Article in Press + Model

Total Page:16

File Type:pdf, Size:1020Kb

Article in Press + Model ARTICLE IN PRESS + MODEL Marine Chemistry xx (2006) xxx–xxx www.elsevier.com/locate/marchem An investigation into the exchange of iron and zinc between soluble, colloidal, and particulate size-fractions in shelf waters using low-abundance isotopes as tracers in shipboard incubation experiments ⁎ Matthew P. Hurst a, , Kenneth W. Bruland b a Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA b Department of Ocean Sciences, University of California, Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA Received 6 September 2005; received in revised form 20 June 2006; accepted 10 July 2006 Abstract A vertical mixing event was simulated in shipboard incubation experiments on the mid-continental shelf of the eastern Bering Sea to investigate Fe and Zn cycling between the soluble (b0.03 μm or 200 kDa), colloidal (0.03–0.2 μm), and particulate (0.2–10 μm, N10 μm) size-fractions. The particulate Fe and Zn were further separated into chemically labile (25% acetic acid-leachable) and refractory pools. The experiment employed 57Fe (+0.90 nM) and 68Zn (+0.99 nM) as stable, low-abundance isotope amendments to the soluble fraction, and the exchange of Fe and Zn between the different physico-chemical fractions was measured using high resolution-inductively coupled plasma- mass spectrometry (HR-ICP-MS). More than 50% of the added 57Fe partitioned to the colloidal fraction within 45 min of adding the tracer. Both the 57Fe and 56Fe colloidal fraction were removed from the dissolved phase at a faster rate than the soluble Fe fraction. In contrast, the colloidal 66Zn and 68Zn concentrations remained constant over the 5-day experiment, suggesting a unique removal mechanism for colloidal Fe. The net removal of dissolved 57Fewasobservedtobe3to4timesmorerapidthandissolved56Fe, which can be attributed to the regeneration of particulate Fe. Using a simple first-order model, it was determined that the net removal of 2.0 nM of dissolved Fe during the experiment was a consequence of dynamic cycling, whereby 2.9 nM of particulate Fe was regenerated and contributed to an overall removal of 4.9 nM of Fe from the dissolved phase. The amended 68Zn tracer resided in the soluble fraction and was assimilated by the diatom biomass (N10 μm size-fraction) at the same rate as 66Zn. This similarity in rates suggests that nearly all of the net removal of Zn was due to assimilation and that regeneration did not play a significant role in Zn cycling within the incubation experiment. This research demonstrates the advantage of using low-abundance isotopes as tracers and the importance of particulate and colloidal Fe in the overall biogeochemical cycling of Fe in ocean surface waters. © 2006 Elsevier B.V. All rights reserved. Keywords: Iron; Zinc; Seawater; Inductively coupled plasma-mass spectrometry; Stable isotopes 1. Introduction The development of sensitive analytical methods and ⁎ Corresponding author. Present address. Department of Chemistry, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA. trace metal clean techniques has allowed progress in Tel.: +1 707 826 5720; fax: +1 707 826 3279. defining the role of trace metals as an important factor E-mail address: [email protected] (M.P. Hurst). influencing primary productivity in marine systems (Morel 0304-4203/$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.marchem.2006.07.001 MARCHE-02388; No of Pages 16 ARTICLE IN PRESS 2 M.P. Hurst, K.W. Bruland / Marine Chemistry xx (2006) xxx–xxx et al., 2003). These advancements have led to the under- the experimental setup. Adequate methodology has yet to standing that bioactive trace metals, such as Fe and Zn, may be developed to accurately assess the bioavailability of the approach concentrations in the marine environment where particulate pool. To continue the progress towards a more they can become the limiting nutrient (Martin and Fitzwater, complete understanding of the biogeochemical cycling of 1988; Morel et al., 1994; Coale et al., 1996). Other studies Fe and Zn, it is necessary to examine the exchange and have demonstrated that variations in Fe and Zn concentra- partitioning of trace metals between the different physico- tions can cause shifts in the structure of phytoplankton chemical fractions within the dissolved and particulate communities in ocean surface waters (Hutchins et al., 1998; phases. Crawford et al., 2003; Leblanc et al., 2005). This investigation uses stable, low-abundance isotopes Much of the research on the bioavailability of Fe and of Fe and Zn as tracers in an incubation experiment that Zn has focused on the dissolved phase and several mech- simulated a vertical mixing event on the mid-continental anisms for Fe and Zn sequestration by marine phyto- shelf waters in the eastern Bering Sea, whereby the mixing plankton have been suggested (Hutchins et al., 1999; of subsurface waters containing macronutrients and Fe Ellwood and van den Berg, 2000; Barbeau et al., 2001; with nutrient-depleted surface waters induced a diatom Shaked et al., 2005; Lohan et al., 2005). There is consensus bloom. By adding the tracers to the dissolved phase, that the dissolved speciation of Fe and Zn is dictated by the changes in the isotopic ratio within different physico- presence of biogenic ligands in ocean surface waters, and chemical fractions over time were used to determine the these ligands chelate N99.9% of dissolved Fe (Rue and net removal of dissolved trace metals by the phytoplankton Bruland, 1995; Boye and van den Berg, 2000) and 98% of biomass and the regeneration rate of particulate trace dissolved Zn (Bruland, 1989; Ellwood and van den Berg, metals into the dissolved phase. Previous studies have used 2000). However, the dissolved phase is operationally stable, low-abundance isotopes as tracers to examine defined as the fraction of sample that passes through a 0.2 adsorption/desorption processes of particulate trace metals or 0.4 μm filter, but in actuality, this fraction contains a (Cu, Zn, Ni) in the estuarine environment (Gee and continuum of colloidal and soluble species within which Bruland, 2002) and bioaccumulation processes of Hg in trace metals may partition. Data collected from laboratory lakes (Pickhardt et al., 2002). The present investigation incubation experiments (Nishioka and Takeda, 2000; focuses on the contributions of particulate, colloidal, and Chen et al., 2003) and from field work in both open and soluble trace metals to the dynamics of trace metal cycling coastal ocean regimes (Nishioka et al., 2001a,b; Wu et al., in a shelf water system. The partitioning of the various 2001) suggest that colloids play an unique role in Fe isotopes in the different physico-chemical fractions reveals bioavailability, where the colloidal Fe fraction appears to the importance of chemically labile and refractory be preferentially removed by phytoplankton. These inves- particulate trace metals and colloidal trace metals in the tigations have demonstrated the need to distinguish bet- overall cycling and recycling of Fe and Zn within such a ween colloidal and soluble forms of Fe, and more research system. is needed to elucidate the mechanism(s) linking colloidal Fe and biological uptake, if any. 2. Material and methods Furthermore, very few studies have investigated the interactions between particulate trace metals and the dis- 2.1. Sample collection and handling solved phase, or the bioavailability of particulate trace metals with respect to phytoplankton. This is particularly The surface sample was collected using a clean surface important for Fe, which resides largely in the particulate pump system that included an all PTFE Teflon™ dia- pool within surface waters (Wells and Mayer, 1991; Sunda, phragm pump (Bruiser™, Osmonics, Minnetonka, MN) 2001). Previous research has demonstrated that a portion of and PFA Teflon™ tubing (Bruland et al., 2005). The the particulate trace metals is bioavailable to marine phy- sample inlet was mounted to a PVC fish system and toplankton in coastal shelf waters (Wells and Mayer, 1991; lowered to 3 m below the sea surface. The speed of the Wells et al., 2000), which suggests that understanding the ship was about 5 knots; thus, ensuring that the intake regeneration of particulate trace metals is an absolute would not be influenced by the ship's wake. The unfiltered necessity if the total amount of bioavailable trace metals is sample was delivered directly to an acid-cleaned and to be estimated. Regeneration of biogenic Fe, Mn, and Zn seawater-conditioned 55 L carboy in a Class 100 clean amongst grazers and planktonic prey has been investigated area; the carboy was filled to the halfway point. The 40 m with the use of radiotracers (Hutchins and Bruland, 1994; subsurface water sample was collected using a Teflon- Hutchins and Bruland, 1995), but the technique was unable coated, 30 L GO-Flo bottle (General Oceanics, Miami, to study the cycling of nonradioactive trace metals within FL) lowered on a Kevlar hydroline (Bruland et al., 1979). ARTICLE IN PRESS M.P. Hurst, K.W. Bruland / Marine Chemistry xx (2006) xxx–xxx 3 The subsurface sample was transferred through Teflon™ of 57Fe did not significantly change the amount of total Fe tubing to fill the carboy. The mixed sample was aliquoted in the sample (2% of total). to 2.5 L polycarbonate incubation bottles, which were After adding the isotopes to the individual samples, acid-cleaned with 3 M HCl (trace metal grade, Fisher the bottles were sealed by wrapping Parafilm and then Scientific, Pittsburgh, PA) for 2 weeks at room temper- electrical tape around the bottle opening. They were ature, filled with dilute 0.05 M HCl, and stored until use. placed in a Plexiglas incubator located on the top deck Prior to the experiment, the incubation bottles were con- of the ship, which was equipped with a flow-through ditioned by rinsing with clean surface seawater aboard seawater system that kept the incubator at surface water ship.
Recommended publications
  • 12 Natural Isotopes of Elements Other Than H, C, O
    12 NATURAL ISOTOPES OF ELEMENTS OTHER THAN H, C, O In this chapter we are dealing with the less common applications of natural isotopes. Our discussions will be restricted to their origin and isotopic abundances and the main characteristics. Only brief indications are given about possible applications. More details are presented in the other volumes of this series. A few isotopes are mentioned only briefly, as they are of little relevance to water studies. Based on their half-life, the isotopes concerned can be subdivided: 1) stable isotopes of some elements (He, Li, B, N, S, Cl), of which the abundance variations point to certain geochemical and hydrogeological processes, and which can be applied as tracers in the hydrological systems, 2) radioactive isotopes with half-lives exceeding the age of the universe (232Th, 235U, 238U), 3) radioactive isotopes with shorter half-lives, mainly daughter nuclides of the previous catagory of isotopes, 4) radioactive isotopes with shorter half-lives that are of cosmogenic origin, i.e. that are being produced in the atmosphere by interactions of cosmic radiation particles with atmospheric molecules (7Be, 10Be, 26Al, 32Si, 36Cl, 36Ar, 39Ar, 81Kr, 85Kr, 129I) (Lal and Peters, 1967). The isotopes can also be distinguished by their chemical characteristics: 1) the isotopes of noble gases (He, Ar, Kr) play an important role, because of their solubility in water and because of their chemically inert and thus conservative character. Table 12.1 gives the solubility values in water (data from Benson and Krause, 1976); the table also contains the atmospheric concentrations (Andrews, 1992: error in his Eq.4, where Ti/(T1) should read (Ti/T)1); 2) another category consists of the isotopes of elements that are only slightly soluble and have very low concentrations in water under moderate conditions (Be, Al).
    [Show full text]
  • 1 Introduction
    1 Introduction WHO commissions reviews and undertakes health risk assessments associated with exposure to potentially hazardous physical, chemical and biological agents in the home, work place and environment. This monograph on the chemical and radiological hazards associated with exposure to depleted uranium is one such assessment. The purpose of this monograph is to provide generic information on any risks to health from depleted uranium from all avenues of exposure to the body and from any activity where human exposure could likely occur. Such activities include those involved with fabrication and use of DU products in industrial, commercial and military settings. While this monograph is primarily on DU, reference is also made to the health effects and behaviour of uranium, since uranium acts on body organs and tissues in the same way as DU and the results and conclusions from uranium studies are considered to be broadly applicable to DU. However, in the case of effects due to ionizing radiation, DU is less radioactive than uranium. This review is structured as broadly indicated in Figure 1.1, with individual chapters focussing on the identification of environmental and man-made sources of uranium and DU, exposure pathways and scenarios, likely chemical and radiological hazards and where data is available commenting on exposure-response relationships. HAZARD IDENTIFICATION PROPERTIES PHYSICAL CHEMICAL BIOLOGICAL DOSE RESPONSE RISK EVALUATION CHARACTERISATION BACKGROUND EXPOSURE LEVELS EXPOSURE ASSESSMENT Figure 1.1 Schematic diagram, depicting areas covered by this monograph. It is expected that the monograph could be used as a reference for health risk assessments in any application where DU is used and human exposure or contact could result.
    [Show full text]
  • Sources of Variation in the Stable Isotopic Composition of Plants*
    CHAPTER 2 Sources of variation in the stable isotopic composition of plants* JOHN D. MARSHALL, J. RENÉE BROOKS, AND KATE LAJTHA Introduction The use of stable isotopes of carbon, nitrogen, oxygen, and hydrogen to study physiological processes has increased exponentially in the past three decades. When Harmon Craig (1953, 1954), a geochemist and early pioneer of natural abundance stable isotopes, fi rst measured isotopic values of plant materials, he found that plants tended to have a fairly narrow δ13C range of −25 to −35‰. In these initial surveys, he was unable to fi nd large taxonomic or environmental effects on these values. Since that time ecologists have identi- fi ed clear isotopic signatures based not only on different photosynthetic pathways, but also on ecophysiological differences, such as photosynthetic water-use effi ciency (WUE) and sources of water and nitrogen used. As large empirical databases have accumulated and our theoretical understanding of isotopic composition has improved, scientists have continued to discover mismatches between theoretical and observed values, as well as confounding effects from sources and factors not previously considered. In the best tradi- tion of science, these discoveries have led to important new insights into physiological or ecological processes, as well as new uses of stable isotopes in plant ecophysiology. This chapter reviews the most common applications of stable isotope analysis in plant ecophysiology. Carbon isotopes Photosynthetic pathways 13 Plants contain less C than the atmospheric CO2 on which they rely for photosynthesis. They are therefore “depleted” of 13C relative to the atmo- sphere. This depletion is caused by enzymatic and physical processes that discriminate against 13C in favor of 12C.
    [Show full text]
  • Characterisation of Various Types of Alloy by K0-Neutron Activation Analysis
    A27 CHARACTERISATION OF VARIOUS TYPES OF ALLOY BY K0-NEUTRON ACTIVATION ANALYSIS M. WASIM, N. KHALID, M. ARIF Chemistry Division, Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan N.A. LODHI Isotope Production Division, Pakistan Institute of Nuclear Science and Technology, Islamabad, Pakistan Abstract Samples of certified alloys were analysed by semi-absolute, standardless k0-instrumental neutron activation analysis (k0-INAA) for compositional decoding. Irradiations were performed at Miniaturised Neutron Source Reactor (MNSR) located at Pakistan Institute of Nuclear Science and Technology, Islamabad having nominal thermal neutron fluxes of 1×1012 cm-2s-1. The experimentally optimised parameters for NAA suggested a maximum of three irradiations for the quantification of 21 elements within 5 days. The same experimental conditions produced quantitative results of 13 elements, which were not reported by the supplier of the reference materials. All reference concentrations were within 95% confidence interval of the determined concentrations. 1. INTRODUCTION Worldwide interest in the determination of elements in different materials has led to the development of many analytical techniques. The commonly used techniques include inductively coupled plasma with optical emission spectrometry (ICP-OES), X-ray fluorescence spectrometry (XRF), atomic absorption spectrometry (AAS) [1], arc/spark optical emission spectrometry, ICP with mass spectrometry and laser-induced breakdown spectroscopy [2-4]. Nuclear analytical techniques also play important role in material characterisation [5]. Among these the noticeable are particle induced X-ray emission, proton activation analysis [6,7], prompt gamma-ray neutron activation [8], fast neutron activation analysis [9,10] and thermal neutron activation analysis (NAA) [11,12]. The non-nuclear techniques apply relative standardisation, also known as classical linear calibration, whereby a calibration curve is drawn by using three or more calibration standards.
    [Show full text]
  • Measuring Long-Range 13C–13C Correlations on a Surface Under
    Ames Laboratory Accepted Manuscripts Ames Laboratory 10-13-2017 Measuring Long-Range 13C–13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid- State Nuclear Magnetic Resonance Takeshi Kobayashi Ames Laboratory, [email protected] Igor I. Slowing Iowa State University and Ames Laboratory, [email protected] Marek Pruski Iowa State University and Ames Laboratory, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_manuscripts Part of the Materials Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Kobayashi, Takeshi; Slowing, Igor I.; and Pruski, Marek, "Measuring Long-Range 13C–13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance" (2017). Ames Laboratory Accepted Manuscripts. 33. http://lib.dr.iastate.edu/ameslab_manuscripts/33 This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Measuring Long-Range 13C–13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance Abstract We report that spatial (<1>nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C–13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization.
    [Show full text]
  • Determination of Particulate and Dissolved 228Th in Seawater Using a Delayed Coincidence Counter
    MARCHE-03183; No of Pages 7 Marine Chemistry xxx (2014) xxx–xxx Contents lists available at ScienceDirect Marine Chemistry journal homepage: www.elsevier.com/locate/marchem Determination of particulate and dissolved 228Th in seawater using a delayed coincidence counter Kanchan Maiti a,b,⁎, Matthew A. Charette b, Ken O. Buesseler b,KuanboZhoub, Paul Henderson b, Willard S. Moore c,PaulMorrisb, Lauren Kipp b a Department of Oceanography and Coastal Sciences Louisiana State University, Baton Rouge, LA 70803, USA b Department of Marine Chemistry and Geochemistry Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA c Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC 29208, USA article info abstract Article history: The application of thorium-228 towards understanding particle dynamics in the open ocean is limited because of Received 13 August 2014 its low natural abundance in seawater and associated sampling and analytical challenges. Here we describe a fast Received in revised form 26 November 2014 and nondestructive method for measuring both dissolved and particulate 228Th activities in the open ocean using Accepted 7 December 2014 Radium Delayed-Coincidence Counters (RaDeCC). Particulate and dissolved samples were collected from the Available online xxxx upper 1000 m of the Sargasso Sea water column during the US GEOTRACES intercalibration cruise using large vol- ume in situ pumps equipped with Quartz microfiber filters and MnO impregnated cartridges. Samples were di- Keywords: 2 fi Thorium-228 rectly counted on the RaDeCC system using a custom machined lter sample holder and a commercially available Particle flux cartridge holder followed by traditional alpha counting.
    [Show full text]
  • Journal of Analytical Atomic Spectrometry ARTICLE
    CW-127610-CONF-004, Rev 0 UNRESTRICTED Journal of Analytical Atomic Spectrometry ARTICLE Determination of Radiogenic Silicon and its Isotopes in Neutron Irradiated Aluminum Alloys by ICP-MS Received 00th January 20xx, a a a Accepted 00th January 20xx Y. Shi,* C. Broome , and R. Collins DOI: 10.1039/x0xx00000x Aluminum alloy is frequently used as component material in research nuclear reactors. Thermal neutron irradiation of aluminum causes it to undergo transmutation to silicon. The production of silicon inside of aluminum alloy changes its www.rsc.org/ material and mechanical properties. Furthermore, the concentration and the isotopic composition of the radiogenic silicon provides information on the irradiation history of the material and operation history of the reactor both of which are important to nuclear forensics and nuclear archaeology. An analytical method has been developed to determine the concentration and isotopic composition of radiogenic silicon using sector field ICP-MS. Applying a mass resolution of 3000 avoided severe spectral interferences from poly-atomic and doubly charged ion species generated from the solution matrix observed using lower resolution mass spectrometers. The measured content of radiogenic silicon in aluminium alloy materials irradiated with known fluence of thermal neutrons agreed well with the theoretically predicted values. Introduction Historically, many analytical techniques have been applied to determine silicon in aluminum based alloys. The classic With its good formability, ease of welding, and corrosion gravimetric method has been used for a long time and adapted resistance, aluminum alloy is a preferred material for some to be a standard method by ISO.7,8 This method may not suit all structural components in research nuclear reactors.
    [Show full text]
  • MEASURING KINETIC ISOTOPE EFFECTS of CARBON at NATURAL ABUNDANCE Reported by John D. Baird October 31, 2002 INTRODUCTION Crucial
    MEASURING KINETIC ISOTOPE EFFECTS OF CARBON AT NATURAL ABUNDANCE Reported by John D. Baird October 31, 2002 INTRODUCTION Crucial to understanding the selectivity of a reaction is knowledge of its mechanism and rate- limiting step. Methods used to study reaction mechanisms include: linear free-energy relationships,1 kinetic studies,2 solvent effect studies,3 and isotope effects.4 The measurement of kinetic isotopic effects (KIE) is a well-established and powerful tool for probing reaction mechanisms, and this method has been used to elucidate events taking place in the rate-limiting step of a wide range of reactions. Isotope effects are usually measured by kinetic competition reactions using isotopically labeled reactants. A common example is the observation of primary 2H KIEs to provide information regarding H transfer or secondary 2H KIE to investigate changes in hybridization at an adjacent carbon center. Kinetic isotope effects are not limited to the use of 2H, and KIEs of 13C have been used to determine whether fundamental bonding changes of carbon atoms are occurring in the rate-limiting step of a reaction. While these experiments provide useful information leading to fundamental knowledge in the mechanistic pathway of reactions, the synthesis of isotopically labeled carbon reactants and experimental design required for each reaction can be cumbersome, and the cost of enriched starting materials can be high. Since carbon exists as a mixture of isotopes, one alternative to the synthesis of 13C-labeled compounds is the use of materials at natural abundance. For example, high precision isotope ratio mass spectrometry (MS) of materials labeled at natural abundance can be used, but this technique relies on selective degradations (without isotopic fractionation) of materials into small molecules suitable for 5 (MS) analysis, such as CO2.
    [Show full text]
  • Isotope Distributions
    Isotope distributions This exposition is based on: • R. Martin Smith: Understanding Mass Spectra. A Basic Approach. Wiley, 2nd edition 2004. [S04] • Exact masses and isotopic abundances can be found for example at http: //www.sisweb.com/referenc/source/exactmaa.htm or http://education. expasy.org/student_projects/isotopident/htdocs/motza.html • IUPAC Compendium of Chemical Terminology - the Gold Book. http:// goldbook.iupac.org/ [GoldBook] • Sebastian Bocker,¨ Zzuzsanna Liptak:´ Efficient Mass Decomposition. ACM Symposium on Applied Computing, 2005. [BL05] • Christian Huber, lectures given at Saarland University, 2005. [H05] • Wikipedia: http://en.wikipedia.org/, http://de.wikipedia.org/ 10000 Isotopes This lecture addresses some more combinatorial aspect of mass spectrometry re- lated to isotope distributions and mass decomposition. Most elements occur in nature as a mixture of isotopes. Isotopes are atom species of the same chemical element that have different masses. They have the same number of protons and electrons, but a different number of neutrons. The main ele- ments occurring in proteins are CHNOPS. A list of their naturally occurring isotopes is given below. Isotope Mass [Da] % Abundance Isotope Mass [Da] % Abundance 1H 1.007825 99.985 16O 15.994915 99.76 2H 2.014102 0.015 17O 16.999131 0.038 18O 17.999159 0.20 12C 12. (exact) 98.90 13C 13.003355 1.10 31P 30.973763 100. 14N 14.003074 99.63 32S 31.972072 95.02 15N 15.000109 0.37 33S 32.971459 0.75 34S 33.967868 4.21 10001 Isotopes (2) Note that the lightest isotope is also the most abundant one for these elements.
    [Show full text]
  • Experimental Partitioning of Ca Isotopes and Sr Into Anhydrite: Consequences for the Cycling of Ca and Sr in Subseafloor Mid-Ocean Ridge Hydrothermal Systems
    Lawrence Berkeley National Laboratory Recent Work Title Experimental partitioning of Ca isotopes and Sr into anhydrite: Consequences for the cycling of Ca and Sr in subseafloor mid-ocean ridge hydrothermal systems Permalink https://escholarship.org/uc/item/5cf1x0d9 Authors Syverson, DD Scheuermann, P Higgins, JA et al. Publication Date 2018-09-01 DOI 10.1016/j.gca.2018.03.018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Available online at www.sciencedirect.com ScienceDirect Geochimica et Cosmochimica Acta xxx (2018) xxx–xxx www.elsevier.com/locate/gca Experimental partitioning of Ca isotopes and Sr into anhydrite: Consequences for the cycling of Ca and Sr in subseafloor mid-ocean ridge hydrothermal systems Drew D. Syverson a,b,c,⇑, Peter Scheuermann b, John A. Higgins d, Nicholas J. Pester e, William E. Seyfried Jr. b a Yale University, Department of Geology and Geophysics, 210 Whitney Ave., New Haven, CT 06511, USA b University of Minnesota, Department of Earth Sciences, 310 Pillsbury Drive SE, Minneapolis, MN 55455-0231, USA c Monash University, Department of Earth, Atmosphere and Environment, 9 Rainforest Walk, Building 28, Clayton, VIC 3800, Australia d Princeton University, Department of Geosciences, Guyot Hall, Princeton, NJ 08544, USA e Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA Received 2 August 2017; accepted in revised form 20 March 2018; available online xxxx Abstract The elemental and isotopic mass balance of Ca and Sr between seawater and the oceanic crust at mid-ocean ridge (MOR) hydrothermal systems integrates various physiochemical processes in the subseafloor, such as dissolution of primary silicate minerals, formation of secondary minerals, and phase separation in the subseafloor.
    [Show full text]
  • Natural Abundance D N and D C of DNA Extracted from Soil
    ARTICLE IN PRESS Soil Biology & Biochemistry 39 (2007) 3101–3107 www.elsevier.com/locate/soilbio Natural abundance d15N and d13C of DNA extracted from soil Egbert Schwartza,d,Ã, Steven Blazewicza, Richard Doucettb, Bruce A. Hungatea,b,d, Stephen C. Hartc,d, Paul Dijkstraa,d aDepartment of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA bColorado Plateau Stable Isotope Laboratory, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA cSchool of Forestry, Northern Arizona University, P.O. Box 5018, Flagstaff, AZ 86011, USA dMerriam-Powell Center for Environmental Research, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, USA Received 24 April 2007; received in revised form 27 June 2007; accepted 8 July 2007 Available online 6 August 2007 Abstract We report the first simultaneous measurements of d15N and d13C of DNA extracted from surface soils. The isotopic composition of DNA differed significantly among nine different soils. The d13C and d15N of DNA was correlated with d13C and d15N of soil, respectively, suggesting that the isotopic composition of DNA is strongly influenced by the isotopic composition of soil organic matter. However, in all samples DNA was enriched in 13C relative to soil, indicating microorganisms fractionated C during assimilation or preferentially used 13C enriched substrates. Enrichment of DNA in 15N relative to soil was not consistently observed, but there were significant differences between d15N of DNA and d15N of soil for three different sites, suggesting microorganisms are fractionating N or preferentially using N substrates at different rates across these contrasting ecosystems. There was a strong linear correlation between d15N of DNA and d15N of the microbial biomass, which indicated DNA was depleted in 15N relative to the microbial biomass by approximately 3.4%.
    [Show full text]
  • Cr(VI) Standard Solution. 0.0029 G of Cr2o3 ( Cr Enriched Isotope) Was
    Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry This journal is © The Royal Society of Chemistry 2012 Preparation of enriched isotopic and natural abundance standard solutions 50 50 Cr(VI) standard solution. 0.0029 g of Cr2O3 ( Cr enriched isotope) was transferred to a platinum beaker and 0.4 g of NaKCO3 and 0.1 g of NaOH were added. The contents were melted by a Bunsen burner until a yellow-orange melt was obtained. During the melting procedure quantitative oxidation of Cr by air oxygen was achieved only in an alkaline media. The melt was cooled to a room temperature and 0.7 mL of concentrated HCl was carefully added to dissolve the deposit. The clear solution was transferred to a Teflon tube and diluted to 10 mL with water.1 The concentration of Cr in the stock isotopic spike solution was determined by reverse ID-ICP-MS and found to be 197.2 ± 0.8 μg mL-1. 53 53 Cr(III) standard solution. 0.0029 g of Cr2O3 ( Cr enriched isotope) was transferred to a Teflon vessel and 4 mL of concentrated HNO3 was added. The Teflon vessel was subjected to microwave assisted digestion performed at maximal power of 1200 W, ramp to temperature 20 min, 190 oC, pressure 10 bar, holding 20 min, cooling 20 min. The clear solution was quantitatively transferred to a platinum beaker and the contents carefully evaporated to approximately 0.2 mL. Then 0.7 mL of concentrated HCl was added, the solution transferred to a Teflon tube and diluted to 10 mL with water.1 The concentration of Cr in the stock isotopic spike solution was determined by reverse ID-ICP-MS and found to be 200.3 ± 0.9 μg mL-1.
    [Show full text]