Advances in Microbiology and Bacteriology

Total Page:16

File Type:pdf, Size:1020Kb

Advances in Microbiology and Bacteriology CONTINUING EDUCATION Advances in microbiology and bacteriology Dr. Navid Saberi presents an overview of microbiology and bacteriology in endodontic treatment t has been almost 340 years since the Ibirth of microbiology and the discovery Educational aims and objectives of bacteria by Robert Hooke and Antonie This clinical article aims to present an overview of the many advances in microbiology van Leeuwenhoek (Gest, 2004) and around and bacteriology, and which bacteria are safe to leave in the root canal after endodontic treatment. 150 years since the dawn of modern bacteriology by the concurrent and rivalry- Expected outcomes driven studies of Robert Koch and Louis Endodontic Practice US subscribers can answer the CE questions on page XX to Pasteur (Ullmann, 2007). earn 2 hours of CE from reading this article. Correctly answering the questions will In the field of endodontology, W.D. Miller demonstrate the reader can: was the first to associate bacteria with pulpal • Realize the many advances in microbiology and bacteriology. • Identify how these remaining bacteria can be detected. disease in 1894. However, even prior to • Recognize which bacteria are safe to remain in the root canals. Miller’s experiments, dental practitioners • Identify how many bacteria is it safe to leave in the root canal after endodontic treatment. were aware of the important role of disinfec- tion and antiseption in endodontic outcomes. In fact, in 1886, Dental Cosmos published therapy is therefore to achieve this goal by of bacterial detection have been associated a report titled “Disinfection and antiseption mechanical instrumentation and biochemical with some drawbacks. by heat.” According to the author, in this irrigation of the root canal systems, which can Culturing has been advocated as a rather procedure “a fine wire heated to redness and be referred to as biomechanical cleansing of simple means of bacterial identification. inserted into the canal to the apical foramen infected root canals. However, up until the late 1960s, culturing … the application repeated according to However, despite being desirable to methods were unable to propagate anaer- circumstances … is all that is necessary” and render the root canals sterile, it is logical and obic bacteria predictably. The routine use of “by his [Dr. G.O. Rogers’] method complete realistic to assume that achieving sterility may anaerobic glove box and sterilized anaerobic disinfection and antiseption are secured” not be feasible in every infected root canal. In culture media has significantly enhanced (Pomeroy, 1886). fact, sterility may not even be required for a accurate identification of these bacteria. In addition, devitalization by means of successful outcome. Actor (2012) reported Furthermore, standardized field decontami- arsenic trioxide and instrumentation with that there are 20 times more bacterial cells nation protocols in the late 1960s reduced modified watch springs were commonplace in human bodies than eukaryotic cells. the possibility of false positive results (Moore, (Grossman, 1982; 1987). These communities live in either a symbiotic 1966; Kantz and Henry, 1974; Ng, et al., It is now well established that bacteria or mutualistic manner and benefit from the 2003). are essential for the development of pulpal existence of one another without causing Although cultivability of all bacteria was and periradicular diseases (Kakehashi, et al., harm. Therefore, at least in theory, it can be first reported in the 1960s, it was not until 1965; Möller, et al., 1981), and the presence assumed that some bacteria in inaccessible the 1990s that scientists fully recognized of bacteria in the root canal space or peri- areas of the root canal systems may be left that not all bacteria were culturable or iden- apical tissue will undermine the success of behind without compromising the overall tifiable (Socransky, et al., 1963; Hugenholtz endodontic treatment (Sjögren, et al., 1997; outcome of the treatment. and Pace, 1996). This meant previous Byström, et al., 1987). In spite of many advances in micro- bacteriological studies based on culturing Therefore, for a successful treatment, all biology and bacteriology, there still remain alone probably discovered only half of the root canals should be identified, thoroughly many unanswered questions. How can we true taxa associated with endodontic infec- disinfected, and rendered bacteria-free prior detect these remaining bacteria? Which tions (Paster, et al., 2001). These uncultivable to obturation. The aim of modern endodontic bacteria are safe to remain in the root canals? bacteria could indeed be the more impor- And, more importantly, how many bacteria tant entities in the pathogenesis of periapical Navid Saberi, BDS, MFDSRCS, MSc, graduated from Manchester is it safe to leave in the root canal after disease. University and worked in the general, salaried, and hospital dental endodontic treatment? The development of polymerase chain services in Scotland for several years. He completed his MSc The aim of this article is to provide reaction (PCR) in the late 1980s and its use with distinction at Glasgow University and became a member of the faculty of dental surgery of the Royal College of Surgeons answers to the above questions. in endodontics by the early 1990s radi- of Edinburgh in 2010. He has limited his practice to endodontics cally changed the dogma that had been and works at several prestigious private practices in London, the Bacterial identification founded on a culture-based understanding South East of England, and the South East of Scotland, including Harley Street Dental Group in London, Elms Lea Dental Practice In order to determine the safe number of endodontic microbiology (Mullis and in Brighton, and Wessex Specialist Dental Centre in Hampshire, of bacteria that may possibly be left in root Faloona, 1987; Pollard, et al., 1989; Spratt, just to name a few. He co-founded the Scottish Endodontic Study canals after endodontic treatment, it is Weightman, and Wade, 1999). Group in 2010 and is an active member of the British Endodontic Society. imperative for researchers to identify these PCR, however, is not without pitfalls. microorganisms. However, most methods This highly sensitive method of nucleic acid 32 Endodontic practice Volume 8 Number 2 CONTINUING EDUCATION amplification requires a strict decontami- nation protocol if false positive results are to be avoided (Ng, et al., 2003). In addi- For a successful treatment, tion, Hayden and colleagues (1991) found that PCR amplification methods inherently all root canals should be identified, detect bacteria without specifying whether the microorganisms were dead or alive at thoroughly disinfected, and rendered bacteria-free the time of sampling. This predicament can be overcome by amplifying genomic ribo- prior to obturation. somal ribonucleic acid (RNA), which can only be detected in active and dividing cells. However, bacteriological results based on ribosomal ribonucleic acid (rRNA) amplifica- tion should also be scrutinized for method- of these bacteria could establish an infection Therefore, a certain combination of ology as a very short half-life of rRNA could (Sundqvist, 1994; Paster, et al., 2006). These bacteria, a favorable environment, nutrient potentially lead to false negative results if the bacteria live in symbiosis with the host within availability, and the host response must be procedure is not carried out swiftly. the oral cavity (Avila, Ojcius, and Yilmaz, the main determining factors in the patho- In spite of all major improvement in 2009). Nonetheless, they are opportunistic genesis of apical periodontitis (Siqueira and bacteriological identification methods, one microorganisms and may cause disease, Rocas 2009a,b; Paster, et al., 2006). major shortcoming still remains unsolved, particularly where the host loses the ability to The main inhabitants of primary and that is access to intraradicular micro- maintain the homeostasis in the ecosystem endodontic infection are gram negative organisms. Even though the main root canal (Actor, 2012). anaerobic rods with different pathogenicities. and associated lateral canals may be acces- As explained earlier, almost half of The most common bacterial species involved sible for direct or indirect sampling, most of disease-producing endodontic bacteria are in primary endodontic infections with their the root canal system, including canal walls, uncultivable (Hugenholtz and Pace, 1996). genera, phyla, and degree of pathogenicity dentinal tubules, isthmuses, fins, and webs, Although with the aid of PCR many uncul- are shown in Table 1 (Siqueira and Rocas may be untouched, inaccessible, or blocked tivable bacteria have been cloned, they are 2009b,c; Siqueira, et al., 2009; Ribeiro, 2011). by debris, hence making accurate sampling yet to be named and meticulously analyzed It is important to mention, however, that an impossible task. In addition, the discovery (Rolph, et al., 2001; Munson, et al., 2002, individual virulence of single species does of biofilms transformed our understanding Siqueira and Rocas, 2005). Therefore, a not directly translate to an overall degree of of bacterial ecology, according to Costerton thorough knowledge of the type, character- pathogenicity of a bacterial colony (Siqueira and colleagues (1994; 1999). Planktonic istics, metabolism, pathogenicity and partic- and Rocas, 2009a,c). Virulence is a direct root canal bacteria seldom sustain peri- ularly interactions of these microorganisms result of bacterial
Recommended publications
  • Microbiology of Endodontic Infections
    Scient Open Journal of Dental and Oral Health Access Exploring the World of Science ISSN: 2369-4475 Short Communication Microbiology of Endodontic Infections This article was published in the following Scient Open Access Journal: Journal of Dental and Oral Health Received August 30, 2016; Accepted September 05, 2016; Published September 12, 2016 Harpreet Singh* Abstract Department of Conservative Dentistry & Endodontics, Gian Sagar Dental College, Patiala, Punjab, India Root canal system acts as a ‘privileged sanctuary’ for the growth and survival of endodontic microbiota. This is attributed to the special environment which the microbes get inside the root canals and several other associated factors. Although a variety of microbes have been isolated from the root canal system, bacteria are the most common ones found to be associated with Endodontic infections. This article gives an in-depth view of the microbiology involved in endodontic infections during its different stages. Keywords: Bacteria, Endodontic, Infection, Microbiology Introduction Microorganisms play an unequivocal role in infecting root canal system. Endodontic infections are different from the other oral infections in the fact that they occur in an environment which is closed to begin with since the root canal system is an enclosed one, surrounded by hard tissues all around [1,2]. Most of the diseases of dental pulp and periradicular tissues are associated with microorganisms [3]. Endodontic infections occur and progress when the root canal system gets exposed to the oral environment by one reason or the other and simultaneously when there is fall in the body’s immune when the ingress is from a carious lesion or a traumatic injury to the coronal tooth structure.response [4].However, To begin the with, issue the if notmicrobes taken arecare confined of, ultimately to the leadsintra-radicular to the egress region of pathogensIn total, and bacteria their by-productsdetected from from the the oral apical cavity foramen fall into to 13 the separate periradicular phyla, tissues.
    [Show full text]
  • Gut Microbiota and Inflammation
    Nutrients 2011, 3, 637-682; doi:10.3390/nu3060637 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Gut Microbiota and Inflammation Asa Hakansson and Goran Molin * Food Hygiene, Division of Applied Nutrition, Department of Food Technology, Engineering and Nutrition, Lund University, PO Box 124, SE-22100 Lund, Sweden; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +46-46-222-8327; Fax: +46-46-222-4532. Received: 15 April 2011; in revised form: 19 May 2011 / Accepted: 24 May 2011 / Published: 3 June 2011 Abstract: Systemic and local inflammation in relation to the resident microbiota of the human gastro-intestinal (GI) tract and administration of probiotics are the main themes of the present review. The dominating taxa of the human GI tract and their potential for aggravating or suppressing inflammation are described. The review focuses on human trials with probiotics and does not include in vitro studies and animal experimental models. The applications of probiotics considered are systemic immune-modulation, the metabolic syndrome, liver injury, inflammatory bowel disease, colorectal cancer and radiation-induced enteritis. When the major genomic differences between different types of probiotics are taken into account, it is to be expected that the human body can respond differently to the different species and strains of probiotics. This fact is often neglected in discussions of the outcome of clinical trials with probiotics. Keywords: probiotics; inflammation; gut microbiota 1. Inflammation Inflammation is a defence reaction of the body against injury. The word inflammation originates from the Latin word ―inflammatio‖ which means fire, and traditionally inflammation is characterised by redness, swelling, pain, heat and impaired body functions.
    [Show full text]
  • Development of the Equine Hindgut Microbiome in Semi-Feral and Domestic Conventionally-Managed Foals Meredith K
    Tavenner et al. Animal Microbiome (2020) 2:43 Animal Microbiome https://doi.org/10.1186/s42523-020-00060-6 RESEARCH ARTICLE Open Access Development of the equine hindgut microbiome in semi-feral and domestic conventionally-managed foals Meredith K. Tavenner1, Sue M. McDonnell2 and Amy S. Biddle1* Abstract Background: Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results: Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein.
    [Show full text]
  • The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight Into the Microbiome–Treatment Axis
    International Journal of Molecular Sciences Review The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome–Treatment Axis Amel Sami 1,2, Imad Elimairi 2,* , Catherine Stanton 1,3, R. Paul Ross 1 and C. Anthony Ryan 4 1 APC Microbiome Ireland, School of Microbiology, University College Cork, Cork T12 YN60, Ireland; [email protected] (A.S.); [email protected] (C.S.); [email protected] (R.P.R.) 2 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, National Ribat University, Nile Street, Khartoum 1111, Sudan 3 Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland 4 Department of Paediatrics and Child Health, University College Cork, Cork T12 DFK4, Ireland; [email protected] * Correspondence: [email protected] Received: 30 August 2020; Accepted: 12 October 2020; Published: 29 October 2020 Abstract: Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
    [Show full text]
  • Meta Analysis of Microbiome Studies Identifies Shared and Disease
    bioRxiv preprint doi: https://doi.org/10.1101/134031; this version posted May 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Meta analysis of microbiome studies identifies shared and disease-specific patterns Claire Duvallet1,2, Sean Gibbons1,2,3, Thomas Gurry1,2,3, Rafael Irizarry4,5, and Eric Alm1,2,3,* 1Department of Biological Engineering, MIT 2Center for Microbiome Informatics and Therapeutics 3The Broad Institute of MIT and Harvard 4Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute 5Department of Biostatistics, Harvard T.H. Chan School of Public Health *Corresponding author, [email protected] Contents 1 Abstract2 2 Introduction3 3 Results4 3.1 Most disease states show altered microbiomes ........... 5 3.2 Loss of beneficial microbes or enrichment of pathogens? . 5 3.3 A core set of microbes associated with health and disease . 7 3.4 Comparing studies within and across diseases separates signal from noise ............................... 9 4 Conclusion 10 5 Methods 12 5.1 Dataset collection ........................... 12 5.2 16S processing ............................ 12 5.3 Statistical analyses .......................... 13 5.4 Microbiome community analyses . 13 5.5 Code and data availability ...................... 13 6 Table and Figures 14 1 bioRxiv preprint doi: https://doi.org/10.1101/134031; this version posted May 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Taxonomic Characterization of Mogibacterium Diversum Sp. Nov. and Mogibacterium Neglectum Sp. Nov., Isolated from Human Oral Cavities
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 115–122 Printed in Great Britain Taxonomic characterization of Mogibacterium diversum sp. nov. and Mogibacterium neglectum sp. nov., isolated from human oral cavities 1 Department of Oral Futoshi Nakazawa,1 Sergio E. Poco, Jr,1 Michiko Sato,1 Tetsuro Ikeda,1 Microbiology, School of 2 3 1 Dentistry, Niigata Sotos Kalfas, Go$ ran Sundqvist and Etsuro Hoshino University, Niigata, 951-8514, Japan Author for correspondence: Etsuro Hoshino. Tel: 81 25 227 2838. Fax: 81 25 227 0806. 2,3 j j Department of Oral e-mail: hoshino!dent.niigata-u.ac.jp Biology2 and Department of Endodontics3 , School of Dentistry, University of T Umea/ , Sweden Novel isolates, strains HM-7, HM-6, HH-31, P9a-h and UJB13-d, which were isolated from tongue plaque and necrotic dental pulp, were studied taxonomically and phylogenetically. These organisms were anaerobic, non- spore-forming, Gram-positive, rod-shaped bacteria that were inert in most of the conventional biochemical tests and phenotypically resemble Mogibacterium species or asaccharolytic Eubacterium species. The GMC contents of the DNAs from the novel isolates ranged from 41 to 42 mol%. DNA–DNA hybridization studies demonstrated that these strains might be assigned to the genus Mogibacterium but not to the previously described species. It was also apparent that strain HM-7 belonged to the same species as strains HM-6 and HH-31, and that strains P9a-hT and UJB13-d belonged to a second species. The levels of DNA–DNA relatedness to asaccharolytic Eubacterium species, including Eubacterium brachy, Eubacterium nodatum, Eubacterium saphenum and the more recently proposed Eubacterium minutum and Eubacterium exiguum (reclassified as Slackia exigua), are less than 2%.
    [Show full text]
  • MICRO-ORGANISMS and RUMINANT DIGESTION: STATE of KNOWLEDGE, TRENDS and FUTURE PROSPECTS Chris Mcsweeney1 and Rod Mackie2
    BACKGROUND STUDY PAPER NO. 61 September 2012 E Organización Food and Organisation des Продовольственная и cельскохозяйственная de las Agriculture Nations Unies Naciones Unidas Organization pour организация para la of the l'alimentation Объединенных Alimentación y la United Nations et l'agriculture Наций Agricultura COMMISSION ON GENETIC RESOURCES FOR FOOD AND AGRICULTURE MICRO-ORGANISMS AND RUMINANT DIGESTION: STATE OF KNOWLEDGE, TRENDS AND FUTURE PROSPECTS Chris McSweeney1 and Rod Mackie2 The content of this document is entirely the responsibility of the authors, and does not necessarily represent the views of the FAO or its Members. 1 Commonwealth Scientific and Industrial Research Organisation, Livestock Industries, 306 Carmody Road, St Lucia Qld 4067, Australia. 2 University of Illinois, Urbana, Illinois, United States of America. This document is printed in limited numbers to minimize the environmental impact of FAO's processes and contribute to climate neutrality. Delegates and observers are kindly requested to bring their copies to meetings and to avoid asking for additional copies. Most FAO meeting documents are available on the Internet at www.fao.org ME992 BACKGROUND STUDY PAPER NO.61 2 Table of Contents Pages I EXECUTIVE SUMMARY .............................................................................................. 5 II INTRODUCTION ............................................................................................................ 7 Scope of the Study ...........................................................................................................
    [Show full text]
  • Direct-Fed Microbial Supplementation Influences the Bacteria Community
    www.nature.com/scientificreports OPEN Direct-fed microbial supplementation infuences the bacteria community composition Received: 2 May 2018 Accepted: 4 September 2018 of the gastrointestinal tract of pre- Published: xx xx xxxx and post-weaned calves Bridget E. Fomenky1,2, Duy N. Do1,3, Guylaine Talbot1, Johanne Chiquette1, Nathalie Bissonnette 1, Yvan P. Chouinard2, Martin Lessard1 & Eveline M. Ibeagha-Awemu 1 This study investigated the efect of supplementing the diet of calves with two direct fed microbials (DFMs) (Saccharomyces cerevisiae boulardii CNCM I-1079 (SCB) and Lactobacillus acidophilus BT1386 (LA)), and an antibiotic growth promoter (ATB). Thirty-two dairy calves were fed a control diet (CTL) supplemented with SCB or LA or ATB for 96 days. On day 33 (pre-weaning, n = 16) and day 96 (post- weaning, n = 16), digesta from the rumen, ileum, and colon, and mucosa from the ileum and colon were collected. The bacterial diversity and composition of the gastrointestinal tract (GIT) of pre- and post-weaned calves were characterized by sequencing the V3-V4 region of the bacterial 16S rRNA gene. The DFMs had signifcant impact on bacteria community structure with most changes associated with treatment occurring in the pre-weaning period and mostly in the ileum but less impact on bacteria diversity. Both SCB and LA signifcantly reduced the potential pathogenic bacteria genera, Streptococcus and Tyzzerella_4 (FDR ≤ 8.49E-06) and increased the benefcial bacteria, Fibrobacter (FDR ≤ 5.55E-04) compared to control. Other potential benefcial bacteria, including Rumminococcaceae UCG 005, Roseburia and Olsenella, were only increased (FDR ≤ 1.30E-02) by SCB treatment compared to control.
    [Show full text]
  • Type of the Paper (Article
    Supplementary Materials S1 Clinical details recorded, Sampling, DNA Extraction of Microbial DNA, 16S rRNA gene sequencing, Bioinformatic pipeline, Quantitative Polymerase Chain Reaction Clinical details recorded In addition to the microbial specimen, the following clinical features were also recorded for each patient: age, gender, infection type (primary or secondary, meaning initial or revision treatment), pain, tenderness to percussion, sinus tract and size of the periapical radiolucency, to determine the correlation between these features and microbial findings (Table 1). Prevalence of all clinical signs and symptoms (except periapical lesion size) were recorded on a binary scale [0 = absent, 1 = present], while the size of the radiolucency was measured in millimetres by two endodontic specialists on two- dimensional periapical radiographs (Planmeca Romexis, Coventry, UK). Sampling After anaesthesia, the tooth to be treated was isolated with a rubber dam (UnoDent, Essex, UK), and field decontamination was carried out before and after access opening, according to an established protocol, and shown to eliminate contaminating DNA (Data not shown). An access cavity was cut with a sterile bur under sterile saline irrigation (0.9% NaCl, Mölnlycke Health Care, Göteborg, Sweden), with contamination control samples taken. Root canal patency was assessed with a sterile K-file (Dentsply-Sirona, Ballaigues, Switzerland). For non-culture-based analysis, clinical samples were collected by inserting two paper points size 15 (Dentsply Sirona, USA) into the root canal. Each paper point was retained in the canal for 1 min with careful agitation, then was transferred to −80ºC storage immediately before further analysis. Cases of secondary endodontic treatment were sampled using the same protocol, with the exception that specimens were collected after removal of the coronal gutta-percha with Gates Glidden drills (Dentsply-Sirona, Switzerland).
    [Show full text]
  • Shifts in the Fecal Microbiota Associated with Adenomatous Polyps
    Published OnlineFirst September 26, 2016; DOI: 10.1158/1055-9965.EPI-16-0337 Research Article Cancer Epidemiology, Biomarkers Shifts in the Fecal Microbiota Associated with & Prevention Adenomatous Polyps Vanessa L. Hale1,2, Jun Chen3, Stephen Johnson3, Sean C. Harrington2, Tracy C. Yab4, Thomas C. Smyrk5, Heidi Nelson1, Lisa A. Boardman4, Brooke R. Druliner4, Theodore R. Levin6, Douglas K. Rex7, Dennis J. Ahnen8, Peter Lance9, David A. Ahlquist4, and Nicholas Chia1,2,10,11 Abstract Background: Adenomatous polyps are the most common production, as well as starch, sucrose, lipid, and phenylpropa- precursor to colorectal cancer, the second leading cause of cancer- noid metabolism. related death in the United States. We sought to learn more about Conclusions: These data hint that increased sugar, protein, and early events of carcinogenesis by investigating shifts in the gut lipid metabolism along with increased bile acid production could microbiota of patients with adenomas. promote a colonic environment that supports the growth of bile- Methods: We analyzed 16S rRNA gene sequences from the tolerant microbes such as Bilophilia and Desulfovibrio. In turn, these fecal microbiota of patients with adenomas (n ¼ 233) and microbes may produce genotoxic or inflammatory metabolites without (n ¼ 547). such as H2S and secondary bile acids, which could play a role in Results: Multiple taxa were significantly more abundant in catalyzing adenoma development and eventually colorectal patients with adenomas, including Bilophila, Desulfovibrio, cancer. proinflammatory bacteria in the genus Mogibacterium,and Impact: This study suggests a plausible biological mechanism multiple Bacteroidetes species. Patients without adenomas had to explain the links between shifts in the microbiota and colo- greater abundances of Veillonella, Firmicutes (Order Clostridia), rectal cancer.
    [Show full text]
  • The Vaginal Microbiome Related to Reproductive Traits in Beef Heifers
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2018 The aV ginal Microbiome Related to Reproductive Traits in Beef Heifers Maryanna Wells McClure University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Animal Studies Commons Recommended Citation McClure, Maryanna Wells, "The aV ginal Microbiome Related to Reproductive Traits in Beef Heifers" (2018). Theses and Dissertations. 2799. http://scholarworks.uark.edu/etd/2799 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. The Vaginal Microbiome Related to Reproductive Traits in Beef Heifers A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Animal Science by Maryanna W. McClure University of Tennessee at Martin Bachelor of Science in Animal Science, 2016 May 2018 University of Arkansas This thesis is approved for recommendation to the Graduate Council _______________________________ Jiangchao Zhao, Ph. D. Thesis Director ________________________________ ________________________________ Rick Rorie, Ph. D. Charles Rosenkrans, Ph. D. Committee Member Committee Member _______________________________ Michael Looper, Ph. D. Committee Member ABSTRACT The greatest impact on profitability of a commercial beef operation is reproduction. In the human vaginal microbiome, dominance by Lactobacillus is a sign of reproductive health and fit- ness. In other species (non-human primates and ewes), Lactobacillus is found in low amounts and dominators of these microbial communities are considered to be pathogenic in humans.
    [Show full text]
  • PCR-Based Identification of Eubacteirum Species in Endodontic Infection
    PCR-based Identification of Eubacteirum대한치과보존학회지:Vol. species in endodontic 28, No. infection3, 2003 PCR-based Identification of Eubacteirum species in endodontic infection Kee-Yeon Kum, A. F. Fouad * Yonsei Dental College, Department of Conservative Dentistry, Oral Science Research Center, UCHC Endo, CT, USA* 국문초록 감염 근관에서 중합효소연쇄반응법을 이용한 Eubacterium 균종의 동정 금기연, A. F. Fouad * 연세대학교 치과대학 보존학교실, 커네티컷 치과대학 근관치료학과* Asaccharolytic Eubacterium 균종은 감염 근관에서의 높은 발생 빈도와 독성으로 인해 최근 많이 연구되어지고 있 다. 본 연구는 24명의 환자의 감염 근관에서 얻은 22개의 PCR 산물로 부터 Eggerthella lenta를 포함한 Eubacterium 균종의 빈도 및 환자의 임상 증상이나 당뇨와의 상관성을 조사한 후 얻은 자료를 토대로 다음과 같은 결 과를 얻었다. 1. 22개의 표본 중에서 16개(73%)가 Eubacterium 균종을 포함하고 있었으며 이 중 9개의 시편에서 Eubacterium infirmum이 검출되었다. 2. Eggerthella lenta는 어떤 시편에서도 발견되지 않았다. 3. Odds ratio analysis 결과 Eubacterium infirmum은 당뇨병과의 높은 상관성을 보여주었다(OR=9.6, P=0.04). 주요어 : 감염근관, 중합효소연쇄반응법, 당뇨병, 상관성, Eubacterium infirmum, 임상 증상 Ⅰ. Introduction canal obturation in a higher proportion in the cases that eventually failed compared to cases that were The oral asaccharolytic Eubacterium spp. are a successful.7) Recently, on the basis of 16S rRNA diverse group of Gram-positive rods that are fre- sequence data and the phenotypic characters, quently isolated from oral infections such as peri- Eubacterium lentum, an organism of high incidence odontitis and dento-alveolar infections.1,2) In a study of symptomatic root canal infections, as noted before, of sixty-five patients with necrotic pulp and periapi- was reclassified as Eggerthella lenta.8) In a previous cal lesions, Eubacterium-specifically
    [Show full text]