MolecularEcology(2003) doi:10.1046/j.1365-294X.2003.01910.x

5HugepopulationsandoldspeciesofCostaRicanand Panamaniandirtinferredfrommitochondrialand nucleargenesequences

A.J.CRAWFORD CommitteeonEvolutionaryBiology,UniversityofChicago,Chicago,IL60637,USA

Abstract Moleculargeneticdatawereusedtoinvestigatepopulationsizesandagesof Eleutherod- actylus(Anura:Leptodactylidae),aspecies-richgroupofsmallleaf-litterfrogsendemic toCentralAmerica.Populationgeneticstructureanddivergencewasinvestigatedfor fourcloselyrelatedspeciessurveyedacrossninelocalitiesinCostaRicaandPanama.DNA sequencedatawerecollectedfromamitochondrialgene(ND2)andanucleargene(c-myc). Phylogeneticanalysesyieldedconcordantresultsbetweenloci,withreciprocalmonophyly ofmitochondrialDNAhaplotypesforallspeciesandofc- mychaplotypesforthreeofthe

fourspecies.Estimatesofgeneticdifferentiationamongpopulations( FST)basedupon mitochondrialdatawerealwayshigherthannuclear-basedFSTestimates,evenaftercorrect- ingfortheexpectedfourfoldlowereffectivepopulationsize( Ne)ofthemitochondrial genome.Comparingwithin-populationvariationandtherelativemutationratesofthetwo

genesrevealedthattheNeofthemitochondrialgenomewas15-foldlowerthantheestimate ≈ ofthenucleargenomebasedonc-myc.NuclearFSTestimateswere 0forthemostproximal pairsofpopulations,butrangedfrom0.5to1.0forallotherpairs,evenwithinthesame

nominalspecies.ThenuclearlocusyieldedestimatesofNewithinlocalitiesontheorder 5 of10 .ThisvalueistwotothreeordersofmagnitudelargerthananypreviousNeestimate fromfrogs,butisnonethelessconsistentwithpublisheddemographicdata.Applyinga molecularclockmodelsuggestedthatmorphologicallyindistinguishablepopulations withinonespeciesmaybe107yearsold.Theseresultsdemonstratethatevenageologically younganddynamicregionofthetropicscansupportveryoldlineagesthatharbourgreat levelsofgeneticdiversitywithinpopulations.Theassociationofhighnucleotidediversity withinpopulations,largedivergencebetweenpopulations,andhighspeciesdiversityis alsodiscussedinlightofneutralcommunitymodels.

Keywords:c-mycintron,effectivepopulationsize,Eleutherodactylus,FST,molecularclock,mtDNA, Neotropics,phylogenetics Received13January2003;revisionreceived29April2003;accepted2June2003

communitiesareknownfortheirmanifoldecological Introduction interactionswhichmayhavefacilitateddiversificationand Theoriginofspeciesdiversityinthetropicsisanissueof increasedspeciationrates(Rohde1992;Jablonski1993). long-standinginterestamongecologistsandevolutionary Tropicalregionsarealsothoughttohavebeenhistorically biologists(Wallace1878;Dobzhansky1950).Twoalterna- stablerelativetothetemperatezone,whichmayhavefacil- tivehypothesesareofteninvokedtoexplainthisdiversity: itatedthepreservationofspeciesandtheloweringof eitherthetropicshavefunctionedasacradleofspeciation extinctionrates(Fischer1960;Connell&Orians1964).No oramuseumforolderlineages(Stebbins1974).Tropical consensushasyetemergedregardingtheextenttowhich thetropicsareacradleofdiversityoramuseumofanti- Correspondence:A.J.Crawford.Presentaddress:Smithsonian quity(Chown&Gaston2000;Bermingham&Dick2001). TropicalResearchInstitute,Apartado2072,Balboa,Ancon, Understandingtheoriginsoftropicaldiversitywillrequire RepublicofPanama.E-mail:[email protected] analysisofnotonlythetempoofcladediversification(e.g.

©2003BlackwellPublishingLtd

2 A.J.CRAWFORD

Richardsonetal.2001;Ricklefs&Bermingham2001;Buzas slopepopulationswerestillreferredtoasE.bransfordii.All etal.2002),butalsothemodeofpopulationdifferentiation fourspeciesarerestrictedtoelevationsbelow1400m(Sav- (Moritzetal.2000).Tothisend,weneedtocollectdataon age2002)andaremembersofthe rhodopisspeciesgroup, thepopulationgeneticsoftropicalorganisms.Thesedata subgenusCraugastor(Hedges1989;Lynch2001). servemultiplepurposes.Studiesofgeneticvariationamong IassayedgeneticvariationfromsamplesoffiveAtlantic populationscanbeusedtorevealthegeographicalextent andfourPacificslopepopulations.Samplesizesofupto12 andidentityofspeciesthatmayharbourcrypticdiversity frogsperpopulationwereassayedforbothmitochondrial (e.g.Bermingham&Martin1998;García-París etal.2000). DNA(mtDNA)andnuclearDNA(nDNA)sequencevari- Quantificationofgeneticvariationwithinpopulationscan ationinordertoprovidecomparativemeasuresofthepopu- provideestimatesoftheeffectivesize( Ne)ofpopulations lationgeneticstructureofthesampledpopulations.Joint (Wright1931)anddiverginglineages(Kliman etal.2000). analysisofmtDNAandnDNAsequencedatapermitsa Suchanalysesarerelevanttoinvestigationsoftheroleof detaileddescriptionandreliableinterpretationoftheevo- populationbottlenecksinpopulationdivergenceandspe- lutionaryanddemographichistory.Mitochondrialgenes ciation(Carson&Templeton1984),andwhethertropical provideahighdegreeofresolutionandaccuracyinthe speciesmighthavesmallerpopulationsizesdueto reconstructionofrecentcladogenesisduetotheirrapid increasedpressurefromothertrophiclevels(Paine1966) evolution(Brown etal.1979)andsmalleffectivepopula- orduetofinernichepartitioningwithinguilds(Klopfer tionsize(Avise etal.1984;Moore1995).Comparing 1959).Comparingwithin-andamong-populationvari- mtDNAandnDNAmarkervariationamongdirtpopu- ationprovidesindirectestimatesofmigrationratesbetween lationsmaypermitthedetectionofdifferencesinmigra- pairsofpopulations(Wright1951).Finally,wecanesti- tionratesbetweenthesexes(Aviseetal.1987;FitzSimmons matetherelativeagesofpopulationsandspeciesbyquan- etal.1997;Sladeetal.1998).ComparingmtDNAandnDNA tifyingdifferencesinmolecularsequences(Zuckerkandl variationwithinindividualpopulationsallowsustotest &Pauling1965).Theseanalyseswillrevealthetempoand thefrequentassumption(e.g.Crochet2000;Palumbi etal. modeofspeciationintropicalorganisms,andwecancompare 2001)thattheeffectivepopulationsizeofmitochondrial thesefindingswithresultsfromtemperatezonelineages. genes(Nmt)is1/4thatofnucleargenes( Ne).Ifthemito- Alloftheabovegeneticparametersmaybemostreadily chondrialgenomehaslittleornorecombination,thenselec- investigatedintropicalorganismsthatarespeciose,wide- tionatanynucleotidesiteshouldreducevariationinthe spreadandabundant.OnesuchgroupisEleutherodactylus wholemolecule(Kreitman&Wayne1994).Therefore,we

(Anura:Leptodactylidae),agenusoffrogsendemictothe shouldexpectthatNmt<0.25Ne.Highervarianceinfemale Neotropicscomprisedofover600species(e.g.Lynch& reproductivesuccessrelativetomaleswouldproducea Duellman1997;Duellman&Pramuk1999), ≈13%ofthe similareffect(Aviseetal.1987). world’sfrogdiversity.Thisstudyfocusedonagroupof MeasuringDNAsequencevariationatmultiplelocican Eleutherodactylusknownas‘dirtfrogs’endemictoCentral alsorevealtheoriginofthatvariationbycomparingwithin- America.Dirtfrogsarefoundonlyonthegroundinthe populationnucleotidediversityamonglociacrossanarray leaflitter,andarethemostabundantmemberoftheleaf ofpopulations.Geneticdriftandcertainformsofnatural litterherpetofaunaatmanysiteswheretheyoccur(Scott selectioncanbothreducevariationwithinpopulations. 1976),possiblynumberinginthemillionswithinoneforest Theformertendstooperateatthegenomelevelthrough reserve(Lieberman1986). thestochasticsuccessorfailureofgametes,whereasthe ThefocalgroupofdirtfrogsIstudiedhas,atvarious lattertendstoaffectparticulargenesdeterministically. timesinthepast,beenrecognizedassevenspecies(Taylor Therefore,ifvariationatindependentlocicovariessigni- 1952),onespecies(Savage&Emerson1970),twospecies ficantlyacrosspopulations,thengeneticdriftduetodiffer-

(Miyamoto1983),andmostrecentlyasacomplexoffour encesinNeistheprobablecauseofvariationatthemarker species(Savage2002).Thegeographicaldistributionofthe loci.Otherwiseamarker-specificforce,suchasaselective fourspeciesextendsfromthesouthernborderofNicara- sweep,mayhavereducedvariationatparticularlocuswithin guatothewesternborderofPanamaonthePacificslope, oneorasubsetoflocalpopulations.Sex-linkedmarkersare andfromcentralNicaraguatojusteastofthePanama susceptibletomarker-specificdemographiceffects,aswell, CanalontheAtlanticslope.Eleutherodactylusstejnegerianus e.g.apopulationbottleneckamongfemaleswoulddispro- isthesolePacificslopespecies,andthethreeAtlanticslope portionatelyaffectmtDNAvariationrelativetonDNA. specieshavethefollowingdistribution:E.bransfordiiinthe Inthepastdecadesomeecologistshaveendeavouredto north,E.persimilisincentralandsouthernCostaRica,and bringanhistoricalperspectivetostudiesofcommunity E.polyptychusinthesouthandeast.Thedistributionsof assembly(Ricklefs&Schluter1983),includingonerecent E.bransfordiiandE.polyptychusareparapatric,nearly efforttounitecommunityecologywithbiogeography meetingincentralCostaRica,while E.persimilisoverlaps (Hubbell2001).Bycombiningpopulationgeneticandphylo- withboth(Savage2002).WhenthisstudybeganallAtlantic geneticanalyseswithdemographicdata,Ihopethisstudy

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x

POPULATIONSTRUCTUREINMESOAMERICANFROGS 3

ofconsanguinityamongfrogs,sampleswerecollected fromacrossthelengthofeachlocalitywheneverpossible, ratherthanfromasinglepoint(Table1).Tissueswere collectedinthefieldandpreservedina20%solutionof dimethylsulfoxide(DMSO)saturatedwithNaCl(Amos& Hoelzel1991,citedinAmosetal.1992)withtheadditionof 0.125mEDTA.Specimensweredepositedinthecollections oftheDivisionofandReptilesattheField MuseumofNaturalHistory,Chicago. Forphylogeneticreconstruction,onespecimenfromeach oftworelatedspecieswasincludedintheanalysisofboth themtDNAandnDNAsequencedatasetsasoutgroups: themorecloselyrelatedspecies,Eleutherodactyluspodiciferus (FMNH257653),fromthehighlandsofCostaRica,and E. rhodopisfromGuatemala(ENS8615).Phylogeneticanalysis Fig.1 MapofeightCostaRicanandonePanamanian(IslaColón) ofmtDNAdataincludesanadditionaloutgroup,thesister Eleutherodactylussamplinglocalities.Thegreyareadividingmuch taxonofE.rhodopis,E.‘loki’(ENS10376),fromMexico.Only ofCostaRicarepresentsterrainabove1500minelevation. PoliticalmapofCentralAmericanisinsetatbottomleft,withabox theselattertwotaxaaredesignatedaprioriasoutgroups. aroundCostaRica.SpeciesdesignationspresentedinTable1. Thischoiceofoutgroupsisbaseduponalargermolecular phylogeneticanalysisofthe rhodopisspeciesgroup(AJ Crawford&ENSmith,unpublishedresults). maycontributetothecontinuedintegrationofecolo- gicalandhistoricalapproaches.HereIpresentevidence Laboratorytechniques thatin Eleutherodactylusthenumericalabundancewithin localpopulations,theageofpopulationsandspecies,and GenomicDNAwasextractedfromliverand/orthighmuscle thediversityofspecieswithingeneramaybepositively tissuesusingeitherstandardphenol–chloroformmethods correlated.Thetaskremainsforfutureinvestigationsto ortheQiagenQIAamptissuekit.MitochondrialDNAfrag- explorewhetherthesefactorsarecausallyrelatedaswell mentswereamplifiedusingpublishedprimers(Table2). (Darwin1859;Hubbell2001). Negativecontrolswereusedtomonitorpotentialcontam- ination.Toguardagainstalleliccontaminationofwithin- populationsamples,approximatelyhalfofthesamples Materialsandmethods fromeachlocalitywereextracted,amplifiedandsequenced inseparateroundsconductedtwomonthsapart. Sampling Polymerasechainreaction(PCR)productswerecleaned FrogswerecollectedfromeightCostaRicanlocalitiesand byPEGprecipitation,QiagenQIAquickcolumns,gelslicing onePanamanianlocalityduringthedryseasons(January andagarosedigest,orExoI/SAPdigest.Foreachindividual, toApril)of1998and1999(Fig.1).Tominimizethedegree bothH(heavy)andL(light)strandsweresequenceddirectly

Table1 SummaryofsampledlocalitiesforfourspeciesofMesoamericanEleutherodactylus.Transectreferstotheapproximatestraight-line distanceacrosswhichsampleswerecollectedatagivensite.Descriptionofsiteisqualitative,withreservesbeingthelargesthabitats,creeks thesmallest.Connectiontofurtherhabitatdescribeswhetherthesamplinglocalityisanisolatedislandofhabitat,ortowhatextentitmay beapartofalargerforest

Elevation Transect Description Connectiontp Locality Versant Taxon (m) (km) ofsite furtherhabitat

LaSelva Atlantic E.bransfordii 40–90 4.3 forestedreserve oneside FilaCarbón Atlantic E.polyptychus 50–150 2.0 forestremnant no IslaColón Atlantic E.polyptychus 40 0.04 forestremnant no Tuis Atlantic E.persimilis 970–1010 0.15 forestedreserve twosides CATIE Atlantic E.persimilis 540–560 0.08 forestremnant no Tilarán Pacific E.stejnegerianus 860 0.04 tree-linedcreek no LasCruces Pacific E.stejnegerianus 880–1130 3.1 forestedreserve no PalmarNorte Pacific E.stejnegerianus 60–70 0.2 tree-linedcreek oneside RincóndeOsa Pacific E.stejnegerianus 20 0.6 forestedreserve threesides

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x

4 A.J.CRAWFORD

Table2 Primersusedfortheamplificatio n Primer Use Source Sequence(5’to3’) (amp)andsequencing(seq)oftheNADH dehydrogenasesubunit2( ND2)geneand ND2 intron2ofthecellularmyelocytomatosis(c- H5934 amp Maceyetal.1997 AGRGTGCCAATGTCTTTGTGRTT myc)proto-oncogeneinEleutherodactylus L4437 both Maceyetal.1997 AAGCTTTCGGGCCCATACC H4980 seq Maceyetal.1997 ATTTTTCGTAGTTGGGTTTGRTT H4996 seq thisstudy AGTATGCTAAGAGTTTTC c-myc cmyc1U amp thisstudy GAGGACATCTGGAARAARTT cmyc3L amp thisstudy GTCTTCCTCTTGTCRTTCTCYTC cmyc3U seq thisstudy TCTTTCCTTACCCGTTGAATGATRC cmyc6L seq thisstudy CAAAAGCCAGMCATTGGAAGATAA

fromPCRproductsusingd-Rhodaminedye-terminator sityinsomesamplesprecludedmeaningfultestingofHWE reactionchemistryanalysedonanABIPrism™377auto- expectationatthehaplotypelevel. matedDNAsequencer(AppliedBiosystemsInc).Resulting Thephylogenyofthesedirtfrogsampleswasestimated sequenceswerealignedusingsequencherVersion3.0 inordertoevaluatethenewlyproposedtaxonomicchanges (GeneCodesCorp.)andbyeye,usingbothnucleotideand tothegroup,andtounderstandthetemporalandgeograph- inferredaminoacidsequences.Theseprotocolsyielded icalcontextofthedivergenceofpopulationsandspecies. thefirst510bpofthemitochondrialNADHdehydroge- Fitch(1971)parsimonytreeswereconstructedfromboth nasesubunit2(ND2)gene.ND2sequencesareavailable DNAsequencedatasets.Treesandattendingbootstrap underGenBankAccessionnumbersAY205579,AY205576, confidencelimits(Felsenstein1985)wereestimatedusing AY273135,AY273137,AY273139,AY273141,AY273212– paup*4.0b8forthePowerMacintosh(Swofford2000).Indels AY273261,AY279081andAY279082. ofeither1or2bpweretreatedasasinglemutationtoafifth Afragmentofthecellularmyelocytomatosis(c- myc) base.Forbothdatasets,treesearchesusedthetree-bisection– genewasamplifiedusingtheprimerscmyc1Uandcmyc3L reconnectionbranch-swappingalgorithm,andcharacter- (Table2)developedforthisstudy.PCRprotocolswereper- stateoptimizationemployedtheacceleratedtransformation formedinamixturecontaining1.5m mMg2+andaprofile option.Bootstrapsupportanalysesinvolved2000replicates, involving35cycleswithatouchdownprocedureinthe eachusing10randomsequencesof additionoftaxato annealingphasesfrom58to55°C.Otherprotocolswereas thetree.Theindexofconsistencywascalculatedforboth above.Dataanalyseswerebasedon351bpofthec-mycgene, bootstrappedphylogenies(Kluge&Farris1969). consistingof58bpofexon2and293bpofintron2.Indels Geneticdifferentiationbetweenpairsofpopulations of1,2and5bpwereobserved.C- mychaplotypesare wasmeasuredusingWright’sFST(Wright1951)redefined availableunderGenBankAccessionnumbersAY211293, forDNAsequencedataintermsofgeneticdiversity AY211299,AY211317,AY211319–22andAY269281–390. (Lynch&Crease1990;Charlesworth1998).Calculationof

mitochondrialFST(mtFST)involvedacorrectionformul- tiplehitsandisthereforeequivalentto N ofLynch& Analyses ST Crease(1990).Calculationsweremadeusing dnasp Nucleotidesitesinthedirectlysequencedc-mycfragments Version3.5(Rozas&Rozas1999).Variationaroundthe wereinferredtobeheterozygouswhentheautomated estimatedFSTvaluewasgaugedbybootstrapping,i.e.ran- sequencingchromatogramsfrombothstrandsofDNA domlysamplingwithreplacementthevaluesofwithin- π showedstrongdoublepeaksofsimilarheight,orwhenthe populationnucleotidediversity, S,andthevaluesofthe π particularbasecorrespondingtothedominantpeakalter- between-populationdivergence, B,500timesandrecalcu- natedonthetwochromatograms(Hare&Palumbi1999). latingFSTforeachreplicate.Thismethodmightresultin Heterozygoussitesweredeterminedindependentlywithin misleadinglynarrowbootstrapconfidencelimitsforthose π eachpopulation.Forindividualfrogswithmorethanone calculationsinvolvingpopulationswithlow S.Therefore, heterozygousnucleotidesite,thetwohaplotypeswere theminimumandmaximumFSTofall500replicates,ana- resolvedusingtheinferencemethodofClark(1990).Totest logoustoa99.6%confidencelimit,arereportedhere.These fordeviationsfromHardy–Weinbergequilibrium(HWE) calculationsweremadeusingthesoftware, sequencer expectations,eachpopulationsampleofc-mychaplotypes Version6.1.0(Kessing2000). wasevaluatedusingtheexacttest(Weir1996;p.98)applied Ifselectionisreducingvariationinthemitochondrial independentlytoeachnucleotidesite.Althoughsegregating genome(Kreitman&Wayne1994)thenthiseffectshould sitesareprobablynotindependent,highnucleotidediver- manifestitselfintheestimationofmtFSTaswellasNmt.For

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x POPULATIONSTRUCTUREINMESOAMERICANFROGS 5

comparisonwithnuc FSTvalues,mt FSTvalueswerealso analyticalmethodofTajima(1989a),assumingthatDTfol- calculatedas‘corrected’values(Crochet2000).Toobtain lowsthebetadistributionandassumingnorecombination. thecorrectedmt FST,eachstandardmt FSTestimatewas FornDNAsequencedata,however,theassumptionofno − dividedbythefactor,{4 3(mtFST)}.Correctedconfidence recombinationisunrealisticandcomesatagreatlossin limitsformt FSTestimateswereobtainedbymultiplying powertorejectneutrality(Wall1999).Ifdemographicand theminimumandmaximumvaluesbythissamefactor. evolutionaryinferencesdependonthedataconformingto Migrationratesbetweenpopulationswerecalculatedusing thestandardneutralmodel,thenweshouldberigorousin ≈ Wright’s(1951)standardapproximations:Nem 0.25([nuc ourattempttorejectthatmodel.Therefore,significanceof −1 − ≈ −1 − FST] 1)forthenuclearmarkerandNfm 0.5([mtFST] 1) DTestimatesfromthec-mycdatawerealsoanalysedusing forthemitochondrialmarker,where mistheperindi- coalescentsimulationsallowingforrecombination.For Î vidualrateofmigrationand Nfistheeffectivesizeofthe eachpopulation,theprobabilityofobserving Twas femaleportionofthepopulation. derivedfrom10 3coalescentsimulationsconditionedon Geneticvariationwithineachlocalitywasquantified thesamplesizeandtheobservednumberofsegregating asfollowsandusedtoestimateNe.Withinpopulationvari- sites(S)(Hudson1990,2002), assumingeithernorecom- ationwasestimatedforeachofthetwolociasthepersite binationortheestimatedrate,C(Hudson1987).Although nucleotidediversity,π(Nei&Li1979;Li1997),andtheper thevariancearoundCwillbelargeforsmalldatasets,the θ sitepopulationmutationrate, W(Watterson1975).Calcu- falseassumptionofnorecombinationcouldhaveamuch Î lationsignoredsiteswithindels.Kendall’srankcorrelation strongereffectonP( T)thanassumingarecombination coefficient,τ(Sokal&Rohlf1995;p.594),wasusedinone- ratethatisincorrect(Przeworski etal.2001).Theextreme Î tailedtestsforapositivecorrelationbetweenmtDNAand 2.5%ofsimulatedvaluesmarkedthe95%CIfor T. 5 nDNAmarkersineither or øW.One-tailedtestswere employedbecauseIwantedtoknowspecificallywhether Estimatingµ,N ,Nandtimesincedivergence levelsofmtDNAandnDNApolymorphismwereposi- e µ tivelycorrelated,asexpectedintheabsenceoflocus Estimating Nefrom øWrequiresanestimateof ,which specificselectiveforces.Icalculated95%confidenceinter- maybeapproximatedbythesubstitutionrateatsilent vals(CIs)for øWusingtherecursionequationmethodof sites,KS(Kimura1968).Pointestimatesandattending95% Kreitman&Hudson(1991).Theseparameterswerethen CIsforKSweremadewithComeron’s(1995)methodusing usedtoestimateeffectivepopulationsizesasfollows.Under thesoftware,k-estimator(Comeron1999).Asnoestimates theequilibriumneutralmodel(Kimura1968)bothofthese ofµinnucleargenesareavailable,thispara- µ parametersestimatethequantity,4 Ne ,fornucleargenes meterwasestimatedhereinfromthefollowingdatasets. (Tajima1983),whereµisthepersite,pergenerationmutation Imadethemostrelevantestimateof µ,thatofc- mycin rate.Formitochondrialsequences,whicharepresumedto Eleutherodactylus,intwoways.First,Iestimated KSfrom behaploid(noheteroplasmywasobserved)andmaternally 516bpofc-mycexon2bycomparingEleutherodactylusspe- θ µ inheritedwithoutpaternalleakage, W=2Nf . ciesineachoftwosubgenera, E.stejnegerianus(GenBank EstimatingNefromøWrequiresthatthesampledpopu- Accessionno.AY211317)and E.bransfordii(AY211321)of lationfitstheequilibriumneutralmodel.Departuresfrom theCentralAmericansubgenus, Craugastor,vs. E.ridens thismodelmayalterthesitefrequencyspectrumofasam- (AY211306)fromCostaRicaand E.sp.cf. conspicillatus pleofDNAsequences.Suchdeviationscanbeevaluated group(AY211305)fromBrazil(oftheSouthAmerican bytheparameter,DT(Tajima1989a).Undertheinfinite subgenus,Eleutherodactylus).Meanand95%CIfor KS π θ sitesmodel(Kimura1969), and Whavethesameexpecta- betweensubgenerawere0.199(0.121–0.294).Theancestral tion(Tajima1983).Therefore,thestandardizeddifference CraugastorlineagedispersedintoCentralAmericafrom ≈ betweenthesetwoparametersequalsDTandhasanexpecta- SouthAmerica(Savage1982),mostlikely 72Myrbp tionof0andavarianceof1(Tajima1989a).Significantly (Iturralde-Vinent&MacPhee1999).Assumingageneration negativeDTrevealsanexcessofrarenucleotidessegregat- equals1yearasinE.bransfordii(Donnelly1999),Iestimated inginthesamplewhichcouldbecausedbypopulation µat1.38(0.841–2.04)×10−9/lineage/site/generation.Also, growth(Tajima1989b),initialrecoveryofvariationafter molecularevolutionaryanalysesofadditional Eleuthero- aselectivesweep(Bravermanetal.1995)orbottleneck(Fay dactylustaxa(AJCrawford,inpress)revealedthatKSinc-myc &Wu1999),orlowfrequencymigrantsfromotherpopula- is16-foldlowerthan KSinND2.Themitochondrialclock ′ tions.Significantlypositivevaluesareduetoanexcess calibrationforthe5 halfofND2(seebelow)providedaKS ofcommonvariantsrelativetorareoneswhichmaybe estimateof32.2 ×10−9persilentsite/lineage/generation. causedbybalancingselectionorrecentpopulationbottle- Thus,µofc-mycwasestimatedindirectlyat2.01× 10−9. neck(Tajima1989b). Asacheckonthegeneralityoftheabovevalues,I SignificantdepartureofTajima’sDfromzerowasevalu- alsoestimatedµfromtwopublishedsources.First,DNA atedintwoways.First,significancewastestedusingthe sequencesofthezincfingertranscriptionfactor,slug,were

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x 6 A.J.CRAWFORD obtainedfromGenBankforthetetraploidfrog, Xenopus rectiontothedataofMaceyetal.(1998)aswellastheEleu- laevis(AccessionnosAF368041andAF368043),andits therodactylusdataunderinvestigation.Iobtainedanaverage diploidrelative,X.(aka,Silurana)tropicalis(AF368039); divergenceof0.957%perlineagepermillionyearsacross

798bpofalignedsequenceswereanalysed.Mean KSand the10MyrbpcalibrationpointofMaceyetal.(1998).Forall 95%CIwere0.186(0.122–0.256).Assumingthatthecom- pairwisepopulationcomparisonsIreportedtheminimum monancestorofthesetwotaxaexisted90Myrbp,basedon divergence,therebyreducingthecontributionofwithin- fossilevidence(Báez1996),andassumingagenerationtime populationvariationtodivergenceestimates.Toobtain of1year[althoughunderoptimalconditionsthismayas 95%confidencelimitsthatportrayaccuratelytheevolu- fastas8months(Tinsley&McCoid1996)],Iestimatedµat tionaryvarianceinDNAsequencedivergencethatarises 1.03(0.679–1.42)×10−9.Finally,variousestimatesweremade fromthestochasticnatureofmutation(Bromham&Penny fromtheunrootedphylogenyofOldWorldranidfrogs 2003),Iconductedsimulationsconditionalonthelength (Bossuyt&Milinkovitch2000)for≈500bpofthetyro- ofthesequence(510bp),theobservedGCcontentandthe sinaseprecursorgeneexon1byassumingthecommon ratiooftransitionstotransversions.Theaboveanalysesagain ancestorofallthesampledAsianandMadagascanfrogs employedthesoftware,k-estimator(Comeron1999). wasdividedwhenthesetwolandmassesseparated88 Myrbp.Allcodonscontainingambiguitieswereexcluded Results fromtheseanalyses.Resulting µestimatesrangedfrom 1.69(1.14–2.45)×10−9forBoophisxerophilus(AF249167)vs. andphylogenyofdirtfrogs fuscus(AF249183),to3.35(2.43–4.52) × 10−9for Aglyptodactylusmadagascariensis(AF249166)vs. Fejervarya Molecularphylogeneticanalysesstronglysupportedthe syhadrensis(AF249170). currenttaxonomy,andprovidedgeneticvalidationofthe Inconclusion,eitherestimateof µforthec-mycgenein resurrectionfromsynonymybySavage(2002)ofEleuthero- Eleutherodactylusappearedtobereasonable.Therefore,to dactyluspersimilisandE.polyptychus.Fromeachofthenine beconservative,Iusedthefasterofthetworateestimates, samplinglocalities,ND2sequenceswereobtainedforfive µ=2.01× 10−9fromtheEleutherodactylusdata,tocalculate toeightfrogs.TheinferredmtDNAgenetreeshowed µ ≥ NefromøW,becauseassumingahigher wouldresultina 90%bootstrapsupportforthereciprocalmonophylyof lowerNeestimate. eachofthefourrecognizedspecies(Fig.2).Mitochondrial GeneticestimatesofNewerecomparedwithestimatesof DNAsequencedivergencewasunexpectedlyhighamong thedemographicadultpopulationsize,N,basedpublished alltaxa(Fig.2).Forexample,theuncorrectedgeneticdis- surveysofdirtfrogabundanceattwosites.Lieberman tancebetweenthenorthernandsouthernAtlanticslope (1986)countedleaf-litteramphibiansandreptilesin90 speciespair, E.bransfordiiand E.polyptychus,was16%. quadratsof64m2each,sampledacrossLaSelvaBiolo- Substantialdivergencewasalsoinferredatthelevelofthe gicalStationthroughoutoneyear.Intotal,shecaptured693 ND2aminoacidsequence(Fig.2).Inaddition,themtDNA E.bransfordii,forameandensityofonefrogper8.31m2.La phylogenyshowedclearlythattheAtlanticspeciesdonot SelvaBiologicalStationencompassed1536ha(Matlock& formamonophyleticgroupwithrespecttoE.stejnegerianus Hartshorn1999).IestimatedthereforethatLaSelvacon- onthePacific(Fig.2). tained1848000individuals;44.4%ofthesewerebreeding C-mycdatawerecollectedfromatotalof73frogsyield- adults(Donnelly1999),meaningN=821000dirtfrogs. ing146observedorinferredsequences(alignmentavail- Similarly,Scott(1976)surveyedjust10plotsof58m2each ablefromtheauthor).HWEwasnotrejectedforany withinLasCrucesBiologicalStation(235ha)andfound nucleotidepositionwithinanypopulation.Noindividuals 266E.stejnegerianus(reportedasE.bransfordii)oronefrog werehomozygousforanindel,but10wereinferredtobe per2.18m2.Byassumingthisreservehadthesamepropor- heterozygousforoneofthreedifferentindels.Onlyone tionofbreedingadultsasLaSelva,IestimatedthatforLas DNAstrandwaseffectivelysequencedforthesefrogs,but CrucesN=479000adultdirtfrogs. theywereincludedinallanalyses.Noc- mychaplotypes RatesofdivergenceintheND2generegionareremark- weresharedamongspecies.Conspecificc-mychaplotypes ablysimilaracrossdisparatelineagesofamphibiansand formedmonophyleticcladeswith≥80%bootstrapsupport reptiles(reviewedinMaceyetal.2001).Toestimatetheage forallspeciesexceptE.bransfordii(Fig.3). ofdirtfrogpopulationsandspeciesIusedthemtDNA divergencedataofMaceyetal.(1998)obtainedfromEura- Populationgeneticstructure siantoads,butIrecalibratedtheirclockbyusingonlythe homologous510nucleotidesitesofND2thatwereusedin SomeconspecificpopulationswereasdivergedatND2as thisstudy.Becauseuncorrectedgeneticdistancesmaybias Atlanticspecieswerefromeachother.WithinE.stejnegerianus, divergencetimeestimatestowardsthecalibrationpoint LasCrucesshowed16%uncorrectedmtDNAsequence (Arbogastetal.2002),IalsoappliedaTajima&Neicor- divergencefromTilaráninthenorthand13%divergence

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x POPULATIONSTRUCTUREINMESOAMERICANFROGS 7

Fig.2 Bootstrappedmaximumparsimon y phylogramofmtDNAsequencessampled fromeightpopulationsof Eleutherodactylus (note,localitiesTuisandCATIEclearly representthesamegeneticpopulation). Dashedlinerepresentsthecontinental divide.Taxonomicdesignationforeach populationisindicatedatcorresponding ancestralnode.Foreachnode,thefirst valueindicatestheinferrednumberofchar- acterstatechanges(branchlength),thebold valueinparentheses(parenthesesabsent onsometerminalnodes)indicatesthesub- setofthepreviouslyindicatedchangesthat representinferrednonsynonymouschanges, andthevaluefollowingtheslashindicates percentbootstrapsupport.Allinternodes receiving<80%bootstrapsupportarecol- lapsed.Thesix-digitcodesrefertoFMNH Accessionnos.Dataconsistofthefirst510bp ofthe ND2gene,yielding259parsimony informativeand22variablebutunin- formativecharacters.Thistreewasrooted onEleutherodactylusrhodopisandE.‘loki.’Total treelengthis620,scoringaconsistency index(excludinguninformativesites)of 0.634andaretentionindexof0.940.

fromnearbyPalmarNorte(Fig.2).Althoughthislatter Fromthisobservationitwasinferredthatthesetwolocal- pairisonly57kmapart(Fig.1),theyareseparatedbyat itiesrepresentasinglepopulationandweresotreatedfor least800minelevation(Table1).Onepairoflocalities, allsubsequentanalyses. however,showednodifferentiation.TuisandCATIEare ThehighmtDNAsequencedivergenceamongspecies 10.5kmapartandseparatedby≈400minelevation,yetthe andmostpopulationswasreflectedintheverylarge combinednine ND2sequencesfromthesetwolocalities pairwiseFSTestimates(Tables3and4).Thesmallestof possessednotavariablenucleotidesiteamongthem(Fig.2). themtFSTvalues,0.54,wasobtainedforthecomparison

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x 8 A.J.CRAWFORD

Fig.4 Nuclearc-mycmarkervs.mitochondrial ND2marker FST estimatesandconfidencelimitsforeachpairwisecomparisono f

Eleutherodactyluspopulationsamples.MtFSTestimatesandCIsare ‘corrected’valuesundertheassumptionsofnoheteroplasmy,no paternalinheritance,anequalsexratio,andnosex-biasin migrationratesamongpopulations.Aftercorrectionandallelse

beingequal,nuclearandmitochondrialestimatesofFSTshouldbe equivalent(dashedline).

ofPalmarNortevs.RincóndeOsapopulationsofE.stejne- gerianus.Thesetwoaregeographicallyveryclose,located just32kmapart(Fig.1).Thenextmostgeneticallysimilar pairofpopulationswasFilaCarbónandIslaColón,two lowlandAtlanticsiteslocated68kmapartrepresenting

E.polyptychus,withanestimatedmtFSTof0.77. Substantialpopulationgeneticstructuringwasalso evidentinthenDNAdata,althoughtoalesserdegreethan

inthemtDNA.ThenucFSTestimateswerelargeandbounded wellawayfromzeroforallpairwisecomparisonsexcept two.AlthoughthepopulationpairPalmarNortevs.Rincón deOsaandthepairFilaCarbónvs.IslaColónbothshowed significantpopulationstructureattheirmtDNA,theyshared Fig.3 Oneof>105equallyparsimonioustreesoflength86inferred mostoftheirnuclearhaplotypes.TheTilaránandLasCruces fromEleutherodactylusc-mycsequences.Nodesrepresentedinall ofthemostparsimonioustreesareindicatedbythicklines. samplesconsistedofjustoneandtwohaplotypes,respecti- Bootstrapsupportvaluesforeachofthesenodesisindicatedbelow vely,allofwhichwereendemic.Thesehaplotypesdiffered it.Withineachpopulation,eachuniquehaplotypeisassigneda fromsomeoftheminor(i.e.low-frequency)conspecific Romannumeralandrepresentedonceonthegenealogy,withthe haplotypesbyasinglepointmutationordeletion.For numberofcopiesofthealleleshowninparentheses(n).Note,the example,RincóndeOsahaplotype257803bdifferedfrom onlyhaplotypessharedamongpopulationsarehaplotypeIinIsla theLasCrucesminorallelebya1bpdeletion. Colón&FilaCarbón,andhaplotypeIinPalmarNorte&Rincón Forallpairwisepopulationcomparisons,mtF estimates deOsa,themostcommonhaplotypeineachrespectivepopulation. ST Thistreeisbasedupon27parsimony-informativecharactersand exceededthoseofnuc FST(Tables3and4),asexpected 37variablebutparsimony-uninformativecharacters.Theresulting (Crochet2000).However,the‘corrected’mtFSTvalueswere treehasaconsistencyindex(CI)of0.814excludinguninformative alsolargerthannucFSTinallpairwisecomparisons.Inmost sites,aretentionindex(RI)of0.908. comparisonseventheminimumvalueforthecorrected

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x POPULATIONSTRUCTUREINMESOAMERICANFROGS 9

Table3 ForeachpairwisecomparisonamongEleutherodactylusstejnegerianuspopulationsthefollowingparameterestimatesarepresented basedonDNAsequencedatafromthemitochondrialND2gene(abovethediagonal)andthenuclearc-mycgene(belowthediagonal):point estimate(uppervalue)andconfidencelimits(rangeofvalues,inparentheses)inuncorrectedFST(bold)andeitherNemfornDNAorNfm formtDNAbelowinplainfont

Tilarán LasCruces PalmarNorte RincóndeOsa

Tilarán 0.9956 0.9781 0.9835 (0.992–1.000) (0.949–0.998) (0.921–1.000) 0.00 0.01 0.01 (0.000–0.004) (0.001–0.027) (0.000–0.043) LasCruces 0.8549 0.9724 0.9733 (0.756–0.936) (0.957–0.997) (0.930–1.000) 0.04 0.01 0.01 (0.017–0.081) (0.001–0.023) (0.000–0.038) PalmarNorte 0.7642 0.6740 0.5443 (0.512–0.957) (0.530–0.903) (0.222–0.960) 0.08 0.12 0.42 (0.011–0.238) (0.027–0.221) (0.021–1.755) RincóndeOsa 0.6847 0.5605 0.0655 (0.387–0.810) (0.330–0.740) (–0.26–0.199) 0.12 0.20 3.57 (0.059–0.396) (0.088–0.508) (–1411–2383)

Table4 Seetable3forexplanation Between16and24inferredc- mycsequencesweresam- pledperpopulationand1–13uniquehaplotypeswere IslaColón FilaCarbón foundineachsample(Table6).Thenumberofsegregating sitesineachsamplealsovariedwidely,rangingfrom0to IslaColón 0.7703 5 (0.599–1.000) 15.AsidefromtheinvariantsamplefromTilarán,ranged 0.15 from0.00136forLasCruces,to0.00653forRincóndeOsa. (0.000–0.335) Thislatterpopulationalsohadthelargest øWat0.01148. FilaCarbón 0.0335 Thesecondsmallestvalueof øW,afterTilarán,wasagain (–0.41–0.281) fromLasCruces,withitssinglesegregatingsite.Allsixpopu- 7.22 Î lationswith S>1,showedanegative T.UsingTajima’s (–238–262) Î (1989a)methodofcalculatingP( T),theIslaColónc- myc samplewastheonlyonetoshowasignificantlynegative Î Î T.However,whenP( T)wasevaluatedbycoalescent mtFSTwaslargerthanthecorrespondingnucFSTpointesti- simulationusingtheestimatedrecombinationrates,the mate(Fig.4). RincóndeOsasamplealsorejectedthenullhypothesisat theα=0.01level(Table6). Thevaluesofø and5wereremarkablysimilarbetween Geneticvariationwithinpopulations W theratherdissimilarnuclearandmitochondrialmarkers Among ND2sequences,onetofourhaplotypeswere (Tables5and6).Furthermore,populationsthatshowed identifiedineachofthepopulationsamples(Table5). 5 highernucleotidediversityatonelocustendedtoshow rangedfrom0forTuisCATIEto0.00749forPalmarNorte. higherdiversityattheother,andviceversa.Thenotable Between0and13segregatingsiteswereobservedineach exceptiontothistrendwasTuisCATIE.Thispopulation population,yieldingøWfrom0againforTuisCATIEto showedthebiggestdifferenceinrelativerankorderoføW 0.00983forRincóndeOsa.Note,thelargenumberof valuesbetweenmarkerdatasets.TuisCATIEwasdevoid segregatingsitesamong ND2sequencesintheRincónde ofmtDNAsequencevariation,despitebeingthelargest Î Osasample(andconsequentlythelow T)wereduetoa sampleofmitochondrialhaplotypes(n=9)assembledfrom single,verydivergent(2.5%)haplotype,FMNH25780 acrossthewidestgeographicaldistance(10.5km),while (Table5;Fig.2).Nopopulationshowedasignificantly moderatelyhighvariationwasrevealedatthenuclearmarker. Î 5 skewed Tforthemitochondrialdataset,althoughpower Therankcorrelationof valuesbetweenthetwolociwas torejectthenullhypothesismayhavebeenhamperedby significantonlywiththeposthocremovaloftheTuisCATIE smallsamplesizes. sample(Kendall’sτ=0.619,one-tailedP=0.05forn=7).

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x 10 A.J.CRAWFORD

Table5 SummaryofgeneticpolymorphismdataforEleutherodactyluspopulationsamplesofND2sequences,listedinascendingorderof

øW.Length=510bp.N,nandSarethenumberofsequences,haplotypesandsegregatingsites,respectively 5 Î Î Population NnS øW øW95%CI T Pr( T|null)

TuisCATIE 9 1 0 0.00000 0.00000 0.00000–0.00383 NA NA LasCruces 8 2 1 0.00084 0.00076 0.00002–0.00756 0.3335 >0.1 Tilarán 5 2 1 0.00078 0.00094 0.00002–0.01059 –0.8165 >0.1 IslaColón 5 2 2 0.00157 0.00188 0.00019–0.01456 –0.9725 >0.1 LaSelva 7 3 4 0.00336 0.00320 0.00072–0.01541 0.2390 >0.1 FilaCarbón 5 4 4 0.00314 0.00376 0.00081–0.02353 –1.0938 >0.1 PalmarNorte 8 4 9 0.00749 0.00681 0.00230–0.02552 0.4944 >0.1 RincóndeOsa 8 3 13 0.00693 0.00983 0.00366–0.03379 –1.4928 >0.1

Table6 SummaryofgeneticpolymorphismdataforEleutherodactyluspopulationsamplesofc-mycsequences,listedinascendingorderof

øW.Length,L=[(351bp)–(#siteswithindels)].2 N,nandSarethenumberofsequencesinferred,differenthaplotypesandsegregatin g Î Î sites,respectively.Anasterisk(*)inthecolumn, T,indicatesadeparturefromstandardneutralexpectation( T=0)significantatthe0.05 Î levelwhensignificanceiscalculatedusingthemethodofTajima(1989a).Foreachpopulation,95%CIsforTwerecalculatedbycoalescent simulations(withfixed S),assumingbotharecombinationrateofzero(upperintervalineachrow)andtheestimatedvalue, C(lower interval).Two-tailedprobabilitytestsofsignificancewerederivedfromthesimulations,andanasteriskinthefinalcolumn indicatesa significantdeparturefromexpectation.Noapriorihypothesisisbeingtestedsotwo-tailedtestsareemployed.Therefore, P=0.025is borderlinesignificantatthe0.05levels

Î T95%CIbysimul. 2-tailedP 5 Î Population 2NL n S C øW øW95%CI T (C=0/C=C) fromsimul.

Tilarán 16 351 1 0 NA 0.00000 0.00000 0.00000–0.00401 NA NA NA NA NA LasCruces 20 351 2 1 105 0.00136 0.00080 0.00002–0.00577 1.2618 −1.1644to1.5313 0.186 −1.1644to1.565 0.207 LaSelva 18 349 4 3 0.0989 0.00169 0.00250 0.00045–0.01000 −0.9027 −1.7130to2.0892 0.214 −1.7130to1.8607 0.180 TuisCATIE 18 351 3 4 0.0000 0.00304 0.00331 0.00079–0.01180 −0.2517 −1.8531to1.9228 0.462 −1.8531to1.906 0.461 FilaCarbón 14 350 4 4 0.0046 0.00198 0.00359 0.00085–0.01348 −1.4810 −1.7976to1.8862 0.090 −1.7976to1.7999 0.096 PalmarNorte 16 350 6 5 0.0383 0.00345 0.00431 0.00119–0.01453 −0.6528 −1.9286to1.7712 0.263 −1.6917to1.5707 0.255 IslaColón 20 349 8 9 0.0515 0.00332 0.00727 0.00273–0.01999 −1.8693* −1.8693to1.9193 0.025* −1.4198to1.4127 0.005* RincóndeOsa 24 350 13 15 0.0654 0.00653 0.01148 0.00502–0.02744 −1.5224 −1.6276to1.7478 0.039 −1.2610to1.2920 0.006*

meanand95%CIvaluesof ø fortheLaSelvasampleof EstimatingN W e c-mychaplotypeswere0.0025(0.00045–0.010),implying × 5 Theaboveresultsupportedthevalidityofinferring Ne Ne=3.1 10 (56000–1200000).Therefore,theratioofthe from 5foreachpopulation.However,thesignificantly varianceeffectivepopulationsizetothebreedingpopu- nonzero DTestimatedfromthec- mycsequencesofIsla lationsize(Ne/N)=0.38(0.068–1.5).TheLasCrucessample ColónandRincóndeOsa(Table6)impliedthatthese hadonlyonesegregatingsiteand øW=0.0008 (0.00002– × 5 twosamplesdidnotconformtotheassumptionsofthe 0.0058).Thus,atLasCruces Ne=1.0 10 (2500–730000), standardneutralmodel.Violationoftheseassumptions andNe/N=0.21(0.005–1.5). θ µ Î invalidatestheequality, =4Ne (because Tvalueswere negative,N wouldbeoverestimated).Forthisreason,and e Agesofpopulationsandspecies becausedemographicestimatesofNexistforonlytwo populations(seeMaterialsandmethods),Newasesti- Applyingtherecalibrationofthe ND2divergencerate matedonlyforLaSelvaandLasCruces.FromTable6,the estimateofMaceyetal.(1998)todirtfroglineagesyielded

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x POPULATIONSTRUCTUREINMESOAMERICANFROGS 11 thefollowingdivergencedatesand95%CIaccountingfor indirtfrogscanbeenormous.Thatlargepopulationsmust stochasticvariance.First,withinpopulations,theoneun- beold,andabundantlineagesshouldalsobespeciose,are usualmtDNAhaplotype(FMNH257804;Fig.2)inRincón fundamentalpredictionsoftheneutraltheoryofbiodiver- deOsadivergedfromtheothersevensympatrichaplotypes sityandbiogeography(Hubbell2001).Apositivecorrela- 1.37(0.622–2.13)Myrbp.Thishaplotypecouldrepresent tionbetweenabundanceanddiversityisalsopredictedby amigrantfromanunsampledlocality.Comparingproximal amoredeterministicmechanismoutlinedbyDarwin(1859), populations,theminimumgeneticdistancebetweenPalmar whotookaspracticallyself-evidentthepositivecorrelation NorteandRincóndeOsasamplessuggestedthatthese betweennumbersofindividualsandnumbersofspecies. populationsdiverged0.727(0.204–1.46)Myr bp,although Darwininferredthatabundanceleadstoincreasedvariation theyshownodifferentiationatthenuclearmarker.This whichfacilitatesadaptationandleadstoincreasedcompeti- lowlandpairofE.stejnegerianuspopulationswasestimated tiveabilityoverrarespecies(p.177).Theseadaptationsare tohavedivergedfromtheuplandLasCrucespopulation passedontodescendentspecies,andabundantspecies 8.09(6.25–10.3)Myr bp,whilethesethreepopulationslast therebyleadtospeciosegenera(p.428)thatcontainthe sharedacommonancestorwiththenortherlyTilaránpopu- numericallydominantspecies(p.54),justasin Eleuthero- lationofconspecifics10.3(7.98–12.4)Myrbp.Themostrecent dactylus.Thus,highspeciesdiversityisnotcorrelatedwith interspecificdivergenceisfoundbetweenlowlandAtlantic smallNelocally,andthemanyspeciesofEleutherodactylusdid species, E.bransfordiiand E.polyptychus,whichdiverged notresultsolelyfromrecentisolationofsmallpopulations. fromtheircommonancestor10.0(7.63–12.3)Myrbpaswell. Allotherinterspecificdivergencetimeswouldbeolderstill. Populationsize Dirtfrogsareascommonasdirt(Lieberman1986)and Discussion haveapparentlybeensoforalongtime.ThelevelofDNA polymorphismwithinlocalpopulationsofdirtfrogsis Originsofdirtfrogdiversity enormous,especiallyinrelationtopreviousfindingsin Thetaxastudiedhere,whethertheyaremoreproperly frogs.Forvarioustemperatezonespeciesthenumbersof calledpopulationsorspecies,showremarkablyancient breedingadultshavebeenestimatedat2–200,basedon divergencesovershortgeographicaldistances.These genetic(Scribneretal.1997)anddemographicstudies(Breden ageestimatesarenotaresultofunsampledtaxasince 1987;Berven&Grudzien1990;Driscoll1999;Seppä& evenpopulationswithinthesingletaxonomicspecies, Laurila1999).LocalNeoftropicaldirtfrogs,however,would Eleutherodactylusstejnegerianus,diverged8–12Myrbp.From appeartobetwotothreeordersofmagnitudelarger. thiswemayinferthatdirtfrogsareolderthanthedirtthey Suchcomparisonsaredifficulttointerpretasnoprevious arestandingonbecausemuchoflowerCentralAmerica studieshaveeverusednDNAsequencedatatoestimate wasunderwaterasrecentlyas5Myr bp,andCostaRica Neinfrogs.WecancomparemtDNAdatasetsbetween wasprobablyanarchipelago10Myr bp(reviewedin: tropicalandtemperatezonefrogs,however.Thesampleof Coates&Obando1996;Denyeretal.2000;Montero2000). 8dirtfrogstakenfromwithina200-mtransectinPalmar Therefore,geneticandgeologicaldatasuggestthat Norteyieldedtheidentical θestimateasasampleof32 thesemainlanddirtfrogpopulationsandspeciescould ColumbiaspottedfrogstakenfromacrossthestateofUtah haveoriginatedonislands.Certainly,thephylogenyand (Bos&Sites2001).Dirtfrogspackalargeamountofgenetic geographicaldistributionofthefourdirtfrogspeciesdoes variationintoasmallarea. notsupportasimplemodelofvicariancebytheuplifting The Ne/Nratiocorroboratesthefindingof Neofthe 5 ofmountainsbecausethemtDNAdatasupportunequi- orderof10 .Themean Ne/Nestimateamongplantsand vocallythesisterrelationshipbetweenthePacificslopespe- hasbeencalculatedat0.10,whereasthemeanof cies,E.stejnegerianus,andthemid-Altanticslopespecies, fourdifferentamphibianspecieswas0.23(Frankham1995). E.persimilis(Figs1and2).Thesetwospeciesdiverged11.8 Ratiosof0.38and0.21forLaSelvaandLasCrucespopula- (9.32–13.7)Myrbp,apparentlypriortotheriseofthe tionsaccordwellwiththesepreviousfindings. interveningmountainrange8to5Myrbp(Coates&Obando 1996).Althoughtheageoftaxamaysuggestthatthetropics Isolationofpopulations isamuseumofantiquity,thecauseofspeciesdiversity couldhavelesstodowiththestabilityofthetropical Appreciablegeneticstructuringatgeographicalscalesof environment,perse(Connell&Orians1964),andmoreto 1–50kmisnotuncommonintemperatezonefrogs(Scribner dowiththemillionsofyearsofremarkablegeological etal.1994;Hitchings&Beebee1997;Driscoll1998;Rowe dynamism(García-Parísetal.2000). etal.1998;Shaffer etal.2000;Newman&Squire2001). Theoldageofdirtfroglineagesisnotsurprising,how- However,themagnitudeofgeneticstructuringindirtfrogs ever,asthisstudyindicatesthateffectivepopulationsizes isremarkable.Althoughpopulationsof E.stejnegerianus

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x 12 A.J.CRAWFORD

−1 havenotevolvedanymorphologicaldifferencesnoticeable 17.9),notfour.Inotherwords,ifmtFST=(Nem+1) ,then ≈ −1 byhumans,theseconspecificpopulations(Savage2002) nucFST (23Nem+1) ,suggestingthatNe=23Nmtintheaver- showasmuchND2sequencedivergenceasdoestheaverage agedirtfrogpopulation.TheindirectestimateofNembased pairofmyobatrachinfroggeneraatthissamegene(Read onthenucleardataappearstobealmostsixfoldlarger etal.2001).Whethersuchextremesubdivisionatlocal thanourexpectationbasedonthemitochondrialdata.At scalesoccursinotherNeotropicalfrogsisnotyetknown. leastoneoftheinitialassumptionsisnotvalid,suggesting Allpreviouspopulationgeneticstudieshavefocusedon thattheeffectivesexratioand/ormigrationratesaremale- widelyrangingspeciesandusedallozymedatatouncover biased,orthatNmtisreduced.Thus,mtDNAdatawerenot populationstructuringatscalesapproaching1000km usedtoestimateNf. (Gasconetal.1996,1998;Ryan etal.1996;Wynn&Heyer StrongerpopulationdifferentiationatmtDNAmarkers 2001). relativetonuclearmarkersisoftenusedtoinferreduced Highlystructuredgeneticvariationindirtfrogsisespe- migrationratesoffemalesrelativetomales(e.g.Pardini ciallysurprisinginlightoftheirnaturalhistory.Significant etal.2001),yetmarkeddifferencesinmtFSTvs.nucFSTmay geneticstructuringamongtemperatezonefrogpopu- alsobeduetodifferencesintheevolutionarydynamicsof lationsovershortdistancesisusuallyexplainedbyinvok- thetwogenomes(Sladeetal.1998)thatreduceNmtrather ingmetapopulationdynamicsamongponds(reviewedin: thanthefemalemigrationrate,mf.Bothpurifyingselection Alford&Richards1999;Marsh&Trenham2001).Likeall actingagainstthetypicallydeleteriousmutationsandpos- Eleutherodactylus,dirtfrogsaredirectdevelopers,how- itiveselectionfavouringtherarebeneficialmutationwould ever,meaningthereisnotadpolestageandnopondsor resultinareductionofgeneticvariationwithinpopula- streamsarerequiredforovipositingordevelopment.These tions(MaynardSmith&Haigh1974;Kaplan etal.1989; frogsmaybreedanywherethereisforest.BecauseCosta Charlesworthetal.1993).Thesegeneraleffectsonvariation Ricawasuntilveryrecentlycoveredextensivelywithcon- wouldbequitepronouncedinthemitochondrialgenome tinuousforest(Sader&Joyce1988),dirtfrogscouldhave relativetothenucleargenomebecauseofthehigher dispersedandbredhistoricallyacrosswideareas.Indeed, mutationalinputandpresumedlackofrecombination noevidenceforlimiteddispersalwasuncoveredwithin intheformer.Reduced øWinmtDNAwithinpopulations the4.3kmdiameterofLaSelvareserveorbetweenTuis meansbothreducedNmtandhighermtFST(Charlesworth andCATIE,separatedby10.5kmandamajorriver,the 1998). Reventazón.Incontrast,PalmarNorteandRincóndeOsa Becausefundamentalpopulationgeneticforcessuch showedahighandsignificantmtFSTof0.54,yetthesepopu- asbackgroundselection(Charlesworthetal.1993)provide lationsarelocatedjust32kmapart.Thislatterpopula- areasonableandpossiblymoregeneralexplanationfor tionpairdivergedinthemid-Pleistocene.Forestrefugia inflatedmtFSTestimates,thishypothesismustbeexplored (Simpson&Haffer1978)probablyplayednorollhere, beforeassumingthatfemalesarephilopatric.Forexample, however,astheOsaPeninsulalikelymaintainedcontinu- onecouldexplainthediscrepancyinmtFSTvs.nucFSTesti- ≈ ousforestsduringglacialmaxima(Piperno&Pearsall1998). matesindirtfrogsbydemonstratingthat Ne 23Nmt.The Apotentialriverinebarrier(Lougheed etal.1999),the relativeNeandNmtofdirtfrogsmaybecalculatedherefrom GrandedeTérraba,separatesthesetwolocalities,though theestimatesofwithin-populationvariationandrelative adifferentriverhasnotimpededpanmixiabetweenCATIE mutationrates.Regressingnuclearonmitochondrial øW andTuis.Thus,itisnotclearwhatfactorshavemaintained values(Tables5and6),andagainignoringtheTuis- isolationbetweenlowlandpopulationsinthepresumed CATIEsample,wefindthatthelatterare1.084timeslarger absenceofmetapopulationdynamics. (r2=0.60).Thisresultcombinedwiththe16-folddifference

inKSbetweenloci(AJCrawford,inpress)oneobtains N ≈15N .Thus,althoughselectiveforcescanaccountfor Mitochondrialvs.nuclearpopulationstructure e mt a15-foldreductionin Nmtrelativeto Ne(amuchgreater Thestandardassumptionsofdispersalunbiasedbysex, reductionthanthefourfoldfactorexpectedfromconsider- equalsexratios,nopaternaltransmissionofmtDNA,and ingonlythemodeoftransmission),reduced Nmtcannot noheteroplasmyimplythefollowingequalities:Ne=2Nf= explainentirelythediscrepancybetweenmtFSTandnucFST 4Nmt.Forallpairwisepopulationcomparisons,subdivision estimates.Therefore,demographicforcesmaybeinvolved, wasgreateratthemtDNAmarkerthanatthenDNAmarker too.Thesemightincludehighervarianceinreproductive evenaftercorrectingforthisexpectedfourfoldsmaller successamongfemales(Avise etal.1984),largefluctu- populationsizeofmitochondrialgenesrelativetonuclear ationsinthefemalepopulationsize(Wright1931),higher genes(Crochet2000)(Fig.4).Whentheseassumptions malemigration(Palumbi&Baker1994),orkin-structured − − hold,thequantity{mt FST(1 nucFST)/nucFST(1 mtFST)} colonizationofnewpopulations(Wadeetal.1994).Choos- shouldbefour.Theaveragevalueofthisfactoroverall ingamongtheseexplanationswillhavetoawaitfurther pairsofdirtfrogpopulations,however,is23.3(median= detailsoftheecologyofdirtfrogs.

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x POPULATIONSTRUCTUREINMESOAMERICANFROGS 13

andENSmithfortheE.rhodopisandE.‘loki’samples.Thanksto Conclusion BKessingandJComeronforhelpwithsoftware.Thankstomy ThisstudyisuniqueinprovidingnDNAandmtDNA thesiscommittee,SJArnold,MJWade,MKreitman,WWimsatt, AGraybeal,andMLeiboldfortheiradviceandsupport.Fortheir sequencebasedestimatesofN ,corroboratedbydemo- e patientconsultation,IthankJSavage,FBolaños,ASRand,RIbáñez, graphicdata,andplacedinageographicalcontextwithin EBermingham,ACarnavaland,mostofall,thankstoEStahl thetropics.Thelargedivergencebetweenpopulations andPAndolfatto.ThankstomythesiscommitteeplusCJiggins, andspeciessuggestthatthetropicshavefunctionedasa HLessios,JMerilä,MChu,andespeciallyEBerminghamforcom- museumofantiquityratherthanasacradleofspeciation mentsonvariousincarnationsofthismanuscript.Thisprojectwas (Stebbins1974)forthesefrogs.Notonlyaresubgeneraof supportedbyanOTSgraduateresearchfellowshipfromPeace Eleutherodactylusancient(Hass&Hedges1991),butsoare Frogs,Inc.,aSTRI-OTSMellonpredoctoralfellowship,aSigmaXi Grant-in-Research,aGaigeAwardfromtheASIH,aGrant-in-Aid individualspecies.Therefore, Eleutherodactylusowesits fromtheDivisionofEcologyandEvolutionoftheSICB,andby statusasthemostdiversevertebrategenusnottohigher theUniversityofChicagoviatheParkFund,MKreitman,andthe speciationrates(e.g.Richardsonetal.2001),buttooldage CommitteeonEvolutionaryBiology. (e.g.Bermingham&Dick2001).Thiscouldbetruefor otherspeciosegeneraaswell,e.g.someAmazonianpopu- lationsandspeciesof Hylaappeartobeolderthancon- References familialNorthAmericanlineages(Cheketal.2001). AlfordRA,RichardsSJ(1999)Globalamphibiandeclines:aprob- Someunresolvedissuesremain.First,thecorrespond- leminappliedecology.AnnualReviewofEcologyandSystematics, enceofabundance,ageandspeciesdiversityofdirtfrogs 30,133–165. matches,atleastsuperficially,thepredictionsofaneutral AmosW,WhiteheadH,FerrariMJ,Glockner-FerrariDA,PayneR, biogeographicalmodel(Hubbell2001).However,this GordonJ(1992)RestrictableDNAfromsloughedcetaceanskin MarineMammal modelalsopredictsthatwithinthislargercladeweshould —itspotentialforuseinpopulationanalysis. Science,8,275–283. encounterrare,youngtaxaaswell.Second,wedonotyet ArbogastBS,EdwardsSV,WakeleyJ,BeerliP,SlowinskiJB(2002) knowthefullgeographicalextentoftheseolderlineagesor Estimatingdivergencetimesfrommoleculardataonphylo- whethertheyalsooccurinsympatrywithoneanother. geneticandpopulationgenetictimescales.AnnualReviewof Underamodelofdensity-dependentdispersal,high EcologyandSystematics,33,707–740. localabundanceshouldhaveledtoexpandedrangesand AviseJC,ArnoldJ,BallRM etal.(1987)Intraspecificphylogeny: greatergeographicalmixingoflineages,unlessspeciesof themitochondrialDNAbridgebetweenpopulationgenetics 18 dirtfrogcompetitivelyexcludeoneanother.Bothof andsystematics. AnnualReviewofEcologyandSystematics , , 489–522. theseissuesarebeingaddressedcurrentlythroughmore AviseJC,NeigelJE,ArnoldJ(1984)Demographicinfluenceson fine-scaledphylogeographicalanalyses.Finally,whether mitochondrialDNAlineagesurvivorshipinpopula- tropicalpopulationsingeneraltendtoharbourmoreor tions.JournalofMolecularEvolution,20,99–105. lessgeneticdiversitythantheirtemperatezonecounter- BáezAM(1996)ThefossilrecordofthePipidae.In: TheBiologyof partsisanopenquestion,onethatneedsaddressingif Xenopus(edsTinsleyRC,KobelHR),pp.329–347.OxfordUni- wearetounderstandtherolesofspeciationmodeand versityPress,NewYork. lineagelongevityingeneratingtropicaldiversity. BerminghamE,DickC(2001)The Inga—newcomerormuseum antiquity.Science,293,2214–2216. BerminghamE,MartinAP(1998)ComparativemtDNAphylo- Acknowledgements geographyofneotropicalfreshwaterfishes:testingsharedhistory toinfertheevolutionarylandscapeoflowerCentralAmerica. ForpermissiontoconductresearchinCostaRicaIthankthe MolecularEcology,7,499–517. MINAE,LaSistemaNacionaldeAreasdeConservacion,and BervenKA,GrudzienTA(1990)Dispersalinthewoodfrog(Rana JGuevara.Forpermissiontocollectsamplesatsitesundertheir sylvatica):implicationsforgeneticpopulationstructure. Evolu- care,IthankLDGomez,BYoung,JJimenez,RMatlock,LErbat tion,44,2047–2056. RanchoNaturalista(Tuis),theCATIE,andSeñoraBiancoandthe BosDH,SitesJWJr(2001)Phylogeographyandconservation OsaPulcraWomen’sCollective.ForlogisticalhelpinCostaRicaI geneticsoftheColumbiaspottedfrog( Ranaluteiventris ; thanktheOTS,especiallyASimpson,OVargas,RRojasandLD Amphibia,Ranidae).MolecularEcology,10,1499–1513. Gomez.ForpermissiontoconductresearchinPanama,Ithank BossuytF,MilinkovitchMC(2000)Convergentadaptiveradi- ANAM.Forlogisticalsupport,IthanktheOfficeofVisitorSer- ationsinMadagascanandAsianranidfrogsrevealcovariation vicesattheSTRI,especiallyMLeoneandOArosemena.Thanks betweenlarvalandadulttraits.ProceedingsoftheNationalAcademy toCJaramilloandSPalmaforhelpatIslaColón.Fortrainingin ofSciencesoftheUSA,97,6585–6590. moleculargenetictechniques,mysincerethanksgototheKreitman BravermanJM,HudsonRR,KaplanNL,LangleyCH,StephanW Laboratory:PAndolfatto,EStahl,CToomajian,JGladstone,S-C (1995)Thehitchhikingeffectonthesitefrequencyspectrumof Tsaur,CBergman,MLudwig,SRollmann,andBStranger.For DNApolymorphisms.Genetics,140,783–796. assistanceintheBerminghamLaboratoryIthankGReeves, BredenF(1987)Theeffectofpost-metamorphicdispersalonthe BQuenoville,APerdices,MGonzález,JEberhard,NGomez, populationgeneticstructureofFowler’stoad, Bufowoodhousei CVergara,andVAswani.ThankstoJRMaceyformtDNAprimers fowleri.Copeia,1987,386–395.

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x 14 A.J.CRAWFORD

BromhamL,PennyD(2003)Themodernmolecularclock.Nature FayJ,WuC-I(1999)Ahumanpopulationbottleneckcanaccount ReviewsGenetics,4,216–224. forthediscordancebetweenpatternsofmitochondrialversus BrownWM,GeorgeMJr,WilsonAC(1979)Rapidevolutionof nuclearDNAvariation.MolecularBiologyandEvolution,16,1003– animalmitochondrialDNA.ProceedingsoftheNationalAcademy 1005. ofSciencesoftheUSA,76,1967–1971. FelsensteinJ(1985)Confidencelimitsonphylogenies:an BuzasMA,CollinsLS,CulverSJ(2002)Latitudinaldifferencein approachusingthebootstrap.Evolution,39,783–791. biodiversitycausedbyhighertropicalrateofincrease. Proceed- FischerAG(1960)Latitudinalvariationinorganicdiversity. Evo- ingsoftheNationalAcademyofSciencesoftheUSA,99,7841–7843. lution,14,64–81. CarsonHL,TempletonAR(1984)Geneticrevolutionsinrelation FitchWM(1971)Towarddefiningthecourseofevolution:mini- tospeciationphenomena:thefoundingofnewpopulations. malchangeforaspecifictreetopology. SystematicZoology,20, AnnualReviewofEcologyandSystematics,15,97–131. 406–416. CharlesworthB(1998)Measuresofdivergencebetweenpopula- FitzSimmonsNN,MoritzC,LimpusCJ,PopeL,PrinceR(1997) tionsandtheeffectofforcesthatreducevariability. Molecular Geographicstructureofmitochondrialandnucleargenepoly- BiologyandEvolution,15,538–543. morphismsinAustraliangreenturtlepopulationsandmale- CharlesworthB,MorganMT,CharlesworthD(1993)Theeffectof biasedgeneflow.Genetics,147,1843–1854. deleteriousmutationsonneutralmolecularvariation. Genetics, FrankhamR(1995)Effectivepopulationsize/adultpopulation 134,1289–1303. sizeratiosinwildlife:areview.GeneticResearch,66,95–107. ChekAA,LougheedSC,BogartJP,BoagPT(2001)Perceptionand García-ParísM,GoodDA,Parra-OleaG,WakeDB(2000)Bio- history:molecularphylogenyofadiversegroupofNeotropical diversityofCostaRicansalamanders:implicationsofhighlevels frogs,the30-chromosome Hyla(Anura:Hylidae). Molecular ofgeneticdifferentiationandphylogeographicstructurefor PhylogeneticsandEvolution,18,370–385. speciesformation.ProceedingsoftheNationalAcademyofSciences ChownSL,GastonKJ(2000)Areas,cradlesandmuseums:the oftheUSA,97,1640–1647. latitudinalgradientinspeciesrichness. TrendsinEcologyand GasconC,LougheedSC,BogartJP(1996)Geneticandmorpholo- Evolution,15,311–315. gicalvariationin Vanzoliniusdiscodactylus :atestoftheriver ClarkAG(1990)InferenceofhaplotypesfromPCR-amplified hypothesisofspeciation.Biotrópica,28,376–387. samplesofdiploidpopulations.MolecularBiologyandEvolution, GasconC,LougheedSC,BogartJP(1998)Patternsofgenetic 7,111–122. populationdifferentiationinfourspeciesofAmazonianfrogs: CoatesAG,ObandoJA(1996)ThegeologicevolutionoftheCen- atestoftheriverinebarrierhypothesis. Biotrópica,30,104– tralAmericanIsthmus.In:EvolutionandEnvironmentinTropical 119. America(edsJacksonJBC,BuddAF,CoatesAG),pp.21–56.Uni- HareMP,PalumbiSR(1999)Theaccuracyofheterozygousbase versityofChicagoPress,Chicago. callingfromdiploidsequenceandresolutionofhaplotypes ComeronJM(1995)Amethodforestimatingthenumbersofsyn- usingallele-specificsequencing.MolecularEcology,8,1749–1752. onymousandnonsynonymoussubstitutionspersite.Journalof HassCA,HedgesSB(1991)AlbuminevolutioninWestIndian MolecularEvolution,41,1152–1159. frogsofthegenus Eleutherodactylus(Leptodactylidae):Carib- ComeronJM(1999)K-Estimator:calculationofthenumberof beanbiogeographyandacalibrationofthealbuminimmuno- nucleotidesubstitutionspersiteandtheconfidenceintervals. logicalclock.JournalofZoology,London,225,413–426. Bioinformatics,15,763–764. HedgesSB(1989)EvolutionandbiogeographyofWestIndian ConnellJH,OriansE(1964)Theecologicalregulationofspecies frogsofthegenusEleutherodactylus:slow-evolvinglociandthe diversity.AmericanNaturalist,98,399–414. majorgroups.In:BiogeographyoftheWestIndies(ed.WoodsCA), CrawfordAJ(2003)Relativeratesofnucleotidesubstitutionin pp.305–370.SandhillCranePress,Inc.,Gainesville,FL. frogs.JournalofMolecularEvolution.Inpress. HitchingsSP,BeebeeTJC(1997)Geneticsubstructuringasaresult CrochetP-A(2000)Geneticstructureofavianpopulations:allozymes ofbarrierstogeneflowinurbanRanatemporaria(commonfrog) revisited.MolecularEcology,10,1463–1469. populations:implicationsforbiodiversityconservation. Hered- DarwinC(1859)OntheOriginofSpecies.HarvardUniversityPress, ity,79,117–127. Cambridge,MA. HubbellSP(2001)Theunifiedneutraltheoryofbiodiversityand DenyerP,AlvaradoGE,AguilarT(2000)Historiageológica.In: biogeography.MonographsinPopulationBiology,32,1–375. GeologíadeCostaRica(edsDenyerP,KussmaulS),pp.155–167. HudsonRR(1987)Estimatingtherecombinationparameterofa EditorialTecnológicadeCostaRica,Cartago. finitepopulationmodelwithoutselection.GeneticalResearch,50, DobzhanskyT(1950)Evolutioninthetropics. AmericanScientist, 245–250. 38,209–221. HudsonRR(1990)Genegenealogiesandthecoalescentpro- DonnellyMA(1999)ReproductivephenologyofEleutherodactylus cess.In:OxfordSurveysinEvolutionaryBiology(edsFutuymaD, bransfordii.NortheasternCostaRica. JournalofHerpetology ,33, AntonovicsJ),pp.1–44.OxfordUniversityPress,Oxford. 624–631. HudsonRR(2002)GeneratingsamplesunderaWright- DriscollDA(1998)Geneticstructureofthefrogs Geocrinialutea Fisherneutralmodelofgeneticvariation.Bioinformatics,18,337– andG.roseareflectsextremepopulationdivergenceandrange 338. changes,notdispersalbarriers.Evolution,52,1147–1157. Iturralde-VinentMA,MacPheeRDE(1999)Paleogeographyof DriscollDA(1999)Geneticneighbourhoodandeffectivepopula- theCaribbeanregion:implicationsforCenozoicbiogeography. tionsizefortwoendangeredfrogs. BiologicalConservation,88, BulletinoftheAmericanMuseumofNaturalHistory,238,1–95. 221–229. JablonskiD(1993)Thetropicsasasourceofevolutionarynovelty DuellmanWE,PramukJB(1999)FrogsofthegenusEleutherodactylus throughgeologicaltime.Nature,364,142–144. (Anura:Leptodactylidae)intheAndesofnorthernPeru.Scientific KaplanNL,HudsonRR,LangleyCH(1989)The‘hitchhiking Papers,NaturalHistoryMuseum,UniversityofKansas,13,1–78. effect’revisited.Genetics,123,887–899.

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x POPULATIONSTRUCTUREINMESOAMERICANFROGS 15

KessingB(2000)SEQUENCER,Version6.1.0.Distributedbytheauthor MiyamotoMM(1983)BiochemicalvariationinthefrogEleuthero- athttp://nmg.si.edu/NaosMarineLaboratories,Smithsonian dactylusbransfordii:geographicpatternsandcrypticspecies. TropicalResearchInstitute,RepublicofPanama. SystematicZoology,32,43–51. KimuraM(1968)Evolutionaryrateatthemolecularlevel.Nature, MonteroW(2000)Geotectónica.In: GeologíadeCostaRica (eds 217,624–626. DenyerP,KussmaulS),pp.115–132.EditorialTecnológicade KimuraM(1969)Thenumberofheterozygousnucleotidesites CostaRica,Cartago. maintainedinafinitepopulationduetosteadyfluxofmuta- MooreWS(1995)InferringphylogeniesfrommtDNAvariation: tions.Genetics,61,893–903. mitochondrial-genetreesversusnuclear-genetrees. Evolution, KlimanRM,AndolfattoP,CoyneJA etal.(2000)Thepopulation 49,718–726. geneticsoftheoriginanddivergenceoftheDrosophilasimulans MoritzC,PattonJL,SchneiderCJ,SmithTB(2000)Diversification complexspecies.Genetics,156,1913–1931. ofrainforestfaunas:anintegratedmolecularapproach.Annual KlopferPH(1959)Environmentaldeterminantsoffaunaldiver- ReviewofEcologyandSystematics,31,533–563. sity.AmericanNaturalist,43,337–342. NeiM,LiH-W(1979)Mathematicalmodelforstudyinggenetic KlugeAG,FarrisJS(1969)Quantitativephyleticsandtheevolu- variationintermsofrestrictionendonucleases.Proceedingsofthe tionofanurans.SystematicZoology,18,1–32. NationalAcademyofSciencesoftheUSA,76,5269–5273. KreitmanM,HudsonRR(1991)Inferringtheevolutionaryhis- NewmanRA,SquireT(2001)Microsatellitevariationandfine- toriesoftheAdhandAdh-duplociinDrosophilamelanogasterfrom scalepopulationstructureinthewoodfrog( Ranasylvatica ). patternsofpolymorphismanddivergence. Genetics,127,565– MolecularEcology,10,1087–1100. 582. PaineRT(1966)Foodwebcomplexityandspeciesdiversity.American KreitmanM,WayneML(1994)Organizationofgeneticvariation Naturalist,100,65–67. atthemolecularlevel:lessonsfromDrosophila.In:MolecularEco- PalumbiSR,BakerCS(1994)Contrastingpopulationstructure logyandEvolution:ApproachesandApplications(edsSchierwaterB, fromnuclearintronsequencesandmtDNAofhumpback StreitB,WagnerGP,DeSalleR),pp.157–183.Birkhäuser-Verlag, whales.MolecularBiologyandEvolution,11,426–435. Basel. PalumbiSR,CiprianoF,HareMP(2001)Predictingnucleargene LiH-W(1997)MolecularEvolution.Sinauer,Sunderland,MA. coalescencefrommitochondrialdata:thethree-timesrule.Evo- LiebermanSS(1986)Ecologyoftheleaflitterherpetofaunaof lution,55,859–868. aNeotropicalrainforest.LaSelva,CostaRica. ActaZoología PardiniAT,JonesCS,NobleLRetal.(2001)Sex-biaseddispersalof Mexicana(NuevaSerie),15,1–72. greatwhitesharks.Nature,412,139–140. LougheedSC,GasconC,JonesDA,BogartJP,BoagPT(1999) PipernoDR,PearsallDM(1998) TheOriginsofAgricultureinthe Ridgesandrivers:atestofcompetinghypothesesofAmazonian LowlandNeotropics.AcademicPress,SanDiego,CA. diversificationusingadart-poisonfrog( Epipedobatesfemoralis). PrzeworskiM,WallJD,AndolfattoP(2001)Recombination ProceedingsoftheRoyalSocietyofLondon,SeriesB , 266,1829– andthefrequencyspectrumin Drosophilamelanogasterand 1835. Drosophilasimulans.MolecularBiologyandEvolution,18,291– LynchJD(2001)TherelationshipsofanensembleofGuatemalan 298. andMexicanfrogs(Eleutherodactylus:Leptodactylidae:Amphibia). ReadK,KeoghJS,ScottIAW,RobertsJD,DoughtyP(2001)Mole- RevistadelaAcademiaColombianadeCiencias,24,67–94. cularphylogenyoftheAustralianfroggeneraCrinia,Geocrinia, LynchM,CreaseTJ(1990)Theanalysisofpopulationsurveydata andalliedtaxa(Anura:Myobatrachidae). MolecularPhylogenetics onDNAsequencevariation. MolecularBiologyandEvolution,7, andEvolution,21,294–308. 377–394. RichardsonJE,PenningtonRT,PenningtonTD,Hollingsworth LynchJD,DuellmanWE(1997)FrogsofthegenusEleutherodactylus PM(2001)Rapiddiversificationofaspecies-richgenusofNeo- inwesternEcuador:systematics,ecology,andbiogeography. tropicalrainforesttrees.Science,293,2242–2245. UniversityofKansasNaturalHistoryMuseumSpecialPublication , RicklefsRE,BerminghamE(2001)Nonequilibriumdiversity 23,1–236. dynamicsoftheLesserAntilleanavifauna. Science,294,1522– MaceyJR,LarsonA,AnanjevaNB,FangZ,PapenfussTJ(1997) 1524. Twonovelgeneordersandtheroleoflight-standreplicationin RicklefsRE,SchluterD(1983)Speciesdiversity:regionaland rearrangementofthevertebratemitochondrialgenome. Mole- historicalinfluences.In:SpeciesDiversityinEcologicalCommunities cularBiologyandEvolution,14,91–104. (edsRicklefsRE,SchluterD),pp.350–363.UniversityofChi- MaceyJR,SchulteJAII,LarsonA etal.(1998)Phylogeneticrela- cagoPress,Chicago. tionshipsoftoadsintheBufobufospeciesgroupfromtheeastern RohdeK(1992)Latitudinalgradientsinspeciesdiversity:the escarpmentoftheTibetanPlateau:acaseofvicarianceanddis- searchfortheprimarycause.Oikos,65,514–527. persal.MolecularPhylogeneticsandEvolution,9,80–87. RoweG,BeebeeTJC,BurkeT(1998)Phylogeographyofthe MaceyJR,StrasburgJL,BrissonJA,VrendenburgVT,JenningsM, natterjacktoadBufocalamitainBritain:geneticdifferentiationof LarsonA(2001)MolecularphylogeneticsofwesternNorth nativeandtranslocatedpopulations. MolecularEcology,7,751– AmericanfrogsoftheRanaboyliispeciesgroup.MolecularPhylo- 760. geneticsandEvolution,19,131–143. RozasJ,RozasR(1999) dnasp,Version3:anintegratedprogram MarshDM,TrenhamPC(2001)Metapopulationdynamicsand formolecularpopulationgeneticsandmolecularevolution amphibianconservation.ConservationBiology,15,40–49. analysis.Bioinformatics,15,174–175. MatlockRB,HartshornGS(1999)Focusonfieldstations:LaSelva RyanMJ,RandAS,WeigtLA(1996)Allozymeandadvertisement BiologicalStation(OTS).BulletinoftheEcologicalSocietyofAmerica, callvariationinthetungarafrog,Physalaemuspustulosus.Evolu- 80,1888–1193. tion,50,2435–2453. MaynardSmithJ,HaighJ(1974)Thehitchhikingeffectofafavour- SaderSA,JoyceAT(1988)DeforestationratesandtrendsinCosta ablegene.GeneticsResearch,23,23–25. Rica,1940–83.Biotrópica,20,11–19.

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x 16 A.J.CRAWFORD

SavageJM(1982)TheenigmaoftheCentralAmericanherpeto- TajimaF(1989b)TheeffectofchangeinpopulationsizeonDNA fauna:dispersalsorvicariance? AnnalsoftheMissouriBotanical polymorphism.Genetics,123,597–601. Garden,69,464–547. TaylorEH(1952)ThefrogsandtoadsofCostaRica. Universityof SavageJM(2002)TheAmphibiansandReptilesofCostaRica:Herpeto- KansasScienceBulletin,35,577–942. faunaBetweenTwoContinents,BetweenTwoSeas .Universityof TinsleyRC,McCoidMJ(1996)Feralpopulationsof Xenopus ChicagoPress,Chicago. outsideAfrica.In:TheBiologyofXenopus(edsTinsleyRC,Kobel SavageJM,EmersonSB(1970)CentralAmericanfrogsalliedto HR),pp.81–94.OxfordUniversityPress,NewYork. Eleutherodactylusbransfordii(Cope):aproblemofpolymorphism. WadeMJ,McKnightML,ShafferHB(1994)Theeffectsofkin- Copeia,1970,623–644. structuredcolonizationonnuclearandcytoplasmicgenetic ScottNJJr(1976)Theabundanceanddiversityoftheherpeto- diversity.Evolution,48,1114–1120. faunasoftropicalforestlitter.Biotrópica,8,41–58. WallJD(1999)Recombinationandthepowerofstatisticaltestsof ScribnerKT,ArntzenJW,BurkeT(1994)Comparativeanalysisof neutrality.GeneticsResearch,74,65–79. intra-andinterpopulationgeneticdiversityin Bufobufo,using WallaceAR(1878) TropicalNatureandOtherEssays .MacMillan, allozyme,single-locusmicrosatellite,minisatellite,andmulti- London. locusminisatellitedata.MolecularBiologyandEvolution,11,737– WattersonGA(1975)Onthenumberofsegregatingsitesingenetic 748. modelswithoutrecombination.TheoreticalPopulationBiology,7, ScribnerKT,ArntzenJW,BurkeT(1997)Effectivenumberof 256–276. breedingadultsin Bufobufoestimatedfromage-specificvari- WeirBS(1996) GeneticDataAnalysisII .SinauerAssociates, ationatminisatelliteloci.MolecularEcology,6,701–712. Sunderland,MA. SeppäP,LaurilaA(1999)Geneticstructureofislandpopulations WrightS(1931)EvolutioninMendelianpopulations.Genetics,16, oftheanuransRanatemporariaandBufobufo.Heredity,82,309– 97–159. 317. WrightS(1951)Thegeneticalstructureofpopulations. Annalsof ShafferHB,FellersGM,MageeA,VossR(2000)Thegeneticsof Eugenics,15,323–354. amphibiandeclines:populationsubstructureandmolecular WynnA,HeyerWR(2001)Dogeographicallywidespreadspecies differentiationintheYosemitetoad,Bufocanorus(Anura,Bufo- oftropicalamphibiansexist?Anestimateofgeneticrelatedness nidae)basedonsingle-strandconformationpolymorphism withintheNeotropicalfrog Leptodactylusfuscus (Schneider analysis(SSCP)andmitochondrialDNAsequencedata. Mole- 1799)(AnuraLeptodactylidae).TropicalZoology,14,255–285. cularEcology,9,245–257. ZuckerkandlE,PaulingL(1965)Evolutionarydivergenceinpro- SimpsonBB,HafferJ(1978)SpeciationpatternsintheAmazonian teins.In:EvolvingGenesandProteins (edsBrysonB,VogelHJ), forestbiota.AnnualReviewofEcologyandSystematics,9,497–518. pp.97–166.AcademicPress,NewYork. SladeRW,MoritzC,HoelzelAR,BurtonHB(1998)Molecular populationgeneticsofthesouthernelephantsealMiroungaleo- nine.Genetics,149,1945–1957. ThisresearchformedmostofachapterfromthePh.D.thesisof SokalRR,RohlfFJ(1995)Biometry.WHFreeman,NewYork. AndrewJ.Crawfordontheevolutionandmaintenanceofacolour StebbinsGL(1974) FloweringPlants .HarvardUniversityPress, patternpolymorphisminthesefrogs.Thethesisprojectinvolved Cambridge,MA. threeinterrelatedapproaches(ecologicalgenetics,phylogenetics, SwoffordDL(2000) PAUP*PhylogeneticAnalysisUsingParsimony andmolecularevolution)andasuccessionofthreedifferent (*andOtherMethods),Version4.SinauerAssociates,Sunderland, advisors.Meanwhile,AndrewisstillfixatedondirtfrogDNA, MA. tryingtounderstandvariousphenomenonrangingfromthe TajimaF(1983)EvolutionaryrelationshipofDNAsequencesin effectof50yearsofhabitatmodificationongeneticvariation finitepopulation.Genetics,105,437–460. totheeffectof90millionyearsofplatetectonicsonspecies TajimaF(1989a)Statisticalmethodfortestingtheneutralmuta- diversification. tionhypothesisbyDNApolymorphism.Genetics,123,585–595.

©2003BlackwellPublishingLtd,MolecularEcology,10.1046/j.1365-294X.2003.01910.x