Chapter 7 Electron Configurations and the Properties of Atoms 7.1 Electron Spin and Magnetism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Magnetism, Magnetic Properties, Magnetochemistry
Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment -
Chapter 7 Electron Configuration and the Periodic Table
Chapter 7 Electron Configuration and the Periodic Table Copyright McGraw-Hill 2009 1 7.1 Development of the Periodic Table • 1864 - John Newlands - Law of Octaves- every 8th element had similar properties when arranged by atomic masses (not true past Ca) • 1869 - Dmitri Mendeleev & Lothar Meyer - independently proposed idea of periodicity (recurrence of properties) Copyright McGraw-Hill 2009 2 • Mendeleev – Grouped elements (66) according to properties – Predicted properties for elements not yet discovered – Though a good model, Mendeleev could not explain inconsistencies, for instance, all elements were not in order according to atomic mass Copyright McGraw-Hill 2009 3 • 1913 - Henry Moseley explained the discrepancy – Discovered correlation between number of protons (atomic number) and frequency of X rays generated – Today, elements are arranged in order of increasing atomic number Copyright McGraw-Hill 2009 4 Periodic Table by Dates of Discovery Copyright McGraw-Hill 2009 5 Essential Elements in the Human Body Copyright McGraw-Hill 2009 6 The Modern Periodic Table Copyright McGraw-Hill 2009 7 7.2 The Modern Periodic Table • Classification of Elements – Main group elements - “representative elements” Group 1A- 7A – Noble gases - Group 8A all have ns2np6 configuration(exception-He) – Transition elements - 1B, 3B - 8B “d- block” – Lanthanides/actinides - “f-block” Copyright McGraw-Hill 2009 8 Periodic Table Colored Coded By Main Classifications Copyright McGraw-Hill 2009 9 Copyright McGraw-Hill 2009 10 • Predicting properties – Valence -
Chemistry – Inorganic Chemistry
Answer on Question #53306 – Chemistry – Inorganic Chemistry Question What is oxidation state? How can find out the oxidation state of particular element? Explain its trend in the group and period, give reasons Answer The oxidation state is an indicator of the degree of oxidation (loss of electrons) of an atom in a chemical compound. The oxidation state, which may be positive, negative or equal to zero, is the hypothetical charge that an atom would have if all bonds to atoms of different elements were completely ionic, with no covalent component. To find out the oxidation state of particular element one should use some simple rules: 1. The oxidation state of an element in a simple substance (for example, He or Cl2, or Fe, or C, or whatever containing one type of atoms) is equal to zero. 2. The sum of the oxidation states of all the atoms or ions in a neutral compound is zero. 3. The sum of the oxidation states of all the atoms in an ion is equal to the charge on the ion. 4. The more electronegative element in a substance is given a negative oxidation state. The less electronegative one is given a positive oxidation state. 5. Some elements almost always have the same oxidation states in their compounds: Element Oxidation state Group 1 metals (Li, Na, K, Rb, Cs, Fr) always +1 Group 2 metals (Be, Mg, Ca, Sr, Ba, Ra) always +2 Fluorine (F) always -1 Oxygen (O) usually -2 (except in peroxides (-1) and F2O (+2)) Hydrogen (H) usually +1 (except in metal hydrides (-1)) Having known the oxidation states of these elements in the compound and having known the rule 3, the oxidation state of particular element can be found. -
Electron Configuration Example Script
Electron Configuration Example Script This video demonstrates how to write electron configurations and draw orbital diagrams for main group elements. To write an electron configuration you could memorize the order in which orbitals are filled according to their energy level, but a more convenient method is to use the periodic table. The periodic table is arranged in blocks, each block represents an orbital, and each space in the block counts as one electron. The s block is the first two left-hand columns of the periodic table and includes helium. The p block is the last six columns on the right hand side stating at boron. The d block is the transition metals in the middle of the periodic table, and the f block is the lanthanide and actinide series. To begin start at the top left hand corner of the periodic table and work your way down by reading across a row from left to right and filling in the proper amount of electrons for each orbital until you reach your element. Use the number assigned to each row, 1 thru 7, as the value of the principle quantum number n, when you arrive at the d and f blocks; subtract one from the n value for the d orbitals, and two from the n value for the f orbitals. This periodic table has the electron configuration for each row written along the left hand side using the method just outlined. Let’s use it to write the electron configuration of a neutral bromine atom, a bromine atom has 35 electrons. -
Electron Configurations, Orbital Notation and Quantum Numbers
5 Electron Configurations, Orbital Notation and Quantum Numbers Electron Configurations, Orbital Notation and Quantum Numbers Understanding Electron Arrangement and Oxidation States Chemical properties depend on the number and arrangement of electrons in an atom. Usually, only the valence or outermost electrons are involved in chemical reactions. The electron cloud is compartmentalized. We model this compartmentalization through the use of electron configurations and orbital notations. The compartmentalization is as follows, energy levels have sublevels which have orbitals within them. We can use an apartment building as an analogy. The atom is the building, the floors of the apartment building are the energy levels, the apartments on a given floor are the orbitals and electrons reside inside the orbitals. There are two governing rules to consider when assigning electron configurations and orbital notations. Along with these rules, you must remember electrons are lazy and they hate each other, they will fill the lowest energy states first AND electrons repel each other since like charges repel. Rule 1: The Pauli Exclusion Principle In 1925, Wolfgang Pauli stated: No two electrons in an atom can have the same set of four quantum numbers. This means no atomic orbital can contain more than TWO electrons and the electrons must be of opposite spin if they are to form a pair within an orbital. Rule 2: Hunds Rule The most stable arrangement of electrons is one with the maximum number of unpaired electrons. It minimizes electron-electron repulsions and stabilizes the atom. Here is an analogy. In large families with several children, it is a luxury for each child to have their own room. -
Electron Configuration, and Element No.155 of the Periodic Table of Elements
April, 2011 PROGRESS IN PHYSICS Volume 2 Electron Configuration, and Element No.155 of the Periodic Table of Elements Albert Khazan E-mail: [email protected] Blocks of the Electron Configuration in the atom are considered with taking into ac- count that the electron configuration should cover also element No.155. It is shown that the electron configuration formula of element No.155, in its graphical representation, completely satisfies Gaussian curve. 1 Introduction K L M N O Sum Content in the shells As is known, even the simpliests atoms are very complicate s 2 2 in each shell systems. In the centre of such a system, a massive nucleus p 2 6 8 in each, commencing is located. It consists of protons, the positively charged par- in the 2nd shell ticles, and neutrons, which are charge-free. Masses of pro- d 2 6 10 18 in each, commencing tons and neutrons are almost the same. Such a particle is in the 3rd shell almost two thousand times heavier than the electron. Charges f 2 6 10 14 32 in each, commencing of the proton and the electron are opposite, but the same in in the 4th shell the absolute value. The proton and the neutron differ from g 2 6 10 14 18 50 in each, commencing the viewpoint on electromagnetic interactions. However in in the 5th shell the scale of atomic nuclei they does not differ. The electron, the proton, and the neutron are subatomic articles. The theo- Table 1: Number of electrons in each level. retical physicists still cannot solve Schrodinger’s¨ equation for the atoms containing two and more electrons. -
Periodic Table 1 Periodic Table
Periodic table 1 Periodic table This article is about the table used in chemistry. For other uses, see Periodic table (disambiguation). The periodic table is a tabular arrangement of the chemical elements, organized on the basis of their atomic numbers (numbers of protons in the nucleus), electron configurations , and recurring chemical properties. Elements are presented in order of increasing atomic number, which is typically listed with the chemical symbol in each box. The standard form of the table consists of a grid of elements laid out in 18 columns and 7 Standard 18-column form of the periodic table. For the color legend, see section Layout, rows, with a double row of elements under the larger table. below that. The table can also be deconstructed into four rectangular blocks: the s-block to the left, the p-block to the right, the d-block in the middle, and the f-block below that. The rows of the table are called periods; the columns are called groups, with some of these having names such as halogens or noble gases. Since, by definition, a periodic table incorporates recurring trends, any such table can be used to derive relationships between the properties of the elements and predict the properties of new, yet to be discovered or synthesized, elements. As a result, a periodic table—whether in the standard form or some other variant—provides a useful framework for analyzing chemical behavior, and such tables are widely used in chemistry and other sciences. Although precursors exist, Dmitri Mendeleev is generally credited with the publication, in 1869, of the first widely recognized periodic table. -
Electromagnetic Radiation and Quantum Theory Questions KEY
Electromagnetic Radiation and Quantum Theory Questions KEY What you will be given for the test: A periodic table (you cannot use the blank one where you filled in the electron configuration) c=λv c=3.0x108 m/s E=hv h=6.626x10-34 J*s For the test, you should be able to answer these questions…. 1. What does ROY G. BV represent? The colors of the visible light portion of the electromagnetic spectrum. 2. How does the energy of a red photon compare to that of a blue photon? Explain. A blue photon has higher energy than a red photon. Blue photons have a shorter wavelength and therefore a higher frequency and higher energy. 3. According to the Bohr model of the hydrogen atom, how does the hydrogen atom emit light? When an electron absorbs energy, it jumps to a higher energy level. When the electron falls back down, energy is released from the atom in the form of light. 4. What is the difference between an electron at ground state and an excited electron? A ground state electron is the lowest possible energy for that electron. An excited electron is one that has absorbed energy and is in a higher energy level. 5. What accounts for different color lines (red, blue-green, blue, and violet) in the emission spectrum of the hydrogen atom? The electron releases different amounts of energy has it drops to different energy levels. Each of these drops in energies corresponds to a specific frequency and color of light. 6. Can two different elements produce the same identical emissions spectrum? No two elements can produce the same emission spectrum, it is similar to a fingerprint for an atom. -
Structure Controlled Magnetism in Mg-Ti-O Thin Films
In Quest of a Ferromagnetic Insulator - Structure Controlled Magnetism in Mg-Ti-O Thin Films Johannes Frantti*,1, Yukari Fujioka1, Christopher Rouleau2, Alexandra Steffen3, Alexander Puretzky2, Nickolay Lavrik2, Ilia N. Ivanov2 and Harry M. Meyer2 1Finnish Research and Engineering, Helsinki 00180, Finland 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 3Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA *Corresponding author: e-mail johannes.frantti@fre.fi 1 Abstract Ferromagnetic insulator thin films can convey information by spin waves, avoiding charge displacement and Eddy current losses. The sparsity of high-temperature insulating ferromagnetic materials hinders the development of spin wave based devices. Stoichiometric magnesium titanate, MgTiO3, has an electronic- energy-band structure in which all bands are either full or empty, being a paramagnetic insulator. The MgTiO3 ilmenite consists of ordered octahedra and cation network in which one third of the octahedra are vacant, one third host magnesium and one third titanium. By giving up these characteristics, a rich variety of different magnetic structures can be formed. Our experiments and electronic-energy-band-structure computations show that the magnetic and electric properties of Mg-Ti-O films can drastically be changed and controlled by Mg- and Ti-cation arrangement and abundancy in the octahedra. Insulating titanium- and semiconducting magnesium-rich films were ferromagnetic up to elevated temperatures. The presence and origin of ferromagnetic insulating phase in the films is not apparent - the expectation, based on the well- established rules set by Goodenough and Kanamori, is paramagnetic or antiferromagnetic ordering. We show that ferro- and paramagnetic phases, possessing the same stoichiometry, can be obtained by merely rearranging the cations, thus allowing defect-free interfaces in multilayer structures. -
Electronic Configurations *Read Through the Lesson Notes
Advanced Higher Chemistry CfE Unit 1 Inorganic Chemistry Lesson 5: Electronic Configurations *Read through the lesson notes. You can write them out, print them or save them. *Once you have tried to understand the lesson answer the questions that follow at the end. *The answers to the question sheet(s) will be posted later and this will allow you to self-evaluate your learning. Learning Intentions -Learn how to write spectroscopic notation for the first 36 elements. -Learn how to draw orbital box notation for the first 36 elements. Background -Leading on from lesson 4 in which we learned about orbitals and quantum numbers, this lesson explores a more accurate way of representing the electron arrangements of atoms. Early on in National 5 chemistry, we used the Bohr model of the atom to write electron arrangements. However, from lesson 4, we now know that the Bohr model is not entirely accurate and therefore we can use the knowledge that we have gained to write electron arrangements in a more accurate manner. (i) Spectroscopic Notation To write the electron arrangement in the form called spectroscopic notation, it is important to know and understand the aufbau principle (which we learned about in lesson 4). It is also useful to have a copy of the Periodic Table from your data booklet handy (page 8). The spectroscopic notation has been written for the first seven elements together with their electron arrangement as taught at National 5. Hydrogen (electron arrangement: 1) spectroscopic notation: 1s1 Helium (electron arrangement: 2) spectroscopic -
Chapter 7 Periodic Properties of the Elements Learning Outcomes
Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Zeff, and how Zeff depends on nuclear charge and electron configuration. Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity by using the periodic table. Explain how the radius of an atom changes upon losing electrons to form a cation or gaining electrons to form an anion. Write the electron configurations of ions. Explain how the ionization energy changes as we remove successive electrons, and the jump in ionization energy that occurs when the ionization corresponds to removing a core electron. Explain how irregularities in the periodic trends for electron affinity can be related to electron configuration. Explain the differences in chemical and physical properties of metals and nonmetals, including the basicity of metal oxides and the acidity of nonmetal oxides. Correlate atomic properties, such as ionization energy, with electron configuration, and explain how these relate to the chemical reactivity and physical properties of the alkali and alkaline earth metals (groups 1A and 2A). Write balanced equations for the reactions of the group 1A and 2A metals with water, oxygen, hydrogen, and the halogens. List and explain the unique characteristics of hydrogen. Correlate the atomic properties (such as ionization energy, electron configuration, and electron affinity) of group 6A, 7A, and 8A elements with their chemical reactivity and physical properties. Development of Periodic Table •Dmitri Mendeleev and Lothar Meyer (~1869) independently came to the same conclusion about how elements should be grouped in the periodic table. •Henry Moseley (1913) developed the concept of atomic numbers (the number of protons in the nucleus of an atom) 1 Predictions and the Periodic Table Mendeleev, for instance, predicted the discovery of germanium (which he called eka-silicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon. -
Nitric Oxide: a Brief Overview of Chemical and Physical Properties Relevant to Therapeutic Applications
SPECIAL FOCUS y Nitric oxide-releasing materials Special Report For reprint orders, please contact [email protected] 1 Special Report 2015/06/30 Nitric oxide: a brief overview of chemical and physical properties relevant to therapeutic applications Future Sci. OA Nitric oxide (nitrogen monoxide, •NO) has been intensively studied by chemists and Jack R Lancaster Jr physicists for over 200 years and thus there is an extensive database of information Departments of Pharmacology & that determines its biological actions. This is a very brief overview of the chemical and Chemical Biology, Medicine, & Surgery, School of Medicine, University of physical properties of •NO that are most relevant to Biology in general and to the Pittsburgh, 4200 Fifth Ave, Pittsburgh, 1(1), FSO59 development of •NO releasing materials in particular. PA 15260, USA [email protected] Keywords: diffusion • oxidation-reduction • radical • transition metals In 1987 the startling discovery was made electron. This is due to the fact that it has that the small reactive radical molecule an odd total number of electrons (15). The nitric oxide (•NO; nitrogen monoxide) is property of possessing an unpaired electron specifically produced and functions as a is called paramagnetism and it is this prop major messenger in the mammalian cardio erty that most determines its chemical reac vascular system, for which the 1998 Nobel tivity. However, the small uncharged nature Prize in Physiology or Medicine was awarded of •NO is especially important in determin to Robert Furchgott, Louis Ignarro and Ferid ing mechanisms for its selective delivery, the Murad [1] . This discovery represented a classi topic of this monograph.