Ames Laboratory Accepted Manuscripts Ames Laboratory 10-13-2017 Measuring Long-Range 13C–13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid- State Nuclear Magnetic Resonance Takeshi Kobayashi Ames Laboratory,
[email protected] Igor I. Slowing Iowa State University and Ames Laboratory,
[email protected] Marek Pruski Iowa State University and Ames Laboratory,
[email protected] Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_manuscripts Part of the Materials Chemistry Commons, and the Physical Chemistry Commons Recommended Citation Kobayashi, Takeshi; Slowing, Igor I.; and Pruski, Marek, "Measuring Long-Range 13C–13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance" (2017). Ames Laboratory Accepted Manuscripts. 33. http://lib.dr.iastate.edu/ameslab_manuscripts/33 This Article is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Accepted Manuscripts by an authorized administrator of Iowa State University Digital Repository. For more information, please contact
[email protected]. Measuring Long-Range 13C–13C Correlations on a Surface under Natural Abundance Using Dynamic Nuclear Polarization-Enhanced Solid-State Nuclear Magnetic Resonance Abstract We report that spatial (<1>nm) proximity between different molecules in solid bulk materials and, for the first time, different moieties on the surface of a catalyst, can be established without isotope enrichment by means of homonuclear CHHC solid-state nuclear magnetic resonance experiment. This 13C–13C correlation measurement, which hitherto was not possible for natural-abundance solids, was enabled by the use of dynamic nuclear polarization.