporation of based on lactic acid or its esters as a raw material have Delaware 10 invariably involved the preliminary replacement of the No Drawing. Application January 12, 1956 alpha-hydroxy hydrogen (and the carboxyl hydrogen, Serial No. 558,607 when present) by some other radical whereby lactide formation and decomposition could be avoided, followed 4. Claims. (C. 260-486) by pyrolysis of the substituted lactate to the acrylate. 5 Typical of such methods is the -acetylation of methyl This invention is concerned with the production of lactate to methyl alpha-acetoxy propionate followed by acrylates, including acrylic acid as well as its lower alkyl pyrolysis to methyl acrylate and acetic acid. esters, from corresponding lactates by a direct catalytic Thus, despite the ready availability of lactic acid and process at an elevated temperature. the obvious advantages attendant upon its use, and fur This application is a continuation-in-part of my co 20 ther despite the very considerable efforts applied by re pending application Serial No. 319,185, filed November searchers toward a solution of the problem, the fact re 6, 1952, now abandoned. mains that no one, prior to the present invention, ever The acrylates comprise a class of materials which are succeeded in directly converting lactates to acrylates. of great industrial importance due to their ability to See, for example, the review by C. H. Fisher et al. en form polymers and copolymers having a wide range of 25 titled "Properties and Reactions of Lactic Acid' and applications. The relatively high cost of the acrylates published by the U. S. Dept. of Agriculture, No. A1C has, however, been a deterrent to their use in many 279, October 1950. applications for which their physical and chemical prop It has now been discovered, contrary to all previous erties are well suited. The high cost of these materials experience, that lactate material, i. e., lactic acid and has been in part a result of the methods of preparation 30 the lower alkyl esters thereof, may be converted in previously available, involving multiple-step processes, significant yields to acrylate material by direct catalytic use of large amounts of auxiliary reagents, and other dehydration at temperatures within the range of about inefficiencies. The development of new and more ef 200-600 C., or more particularly at temperatures with ficient processes for the production of acrylates has there in the more restricted and generally preferred range of fore long been an objective of those working in thus field. about 250-550 C. The oxidation of acrolein by means of silver oxide This is particularly surprising with respect to lactic acid was formerly employed in producing acrylic acid, from itself. Atwood, in his Patent No. 2,464,364, for exam which other acrylates could then be obtained. The ple, finds it necessary to remove all traces of lactic acid silver oxide reagent was expensive and was reduced to from his mixture of alkyl lactate and acetic anhydride the metal during the reaction, requiring reconversion 49 in order to prevent excessive coke formation in the to silver oxide prior to re-use. pyrolyzing furnace. Hydrolysis of ethylene cyanhydrin or of acrylonitrile Specific exampies will now be set forth in further ex provides much of the acrylates now produced com planation, but with no intent of limitation, of the inven mercially. Neither intermediate is low in cost. Con tion. siderable quantities of acidic reagents are required. EXAMPLE 1. Another method of preparation involves the pyrolysis of polymeric beta-lactone produced from ketene and A catalyst was made by pelleting NaH2POHO mixed formaldehyde. Several separate reactions are involved, with one-fourth its weight of graphite as a lubricant. cluding lactone formation, polymerization, and pyro Other lubricants, e.g., sodium stearate, are equally effec ySls. tive in providing coherent pellets. The amount of lub Acrylates have been synthesized from acetylene, car ricant may be much less than here indicated. bon mcnoxide and water or alcohol; but this process has A quantity of the catalyst pellets having an apparent not achieved commercial importance. Recovery of ex volume of about 65 ml. was used to pack a 10' sec pensive catalyst presents a major problem. tion of a 1%' O. D. "Pyrex' glass combustion tube passing through a "Hoskins' electrically heated tube The dehydration of hydracrylic acid (beta-hydroxypro furnace supported vertically. The furnace temperature pionic acid) or alkyl esters thereof to the corresponding was slowly raised so as to remove combined water with acrylate is a comparatively simple and economical proc out fusing the catalyst mass. A dropping funnel having ess, but the starting material is neither low in cost nor provision for admitting inert gas and for pressure equal readily available in quantity. Alpha-hydroxypropionic ization was attached to the top of the combustion tube by acid (lactic acid) is much more readily and potentially 60 means of a ground glass joint. The bottom end of the available, but this material, as such, has never been found combustion tube led directly to a water-cooled receiver, to be an effective source of acrylates. - from which non-condensed material passed through a When heated at moderate temperatures, lactic acid Dry-Ice trap and finally through a bubble counter. Oxy readily converts to polylactic acid or lactides. For ex gen-free nitrogen was fed into the system at the dropping ample, Whitmore, "Organic Chemistry,” in discussing the 65 funnel at a rate of about 0.1 cubic foot per hour in preparation of acrylic acid, states: "It is not obtained order to maintain an inert atmosphere and to assist from lactic acid or its esters which give a lactide in in sweeping the feed material and products through the stead.” At higher temperatures, lactic acid and its esters train. - - have been shown by Nef, and more recently by Fisher Methyl lactate was fed from the dropping funnel onto and Fiachione of the U.S. Dept. of Agriculture, to de 70 the dehydrated heated catalyst at a rate of about one - compose into acetaldehyde, carbon monoxide, and water drop per 4-5 seconds, and samples of the condensate were 2,859,240 3 withdrawn from the receiver at each of several furnace redistilled. A portion weighing 6.8 g., boiling from temperatures within the range of 270°-540° C. 70-77 C., and containing chiefly ethanol and ethyl In this as well as the following examples, the furnace acrylate, began to show polymerization after a few hours temperature was obtained by means of a thermocouple in the sunlight. The slightly viscous liquid was allowed which contacted the outer surface of the combustion to evaporate, leaving a film of clear polyethylacrylate. tube within the area of maximum temperature. The The identity of the polymer was confirmed by infrared temperature differential between such surface and the absorption analysis. center of the catalyst column was not more than about 25 °C. Temperatures were recorded in degrees Fahren EXAMPLE 7 heit and could be maintained at plus or minus about 5 0 In this experiment butyl lactate was passed over a F., but for convenience are here reported in degrees peileted catalyst which was prepared, in accordance with centigrade corresponding to the average recorded temper the procedure described under Example 1, from lithium ature. hydrogen phosphate mixed with some graphite. The The condensate contained methyl acrylate. After furnace temperature was 510 C. From 14 ml. of butyl standing at room temperature for about two weeks it was lactate there was obtained 6.2 g of nearly water-white found that polymerization of the methyl acrylate had pyrolysate. After adding a few granules of benzoyl peroxide and warming for thirty minutes on a water bath caused an increase in the viscosity of the samples, par the acrylate in the pyrolysate polymerized to give a vis ticularly those taken at 510-532 C. cous liquid. The clear solid isolated by evaporation of EXAMPLE 2 20 the volatile material was identified as chiefly polyacrylic A 9 inch section of the combustion tube of the ap acid, and butene was identified in the residue recovered : paratus described in Example 1 was packed with 6-10 in the Dry-ice trap, indicating that at the temperature mesh granules of a catalyst material prepared by mixing used the butyl acrylate first formed was further pyrolyzed a concentrated solution of Na2SO4 with finely divided to butene and acrylic acid. CaSO4 in a 1:25 mol ratio to form a stiff paste which 25 was dried in a thin layer, broken into small pieces, and EXAMPLE.8 screened. A short upper-section of the combustion tube In this experiment' lactic acid was directly dehydrated was filled with “Pyrex' glass helices for preheating the to acrylic acid. A solution of 70 ml. of 85% lactic acid feed. An aqueous 10% solution of lactic acid was fed in 30 ml.
Recommended publications
  • Your Reliable Partner DELIVERING SAFE and QUALITATIVE PRODUCTS for HIGH PERFORMANCE SOLUTIONS
    Your reliable partner DELIVERING SAFE AND QUALITATIVE PRODUCTS FOR HIGH PERFORMANCE SOLUTIONS corbion.com/biochemicals Why Corbion? Advanced technology and R&D At Corbion, we engage in ongoing R&D efforts to improve performance and sustainability of our products and processes. Consistent high quality Corbion has mastered the production technology to make high purity, high performance lactic acid, derivatives and lactides at industrial scale. Corbion factory in The Netherlands 100 100 years of experience Corbion has 100 years of experience in sales, application development and industrial scale production. Corbion is the global market leader in lactic acid, derivatives and lactides. Your reliable Global presence With 10 production facilities and sales offices on every partner continent, we are always close by to help you with your application development. All our products are available at an industrial scale Innovation and Application Our innovation and Application centers are focused on your Safer and more friendly for our planet challenges of tomorrow. Our technical team of chemist, analytical Corbion produces high quality lactic acid and derivatives and application technologist are available to provide you with using a biochemical fermentation process by efficient customized solutions. conversion of sugars. Corbion products are regarded as safe, offering a good alternative to traditional products that Deliveries have become under increased regulatory pressure. Corbion works on continuous improvement of its delivery times and reliability. Working to improve consistency within the supply chain is making the network more responsive while streamlining operations. Prevention Corbion deploys prevention activities in our plants and throughout our supply chain in order to avoid the occurrence of incidents.
    [Show full text]
  • United States Patent Office Patented Oct
    2,909,466 United States Patent Office Patented Oct. 20, 1959 1 2 tempts have always failed because the solutions were not 2,909,466 stable or, if sufficiently stable, they contained an insuffi cient amount of oxytetracycline salt, or because the sol STABLE SOLUTIONS OF OXYTETRACYCLINE vent which did produce stable solutions raised consider SAILS able doubts with respect to its pharmacological properties. Horst Neumann, Bingen, and Paul Viehmann and Hans It is an object of the present invention to provide stable Hugo Hibner, Engelheim, Germany, assignors, by Solutions of oxytetracycline salts which contain a suffi mesne assignments, to Chas. Pfizer & Co., Inc., Brook cient amount of the antibotic for effective therapeutic ad lyn, N.Y., a corporation of Delaware ministration. No Drawing. Application May 23, 1957 10 Another object of the present invention is to provide a Serial No. 661,033 stable solution of oxytetracycline salts wherein the sol vent has no objectionable pharmacological properties. Claims priority, application Germany May 29, 1956 Other objects and advantages of the present invention 9 Claims. (Cl. 167-65) will become apparent as the description proceeds. 5 The above-indicated objects and advantages are This invention relates to stable solutions of oxytetra achieved if a lower alkyl alcohol ester of lactic acid is -cycline salts, and more particularly to solutions of oxy used as the solvent for the oxytetracycline salt. tetracycline salts in lower alkyl alcohol esters of lactic The superior stability of oxytetracycline salt
    [Show full text]
  • Purification of Lactic Acid
    PURIFICATION OF LACTIC ACID by SIDNEY HSIN-HUAI CHOW B. S., Taiwan Provincial Cheng Kung University, 1957 A MASTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Chemical Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 1962 11 TABLE OF CONTENTS INTRODUCTION 1 Properties of Lactic Acid 1 Preparation of Lactic Acid 3 Utilization of Lactic Acid 13 Purification of Lactic Acid 14 Purpose of this Research 23 DESCRIPTION OF THE PROCESS 24 Materials 24 Equipment 25 Experimental Procedure 26 Analytical Methods . 27 EXPERIMENTAL RESULTS 29 Material Losses 29 Yields 29 Effect of Feed Composition 32 Effect of Time of Run 32 Effect of Concentration of Catalyst 33 Effect of Temperature 33 Purity of the Products 33 DISCUSSION OF RESULTS 34 RECOMMENDATIONS 35 ACKNOWLEDGMENTS 38 LITERATURE CITED 39 APPENDIX 41 INTRODUCTION Properties of Lactic Acid OH Lactic acid is alphahydroxy propionic acid, CH3---C---COOH. Because of the asymmetry of the alpha carbon atom, this acid exists in two modifi- cations, a dextro acid and a levo acid. COOH COOH HO OH CH3 CH3 Dextro -Lactic Acid Levo-Lactic Acid The commercial acid is a mixture of the two forms, usually in equal proportions; and it is, therefore, inactive with respect to the rotation of the plane of polarized light. Lactic acid is both an alcohol and an acid; and, therefore, its molecules can form esters with one another. In water solutions containing less than 20 percent of lactic acid, the acid is in the simple monomeric form; but solutions of greater concentration contain some esters involving two or more of the simple molecules.
    [Show full text]
  • Identification of Novel Simulants for Toxic Industrial Chemicals
    International Journal of Environmental Research and Public Health Review Identification of Novel Simulants for Toxic Industrial Chemicals and Chemical Warfare Agents for Human Decontamination Studies: A Systematic Review and Categorisation of Physicochemical Characteristics Thomas James * , Samuel Collins and Tim Marczylo Centre for Radiation, Chemicals and Environmental Hazards (CRCE), Public Health England, Chilton OX11 0RQ, UK; [email protected] (S.C.); [email protected] (T.M.) * Correspondence: [email protected] Abstract: Chemical simulants have long been used in human trials of mass decontamination to determine the efficacy of decontamination interventions against more toxic agents. Until now, reliance has mostly been on individual chemicals as surrogates to specific agents (e.g., methyl salicylate for sulphur mustard). A literature review was conducted to identify chemicals that had been previously tested on human volunteers and that represent diverse physicochemical characteristics in order to create a repository for chemical simulants. Of the 171 unique chemicals identified, 78 were discounted for the risk they could pose to human volunteers, 39 were deemed suitable for use, and a further 54 were considered to be possible simulants but would require further research. Suitable simulants Citation: James, T.; Collins, S.; included both solid and liquid chemicals spanning a wide range of physicochemical properties Marczylo, T. Identification of Novel including molecular weight, octanol/water partition coefficient, vapour pressure, and solubility. This Simulants for Toxic Industrial review identifies an array of potential simulants suitable for use in human volunteer decontamination Chemicals and Chemical Warfare studies and is of relevance to future studies on systemic absorption and surface decontamination.
    [Show full text]
  • DECOS and SCG Basis for an Occupational Standard. Lactate Esters
    1999:9 DECOS and SCG Basis for an Occupational Standard Lactate esters Per Lundberg arbete och hälsa vetenskaplig skriftserie ISBN 91–7045–519–8 ISSN 0346–7821 http://www.niwl.se/ah/ National Institute for Working Life National Institute for Working Life The National Institute for Working Life is Sweden’s national centre for work life research, development and training. The labour market, occupational safety and health, and work organisation are our main fields of activity. The creation and use of knowledge through learning, information and documentation are important to the Institute, as is international co- operation. The Institute is collaborating with interested parties in various development projects. The areas in which the Institute is active include: • labour market and labour law, • work organisation, • musculoskeletal disorders, • chemical substances and allergens, noise and electromagnetic fields, • the psychosocial problems and strain-related disorders in modern working life. ARBETE OCH HÄLSA Editor-in-Chief: Staffan Marklund Co-Editors: Mikael Bergenheim, Anders Kjellberg, Birgitta Meding, Gunnar Rosén and Ewa Wigaeus Hjelm © National Institute for Working Life & authors 1999 National Institute for Working Life, 171 84 Solna, Sweden ISBN 91–7045–519–8 ISSN 0346-7821 http://www.niwl.se/ah/ Printed at CM Gruppen Preface An agreement has been signed by the Dutch Expert Committee on Occupational Standards (DECOS) of the Dutch Health Council and the Swedish Criteria Group for Occupational Standards (SCG) of the Swedish National Institute for Working Life. The purpose of the agreement is to write joint scientific criteria documents for occupational exposure limits. The numerical limits will be developed separately by The Netherlands and Sweden according to their different national policies.
    [Show full text]
  • Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880–2002
    Enthalpies of Vaporization of Organic and Organometallic Compounds, 1880–2002 James S. Chickosa… Department of Chemistry, University of Missouri-St. Louis, St. Louis, Missouri 63121 William E. Acree, Jr.b… Department of Chemistry, University of North Texas, Denton, Texas 76203 ͑Received 17 June 2002; accepted 17 October 2002; published 21 April 2003͒ A compendium of vaporization enthalpies published within the period 1910–2002 is reported. A brief review of temperature adjustments of vaporization enthalpies from temperature of measurement to the standard reference temperature, 298.15 K, is included as are recently suggested reference materials. Vaporization enthalpies are included for organic, organo-metallic, and a few inorganic compounds. This compendium is the third in a series focusing on phase change enthalpies. Previous compendia focused on fusion and sublimation enthalpies. Sufficient data are presently available for many compounds that thermodynamic cycles can be constructed to evaluate the reliability of the measure- ments. A protocol for doing so is described. © 2003 American Institute of Physics. ͓DOI: 10.1063/1.1529214͔ Key words: compendium; enthalpies of condensation; evaporation; organic compounds; vaporization enthalpy. Contents inorganic compounds, 1880–2002. ............. 820 1. Introduction................................ 519 8. References to Tables 6 and 7.................. 853 2. Reference Materials for Vaporization Enthalpy Measurements.............................. 520 List of Figures 3. Heat Capacity Adjustments. ................. 520 1. A thermodynamic cycle for adjusting vaporization ϭ 4. Group Additivity Values for C (298.15 K) enthalpies to T 298.15 K.................... 521 pl 2. A hypothetical molecule illustrating the different Estimations................................ 521 hydrocarbon groups in estimating C ........... 523 5. A Thermochemical Cycle: Sublimation, p Vaporization, and Fusion Enthalpies...........
    [Show full text]
  • Catalytic Conversion of Glycerol to Value-Added Chemicals in Alcohol
    Fuel Processing Technology 140 (2015) 148–155 Contents lists available at ScienceDirect Fuel Processing Technology journal homepage: www.elsevier.com/locate/fuproc Catalytic conversion of glycerol to value-added chemicals in alcohol Shoujie Ren, X. Philip Ye ⁎ Department of Biosystems Engineering and Soil Science, The University of Tennessee, 2506 E. J. Chapman Drive, Knoxville, TN 37996, USA article info abstract Article history: With the aim to directly use the mixture of glycerol and methanol from the biodiesel production for value-added Received 19 June 2015 chemical production, catalytic conversion of refined glycerol to lactic acid (LA) and propylene glycol (PG) using Received in revised form 3 September 2015 mixed solid catalysts of CaO and CuO in methanol medium was first investigated. At the optimum condition, the Accepted 7 September 2015 yields of LA and PG achieved were 46 mol% and 35 mol%, respectively. For recycling the catalysts, a combined pro- Available online 15 September 2015 cess of glycerol conversion to alkyl lactate was further investigated. Using this integrated process, 45 mol% methyl Keywords: lactate yield and 28 mol% PG yield were achieved in methanol medium, and 45 mol% ethyl lactate and 18 mol% PG Glycerol yield were achieved in ethanol medium. The test for crude glycerol conversion showed that the impurities had Alkyl lactate slightly negative effects on glycerol conversion and product yield in methanol medium but no obvious effect in Lactic acid ethanol medium. Similar glycerol conversion and product yield were obtained when the mixture of glycerol, Methanol methanol, and CaO from biodiesel production were directly used as starting material.
    [Show full text]
  • United States Patent Office Patented July 31, 1973 2 Good Properties Such As Water-Proofness, Adhesiveness 3,749,769 and Luster to Nitrocellulose Lacquers
    3,749,769 United States Patent Office Patented July 31, 1973 2 good properties such as water-proofness, adhesiveness 3,749,769 and luster to nitrocellulose lacquers. NAIL LACQUER COMPOSITIONS AND PROCESS FOR THE PREPARATION THEREOF DETALED DESCRIPTION Iwakichi Sugiyama, Narashino, and Haruki Tomozuka, The oligomers and co-oligomers of acrylic esters used Tokyo, Japan, assignors to Matsumoto Chemical indus try Co., Ltd., Ichikawa-shi, Chiba-ken, Japan in the invention can be prepared by polymerizing acrylic No Drawing. Continuation of abandoned application Ser. ester monomers in the medium of a great quantity of the No. 753,745, Aug. 19, 1968. This application Jan. 22, solvent having a relatively large chain-transfer constant. 1971, Ser. No. 108,971 Such solvents, include, for instance, methyl isobutyl Claims priority, application Japan, Feb. 1, 1968, O ketone, methyl ethyl ketone, isobutyl alcohol, isopropyl 43/5,832 alcohol, sec, butyl alcohol, and toluene. These solvents int, C. A61k 7/04 are used in amounts of 4-20 moles, preferably 6-15 U.S. C. 424-6 5 Clains moles, per mole of the acrylic ester monomers. As mentioned above, the oligomers or co-oligomers ABSTRACT OF THE DISCLOSURE 5 used in the invention can be synthesized with the use of A nail lacquer having a good water-proofness, ad generally known solvents having a large chain-transfer hesiveness and luster is obtained by polymerizing acrylic constant. But it is necessary to make the molar ratio of monomers in a solvent having a relatively large chain solvent to monomer considerably large, and yet the yield transfer constant to form oligomers or co-oligomers, of the intended oligomer is very low.
    [Show full text]
  • Sustainable Fabrication of Organic Solvent Nanofiltration Membranes
    membranes Review Sustainable Fabrication of Organic Solvent Nanofiltration Membranes Hai Yen Nguyen Thi 1, Bao Tran Duy Nguyen 1 and Jeong F. Kim 1,2,* 1 Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Korea; [email protected] (H.Y.N.T.); [email protected] (B.T.D.N.) 2 Innovation Center for Chemical Engineering, Incheon National University, Incheon 22012, Korea * Correspondence: [email protected] Abstract: Organic solvent nanofiltration (OSN) has been considered as one of the key technologies to improve the sustainability of separation processes. Recently, apart from enhancing the membrane performance, greener fabricate on of OSN membranes has been set as a strategic objective. Consider- able efforts have been made aiming to improve the sustainability in membrane fabrication, such as replacing membrane materials with biodegradable alternatives, substituting toxic solvents with greener solvents, and minimizing waste generation with material recycling. In addition, new promis- ing fabrication and post-modification methods of solvent-stable membranes have been developed exploiting the concept of interpenetrating polymer networks, spray coating, and facile interfacial polymerization. This review compiles the recent progress and advances for sustainable fabrication in the field of polymeric OSN membranes. Keywords: sustainability; organic solvent nanofiltration; green solvents; environmental-friendly polymers; bio-based polymers 1. Introduction With escalating environmental concerns, the concept of sustainability has become more Citation: Nguyen Thi, H.Y.; Nguyen, important. The environmental regulations are getting even more stringent, and industries B.T.D.; Kim, J.F. Sustainable Fabrica- tion of Organic Solvent Nanofiltration are widely implementing membrane technology to improve their process sustainability.
    [Show full text]
  • The Occurrence of Propyl Lactate in Chinese Baijius (Chinese Liquors) Detected by Direct Injection Coupled with Gas Chromatography-Mass Spectrometry
    Molecules 2015, 20, 19002-19013; doi:10.3390/molecules201019002 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article The Occurrence of Propyl Lactate in Chinese Baijius (Chinese Liquors) Detected by Direct Injection Coupled with Gas Chromatography-Mass Spectrometry Jihong Wu 1,2, Yang Zheng 1,2, Baoguo Sun 1,2,3, Xiaotao Sun 1,2, Jiyuan Sun 1,2, Fuping Zheng 1,2 and Mingquan Huang 1,2,3,* 1 School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China; E-Mails: [email protected] (J.W.); [email protected] (Y.Z.); [email protected] (B.S.); [email protected] (X.S.); [email protected] (J.S.); [email protected] (F.Z.) 2 Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University, Beijing 100048, China 3 Beijing Innovation Centre of Food Nutrition and Human Health, Beijing 100048, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +86-10-6898-5382. Academic Editor: Luca Forti Received: 1 September 2015 / Accepted: 13 October 2015 / Published: 19 October 2015 Abstract: As one of the oldest distillates in the world, flavor compounds of Chinese Baijiu (Chinese liquor) were extremely complex. Propyl lactate was firstly detected by direct injection and gas chromatography-mass spectrometry (GC-MS) in 72 Chinese Baijius. The objectives were to detect the contents of propyl lactate and evaluate its contribution to the aroma of Chinese Baijiu based on odor activity values (OAVs). The levels of propyl lactate in these distillates were determined by internal standard method and selective ion monitoring (SIM), which ranged from 0.050 to 1.900 mg·L−1 under investigation.
    [Show full text]
  • Kinetics of Alkyl Lactate Formation from the Alcoholysis of Poly(Lactic Acid)
    processes Article Kinetics of Alkyl Lactate Formation from the Alcoholysis of Poly(Lactic Acid) Fabio M. Lamberti 1, Luis A. Román-Ramírez 1, Paul Mckeown 2 , Matthew D. Jones 2 and Joseph Wood 1,* 1 School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] (F.M.L.); [email protected] (L.A.R.-R.) 2 Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; [email protected] (P.M.); [email protected] (M.D.J.) * Correspondence: [email protected] Received: 8 June 2020; Accepted: 23 June 2020; Published: 24 June 2020 Abstract: Alkyl lactates are green solvents that are successfully employed in several industries such as pharmaceutical, food and agricultural. They are considered prospective renewable substitutes for petroleum-derived solvents and the opportunity exists to obtain these valuable chemicals from the chemical recycling of waste poly(lactic acid). Alkyl lactates (ethyl lactate, propyl lactate and butyl lactate) were obtained from the catalysed alcoholysis reaction of poly(lactic acid) with the corresponding linear alcohol. Reactions were catalysed by a Zn complex synthesised from an ethylenediamine Schiff base. The reactions were studied in the 50–130 ◦C range depending on the alcohol, at autogenous pressure. Arrhenius temperature-dependent parameters (activation energies and pre-exponential factors) were estimated for the formation of the lactates. The activation energies (Ea1, Ea2 and Ea 2) for alcoholysis in ethanol were 62.58, 55.61 and 54.11 kJ/mol, respectively. − Alcoholysis proceeded fastest in ethanol in comparison to propanol and butanol and reasonable rates can be achieved in temperatures as low as 50 ◦C.
    [Show full text]
  • Menthol Concentration in the Composition (%) U.S
    USOO6897195B2 (12) United States Patent (10) Patent No.: US 6,897,195 B2 Su et al. (45) Date of Patent: May 24, 2005 (54) COMPOSITION OF MENTHOL AND 6,627,233 B1 * 9/2003 Wolf et al. .................... 426/3 MENTHYL LACTATE, ITS PREPARATION sk - METHOD AND ITS APPLICATIONS ASA cited by examiner COOLINGAGENT Primary Examiner Monique T. Cole (75) Inventors: Evelyn G. Su, Nanjing (CN); (74) Attorney, Agent, or Firm-Clifford G. Frayne Chang-Guo Wang, Nanjing (CN) (57) ABSTRACT (73) Assignee: Nanjing Zhongshi Chemical Co., Disclosed here is a composition containing menthol and Nanjing (CN) menthyl lactate, and its preparation method and its applica tions as a cooling agent and a flavoring agent. (*) Notice: Subject to any disclaimer, the term of this 9 a. 9 a. patent is extended or adjusted under 35 The present invention provides a composition characterized U.S.C. 154(b) by 321 days. in that it comprises menthol and menthyl lactate in a ratio by weight in the range of 1:4-4:1 and the corresponding (21) Appl. No.: 10/202,543 crystallization point is below room temperature of 25 C. Such composition has the advantages of being liquid at room (22) Filed: Jul. 24, 2002 temperature; easy to use as a cooling agent or a flavoring (65) Prior Publication Data agent; no need to use heat to melt menthol and menthyl lactate, which not only Saves time, money and heating US 2004/0018954 A1 Jan. 29, 2004 equipment, but also simplifies manufacturing process and (51) Int. Cl. .................................................. AK746 can be used in cold processes at room temperature.
    [Show full text]