Unifying Cross-Lingual Semantic Role Labeling with Heterogeneous Linguistic Resources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstraction and Generalisation in Semantic Role Labels: Propbank
Abstraction and Generalisation in Semantic Role Labels: PropBank, VerbNet or both? Paola Merlo Lonneke Van Der Plas Linguistics Department Linguistics Department University of Geneva University of Geneva 5 Rue de Candolle, 1204 Geneva 5 Rue de Candolle, 1204 Geneva Switzerland Switzerland [email protected] [email protected] Abstract The role of theories of semantic role lists is to obtain a set of semantic roles that can apply to Semantic role labels are the representa- any argument of any verb, to provide an unam- tion of the grammatically relevant aspects biguous identifier of the grammatical roles of the of a sentence meaning. Capturing the participants in the event described by the sentence nature and the number of semantic roles (Dowty, 1991). Starting from the first proposals in a sentence is therefore fundamental to (Gruber, 1965; Fillmore, 1968; Jackendoff, 1972), correctly describing the interface between several approaches have been put forth, ranging grammar and meaning. In this paper, we from a combination of very few roles to lists of compare two annotation schemes, Prop- very fine-grained specificity. (See Levin and Rap- Bank and VerbNet, in a task-independent, paport Hovav (2005) for an exhaustive review). general way, analysing how well they fare In NLP, several proposals have been put forth in in capturing the linguistic generalisations recent years and adopted in the annotation of large that are known to hold for semantic role samples of text (Baker et al., 1998; Palmer et al., labels, and consequently how well they 2005; Kipper, 2005; Loper et al., 2007). The an- grammaticalise aspects of meaning. -
A Novel Large-Scale Verbal Semantic Resource and Its Application to Semantic Role Labeling
VerbAtlas: a Novel Large-Scale Verbal Semantic Resource and Its Application to Semantic Role Labeling Andrea Di Fabio}~, Simone Conia}, Roberto Navigli} }Department of Computer Science ~Department of Literature and Modern Cultures Sapienza University of Rome, Italy {difabio,conia,navigli}@di.uniroma1.it Abstract The automatic identification and labeling of ar- gument structures is a task pioneered by Gildea We present VerbAtlas, a new, hand-crafted and Jurafsky(2002) called Semantic Role Label- lexical-semantic resource whose goal is to ing (SRL). SRL has become very popular thanks bring together all verbal synsets from Word- to its integration into other related NLP tasks Net into semantically-coherent frames. The such as machine translation (Liu and Gildea, frames define a common, prototypical argu- ment structure while at the same time pro- 2010), visual semantic role labeling (Silberer and viding new concept-specific information. In Pinkal, 2018) and information extraction (Bas- contrast to PropBank, which defines enumer- tianelli et al., 2013). ative semantic roles, VerbAtlas comes with In order to be performed, SRL requires the fol- an explicit, cross-frame set of semantic roles lowing core elements: 1) a verb inventory, and 2) linked to selectional preferences expressed in terms of WordNet synsets, and is the first a semantic role inventory. However, the current resource enriched with semantic information verb inventories used for this task, such as Prop- about implicit, shadow, and default arguments. Bank (Palmer et al., 2005) and FrameNet (Baker We demonstrate the effectiveness of VerbAtlas et al., 1998), are language-specific and lack high- in the task of dependency-based Semantic quality interoperability with existing knowledge Role Labeling and show how its integration bases. -
Semantic Role Labeling 2
Semantic Role Labeling 2 Outline • Semantic role theory • Designing semantic role annotation project ▫ Granularity ▫ Pros and cons of different role schemas ▫ Multi-word expressions 3 Outline • Semantic role theory • Designing semantic role annotation project ▫ Granularity ▫ Pros and cons of different role schemas ▫ Multi-word expressions 4 Semantic role theory • Predicates tie the components of a sentence together • Call these components arguments • [John] opened [the door]. 5 Discovering meaning • Syntax only gets you so far in answering “Who did what to whom?” John opened the door. Syntax: NPSUB V NPOBJ The door opened. Syntax: NPSUB V 6 Discovering meaning • Syntax only gets you so far in answering “Who did what to whom?” John opened the door. Syntax: NPSUB V NPOBJ Semantic roles: Opener REL thing opened The door opened. Syntax: NPSUB V Semantic roles: thing opened REL 7 Can the lexicon account for this? • Is there a different sense of open for each combination of roles and syntax? • Open 1: to cause something to become open • Open 2: become open • Are these all the senses we would need? (1) John opened the door with a crowbar. Open1? (2) They tried the tools in John’s workshop one after the other, and finally the crowbar opened the door. Still Open1? 8 Fillmore’s deep cases • Correspondence between syntactic case and semantic role that participant plays • “Deep cases”: Agentive, Objective, Dative, Instrument, Locative, Factitive • Loosely associated with syntactic cases; transformations result in the final surface case 9 The door opened. Syntax: NPSUB V Semantic roles: Objective REL John opened the door. Syntax: NPSUB V NPOBJ Semantic roles: Agentive REL Objective The crowbar opened the door. -
ACL 2019 Social Media Mining for Health Applications (#SMM4H)
ACL 2019 Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task Proceedings of the Fourth Workshop August 2, 2019 Florence, Italy c 2019 The Association for Computational Linguistics Order copies of this and other ACL proceedings from: Association for Computational Linguistics (ACL) 209 N. Eighth Street Stroudsburg, PA 18360 USA Tel: +1-570-476-8006 Fax: +1-570-476-0860 [email protected] ISBN 978-1-950737-46-8 ii Preface Welcome to the 4th Social Media Mining for Health Applications Workshop and Shared Task - #SMM4H 2019. The total number of users of social media continues to grow worldwide, resulting in the generation of vast amounts of data. Popular social networking sites such as Facebook, Twitter and Instagram dominate this sphere. According to estimates, 500 million tweets and 4.3 billion Facebook messages are posted every day 1. The latest Pew Research Report 2, nearly half of adults worldwide and two- thirds of all American adults (65%) use social networking. The report states that of the total users, 26% have discussed health information, and, of those, 30% changed behavior based on this information and 42% discussed current medical conditions. Advances in automated data processing, machine learning and NLP present the possibility of utilizing this massive data source for biomedical and public health applications, if researchers address the methodological challenges unique to this media. In its fourth iteration, the #SMM4H workshop takes place in Florence, Italy, on August 2, 2019, and is co-located with the -
Syntax Role for Neural Semantic Role Labeling
Syntax Role for Neural Semantic Role Labeling Zuchao Li Hai Zhao∗ Shanghai Jiao Tong University Shanghai Jiao Tong University Department of Computer Science and Department of Computer Science and Engineering Engineering [email protected] [email protected] Shexia He Jiaxun Cai Shanghai Jiao Tong University Shanghai Jiao Tong University Department of Computer Science and Department of Computer Science and Engineering Engineering [email protected] [email protected] Semantic role labeling (SRL) is dedicated to recognizing the semantic predicate-argument struc- ture of a sentence. Previous studies in terms of traditional models have shown syntactic informa- tion can make remarkable contributions to SRL performance; however, the necessity of syntactic information was challenged by a few recent neural SRL studies that demonstrate impressive performance without syntactic backbones and suggest that syntax information becomes much less important for neural semantic role labeling, especially when paired with recent deep neural network and large-scale pre-trained language models. Despite this notion, the neural SRL field still lacks a systematic and full investigation on the relevance of syntactic information in SRL, for both dependency and both monolingual and multilingual settings. This paper intends to quantify the importance of syntactic information for neural SRL in the deep learning framework. We introduce three typical SRL frameworks (baselines), sequence-based, tree-based, and graph-based, which are accompanied by two categories of exploiting syntactic information: syntax pruning- based and syntax feature-based. Experiments are conducted on the CoNLL-2005, 2009, and 2012 benchmarks for all languages available, and results show that neural SRL models can still benefit from syntactic information under certain conditions. -
Semantic Role Labeling Tutorial NAACL, June 9, 2013
Semantic Role Labeling Tutorial NAACL, June 9, 2013 Part 1: Martha Palmer, University of Colorado Part 2: Shumin Wu, University of Colorado Part 3: Ivan Titov, Universität des Saarlandes 1 Outline } Part 1 Linguistic Background, Resources, Annotation Martha Palmer, University of Colorado } Part 2 Supervised Semantic Role Labeling and Leveraging Parallel PropBanks Shumin Wu, University of Colorado } Part 3 Semi- , unsupervised and cross-lingual approaches Ivan Titov, Universität des Saarlandes, Universteit van Amsterdam 2 Motivation: From Sentences to Propositions Who did what to whom, when, where and how? Powell met Zhu Rongji battle wrestle join debate Powell and Zhu Rongji met consult Powell met with Zhu Rongji Proposition: meet(Powell, Zhu Rongji) Powell and Zhu Rongji had a meeting meet(Somebody1, Somebody2) . When Powell met Zhu Rongji on Thursday they discussed the return of the spy plane. meet(Powell, Zhu) discuss([Powell, Zhu], return(X, plane)) Capturing semantic roles SUBJ } Dan broke [ the laser pointer.] SUBJ } [ The windows] were broken by the hurricane. SUBJ } [ The vase] broke into pieces when it toppled over. PropBank - A TreeBanked Sentence (S (NP-SBJ Analysts) S (VP have (VP been VP (VP expecting (NP (NP a GM-Jaguar pact) have VP (SBAR (WHNP-1 that) (S (NP-SBJ *T*-1) NP-SBJ been VP (VP would Analysts (VP give expectingNP (NP the U.S. car maker) SBAR (NP (NP an eventual (ADJP 30 %) stake) NP S (PP-LOC in (NP the British company)))))))))))) a GM-Jaguar WHNP-1 VP pact that NP-SBJ VP *T*-1 would NP give Analysts have been expecting a GM-Jaguar NP PP-LOC pact that would give the U.S. -
Generating Lexical Representations of Frames Using Lexical Substitution
Generating Lexical Representations of Frames using Lexical Substitution Saba Anwar Artem Shelmanov Universitat¨ Hamburg Skolkovo Institute of Science and Technology Germany Russia [email protected] [email protected] Alexander Panchenko Chris Biemann Skolkovo Institute of Science and Technology Universitat¨ Hamburg Russia Germany [email protected] [email protected] Abstract Seed sentence: I hope PattiHelper can helpAssistance youBenefited party soonTime . Semantic frames are formal linguistic struc- Substitutes for Assistance: assist, aid tures describing situations/actions/events, e.g. Substitutes for Helper: she, I, he, you, we, someone, Commercial transfer of goods. Each frame they, it, lori, hannah, paul, sarah, melanie, pam, riley Substitutes for Benefited party: me, him, folk, her, provides a set of roles corresponding to the sit- everyone, people uation participants, e.g. Buyer and Goods, and Substitutes for Time: tomorrow, now, shortly, sooner, lexical units (LUs) – words and phrases that tonight, today, later can evoke this particular frame in texts, e.g. Sell. The scarcity of annotated resources hin- Table 1: An example of the induced lexical represen- ders wider adoption of frame semantics across tation (roles and LUs) of the Assistance FrameNet languages and domains. We investigate a sim- frame using lexical substitutes from a single seed sen- ple yet effective method, lexical substitution tence. with word representation models, to automat- ically expand a small set of frame-annotated annotated resources. Some publicly available re- sentences with new words for their respective sources are FrameNet (Baker et al., 1998) and roles and LUs. We evaluate the expansion PropBank (Palmer et al., 2005), yet for many lan- quality using FrameNet. -
Efficient Pairwise Document Similarity Computation in Big Datasets
International Journal of Database Theory and Application Vol.8, No.4 (2015), pp.59-70 http://dx.doi.org/10.14257/ijdta.2015.8.4.07 Efficient Pairwise Document Similarity Computation in Big Datasets 1Papias Niyigena, 1Zhang Zuping*, 2Weiqi Li and 1Jun Long 1School of Information Science and Engineering, Central South University, Changsha, 410083, China 2School of Electronic and Information Engineering, Xi’an Jiaotong University Xian, 710049, China [email protected], * [email protected], [email protected], [email protected] Abstract Document similarity is a common task to a variety of problems such as clustering, unsupervised learning and text retrieval. It has been seen that document with the very similar content provides little or no new information to the user. This work tackles this problem focusing on detecting near duplicates documents in large corpora. In this paper, we are presenting a new method to compute pairwise document similarity in a corpus which will reduce the time execution and save space execution resources. Our method group shingles of all documents of a corpus in a relation, with an advantage of efficiently manage up to millions of records and ease counting and aggregating. Three algorithms are introduced to reduce the candidates shingles to be compared: one creates the relation of shingles to be considered, the second one creates the set of triples and the third one gives the similarity of documents by efficiently counting the shared shingles between documents. The experiment results show that our method reduces the number of candidates pairs to be compared from which reduce also the execution time and space compared with existing algorithms which consider the computation of all pairs candidates. -
Cross-Lingual Semantic Role Labeling with Model Transfer Hao Fei, Meishan Zhang, Fei Li and Donghong Ji
1 Cross-lingual Semantic Role Labeling with Model Transfer Hao Fei, Meishan Zhang, Fei Li and Donghong Ji Abstract—Prior studies show that cross-lingual semantic role transfer. The former is based on large-scale parallel corpora labeling (SRL) can be achieved by model transfer under the between source and target languages, where the source-side help of universal features. In this paper, we fill the gap of sentences are automatically annotated with SRL tags and cross-lingual SRL by proposing an end-to-end SRL model that incorporates a variety of universal features and transfer methods. then the source annotations are projected to the target-side We study both the bilingual transfer and multi-source transfer, sentences based on word alignment [7], [9], [10], [11], [12]. under gold or machine-generated syntactic inputs, pre-trained Annotation projection has received the most attention for cross- high-order abstract features, and contextualized multilingual lingual SRL. Consequently, a range of strategies have been word representations. Experimental results on the Universal proposed for enhancing the SRL performance of the target Proposition Bank corpus indicate that performances of the cross-lingual SRL can vary by leveraging different cross-lingual language, including improving the projection quality [13], joint features. In addition, whether the features are gold-standard learning of syntax and semantics information [7], iteratively also has an impact on performances. Precisely, we find that bootstrapping to reduce the influence of noise target corpus gold syntax features are much more crucial for cross-lingual [12], and joint translation-SRL [8]. SRL, compared with the automatically-generated ones. -
Natural Language Semantic Construction Based on Cloud Database
Copyright © 2018 Tech Science Press CMC, vol.57, no.3, pp.603-619, 2018 Natural Language Semantic Construction Based on Cloud Database Suzhen Wang1, Lu Zhang1, Yanpiao Zhang1, Jieli Sun1, Chaoyi Pang2, Gang Tian3 and Ning Cao4, * Abstract: Natural language semantic construction improves natural language comprehension ability and analytical skills of the machine. It is the basis for realizing the information exchange in the intelligent cloud-computing environment. This paper proposes a natural language semantic construction method based on cloud database, mainly including two parts: natural language cloud database construction and natural language semantic construction. Natural Language cloud database is established on the CloudStack cloud-computing environment, which is composed by corpus, thesaurus, word vector library and ontology knowledge base. In this section, we concentrate on the pretreatment of corpus and the presentation of background knowledge ontology, and then put forward a TF-IDF and word vector distance based algorithm for duplicated webpages (TWDW). It raises the recognition efficiency of repeated web pages. The part of natural language semantic construction mainly introduces the dynamic process of semantic construction and proposes a mapping algorithm based on semantic similarity (MBSS), which is a bridge between Predicate-Argument (PA) structure and background knowledge ontology. Experiments show that compared with the relevant algorithms, the precision and recall of both algorithms we propose have been significantly improved. The work in this paper improves the understanding of natural language semantics, and provides effective data support for the natural language interaction function of the cloud service. Keywords: Natural language, cloud database, semantic construction. 1 Introduction The Internet of things and big data have promoted the rapid development of the artificial intelligence industry. -
Knowledge-Based Semantic Role Labeling Release 0.1
Knowledge-based Semantic Role Labeling Release 0.1 September 11, 2014 Contents 1 Resources parsing 3 1.1 VerbNet parsing.............................................3 1.2 FrameNet parsing............................................4 2 Frames and arguments extractions7 2.1 Frame extraction.............................................7 2.2 Arguments extraction..........................................8 2.3 Evaluation................................................9 3 Debug ressources 11 3.1 Sample of headwords extractions.................................... 11 3.2 Dump module.............................................. 11 4 Evaluation 15 4.1 Initial mappings............................................. 15 4.2 Frame-matching............................................. 16 4.3 Probability model............................................ 16 4.4 Bootstrapping.............................................. 16 5 Ideas 17 5.1 Finding new matches........................................... 17 5.2 Restricting potential VerbNet classes.................................. 18 5.3 Informative probability model...................................... 18 6 Indices and tables 19 7 References 21 i ii Knowledge-based Semantic Role Labeling, Release 0.1 This repository contains: • A reproduction of (Swier & Stevenson, 2005) results for recent versions of resources and NLP tools (MST Parser, latest VerbNet, FrameNet and VN-FN mappings). • Some improvements of our own • Experiments on domain-specific knowledge-based semantic role labeling Documentation: Contents -
Question-Answer Driven Semantic Role Labeling
Question-Answer Driven Semantic Role Labeling Using Natural Language to Annotate Natural Language Luheng He, Mike Lewis, Luke Zettlemoyer University of Washington EMNLP 2015 1 Semantic Role Labeling (SRL) who did what to whom, when and where? 2 Semantic Role Labeling (SRL) Role Predicate Argument Agent Patent Time They increased the rent drastically this year Manner 2 Semantic Role Labeling (SRL) Role Predicate Argument Agent Patent Time They increased the rent drastically this year Manner • Defining a set of roles can be difficult • Existing formulations have used different sets 2 Existing SRL Formulations and Their Frame Inventories FrameNet PropBank 1000+ semantic frames, 10,000+ frame files 10,000+ frame elements (roles) with predicate-specific roles Frame: Change_position_on_a_scale This frame consists of words that indicate the Roleset Id: rise.01 , go up change of an Item's position on a scale Arg1-: Logical subject, patient, thing rising (the Attribute) from a starting point Arg2-EXT: EXT, amount risen (Initial_value) to an end point (Final_value). Arg3-DIR: start point The direction (Path) … Arg4-LOC: end point Lexical Units: Argm-LOC: medium …, reach.v, rise.n, rise.v, rocket.v, shift.n, … Unified Verb Index, University of Colorado http://verbs.colorado.edu/verb-index/ PropBank Annotation Guidelines, Bonial et al., 2010 FrameNet II: Extended theory and practice, Ruppenhofer et al., 2006 FrameNet: https://framenet.icsi.berkeley.edu/ 3 This Talk: QA-SRL • Introduce a new SRL formulation with no frame or role inventory • Use question-answer pairs to model verbal predicate-argument relations • Annotated over 3,000 sentences in weeks with non-expert, part-time annotators • Showed that this data is high-quality and learnable 4 Our Annotation Scheme Given sentence and a verb: They increased the rent this year .