AbundanceAbundance andand diversitydiversity ofof coastalcoastal fishfish larvaelarvae asas indicatorsindicators ofof recentrecent changeschanges inin oceanocean andand climateclimate conditionsconditions inin thethe OregonOregon upwellingupwelling zonezone

Ric Brodeur, Bill Peterson, FE Division, NOAA/NMFS/NWFSC, Newport, Toby Auth, Heather Soulen, Maria Parnel Oregon State University, HMSC Newport, Oregon Ashley Emerson Mount Holyoke College South Hadley, Mass. MotivationMotivation •• SurvivalSurvival ofof larvaelarvae maymay directlydirectly influenceinfluence futurefuture abundancesabundances ofof adultadult fishfish stocksstocks

•• TheThe distributiondistribution andand abundanceabundance ofof fishfish larvaelarvae cancan provideprovide cluesclues toto thethe spawningspawning locations,locations, success,success, andand environmentalenvironmental requirementsrequirements ofof importantimportant fishfish speciesspecies

•• IchthyoplanktonIchthyoplankton cancan serveserve asas anan indicatorindicator ofof changingchanging oceanocean conditionsconditions ObjectivesObjectives

• ExamineExamine larvallarval fishfish inin planktonplankton collectionscollections fromfrom 19961996 toto 20052005 fromfrom collectionscollections atat twotwo stationsstations offoff NewportNewport OregonOregon

• CompareCompare larvallarval communitiescommunities withwith historicalhistorical samplingsampling inin thethe 1970s1970s -- 1980s1980s offoff NewportNewport

• ExamineExamine longlong--termterm trendstrends inin ichthyoplanktonichthyoplankton abundanceabundance andand relaterelate thesethese toto basinbasin--widewide andand regionalregional environmentalenvironmental conditionsconditions NewportNewport LineLine LongLong--termterm SamplingSampling

Astoria 46° N

Tillamook

45° N Bi-weekly Sampling:

++++ Newport • 1972 – 1973 (Miller, Peterson) • 1977 – 1978 (Richardson, Laroche) 44° N • 1983 (Miller, Brodeur, Batchelder) Coos Bay • 1996 – 2005 (Peterson et al.) 43° N

80

70

42° N 60 125° W 124° W 123° W 50

40

30

20 OceanographyOceanography

(A. Thomas, UM) (Barth et al. 2005) Km from

(Auth and Brodeur 2006 MEPS) 4 MEI 3 PDO

2

1

I n d e x I n d e 0 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 -1

-2 Positive PDO Negative PDO Positive PDO

-3 SST at NOAA Buoy 46050 (Stonewall Bank)

20

18

16

14

12 Temperature (°C) 10

8 96 97 98 99 00 01 02 03 04 05 06 YEAR DensityDensity andand DiversityDiversity

N = 10 14 22 32 28 22 31 29 19 20 21 13 1.6 1.8

Total Density (NH05 & NH10) 1.6 1.4 Total Diversity (NH05 & NH10) 1.4 1.2 ) 3 1.2 1.0 1.0 0.8 0.8 0.6 0.6

Density (# Larvae/m (# Density 0.4 0.4 Shannon Weaver Diversity Shannon Weaver

0.2 0.2

0.0 0.0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month Most larvae found during winter months

Means and standard errors MonthlyMonthly DensitiesDensities Copepod (Jan.-May): 7.5 12.6 11.0

PositiveHigh PDOPDO NegativeLow PDO PDO PositiveHigh PDO PDO 10.0 NH-05 Summer/Fall (June-Dec.) Winter/Spring (Jan.-May) ) 3 - 1.0

299.9

120.3 0.1 97.9 Mean (no. density m

0.0

96 97 98 99 00 01 02 03 04 05 06

(Brodeur et al. In revision) MonthlyMonthly DiversitiesDiversities

PositiveHigh PDO PDO NegativeLow PDO PDO PositiveHigh PDO PDO 2.5 NH-05

Summer/Fall (June-Dec.) 2.0 Winter/Spring (Jan.-May)

1.5

1.0

0.5 0.61 0.64 Shannon-Wiener diversity 0.29 0.0 96 97 98 99 00 01 02 03 04 05 06 Year

(Brodeur et al. In revision) InformationBray-Curtis Remaining station Ordination (%) Information Remaining (%) 100100 7575 50 2525 00 d-12-96 d-12-97 d-10-97 d-11-97 Cluster Analysis of Monthly Catches d-10-98 June-December d-10-99 d-11-99 January-May d-11-98 d-12-98 d-12-99 84 Months by 24 Species d-12-00 d-10-00 d-11-00 d-6-97 d-7-97 d-6-98 d-7-98 d-7-99 d-8-97 d-9-97 • Different larval d-8-98 d-9-98 d-8-99 d-9-99 communities found d-6-00 d-7-00 d-6-01 d-7-01 d-7-02 during winter/spring d-8-00 d-8-01 d-9-01 d-10-01 than the rest of the d-11-01 d-10-02 d-11-02 d-9-03 year d-10-03 d-11-04 d-12-04 d-7-05 d-8-05 d-10-05 d-2-97 d-3-97 d-1-98 d-4-97 d-5-97 d-4-98 • Exceptions were d-5-98 d-4-99 d-4-00 d-5-99 d-5-00 June and July of d-3-98 d-3-99 d-3-00 d-3-01 2004 and June of d-2-00 d-1-01 d-2-01 d-3-02 2005 d-4-01 d-5-01 d-4-02 d-5-02 d-4-03 d-5-03 d-4-04 d-4-05 d-5-04 d-5-05 d-6-05 d-6-04 d-7-04 d-1-03 d-2-03 d-2-04 d-3-03 d-3-04 d-2-05 d-3-05 d-1-04 d-1-05 Cluster Analysis by Species Information Remaining (%) 100 75 50 25 0

Ammo Cithsp Parovet Sebastsp Artedsp Liparsp Artefen Scorpmar Leptarm Lyopexi Artehar Glyptzac Ronqjor Stenoleu Isopisol Micropro Psetmela Osmerid Micropac Hexagrsp Hippoela Sticha Bathyma Engmor

Winter Feb.- March April - May Summer Fall Multiresponse Permutation Procedure (MRPP) Test for Differences in Community Structure

Factor p value Significant indicator species (p < 0.05) Regime < 0.001 E. mordax, P. vetulus, and Sebastes spp. (warm); A. hexapterus, Citharichthys spp., and Osmeridae (cold)

Year 0.449 None significant

Season < 0.001 G. zachirus, M. pacificus, I. isolepis, P. vetulus, P. melanostictus, R. jordani, S. marmoratus, Sebastes spp., S. leucopsarus, Osmeridae, and Stichaeidae (winter-spring); E. mordax (summer-fall)

Month < 0.001 Osmeridae, P. vetulus, and Sebastes spp. (January); G. zachirus and S. leucopsarus (March); E. mordax (July)

DominantDominant IchthyoplanktonIchthyoplankton TopTop 1010 TaxaTaxa (all(all years,years, monthsmonths combined)combined)

Overall Percent of Species Total # Total 1996-2005 1971-1972 1977-1978 1983 Ammodytes hexapterus 1549 29.22 1 7 14 -- Parophrys vetulus 1289 24.32 2 2 1 11 Citharichthyssp. 655 12.36 3 27 8 7 Engraulis mordax 235 4.43 4 30 10 1 Sebastesspp. 204 3.85 5 9 3 3 Liparissp. 170 3.21 6 15 16 16 Psettichthys melanostictus 150 2.83 7 5 4 5 Osmeridae 139 2.62 8 1 2 13 Isopsetta isolepis 132 2.49 9 3 5 -- Artedius harringtoni 104 1.96 10 6 12 10 Total (top 10) 4627 87.29 DominantDominant IchthyoplanktonIchthyoplankton TopTop 1010 TaxaTaxa (all(all years,years, monthsmonths combined)combined)

Overall Percent of Species Total # Total 1996-2005 1971-1972 1977-1978 1983 Ammodytes hexapterus 1549 29.22 1 7 14 -- Parophrys vetulus 1289 24.32 2 2 1 11 Citharichthyssp. 655 12.36 3 27 8 7 Engraulis mordax 235 4.43 4 30 10 1 Sebastesspp. 204 3.85 5 9 3 3 Liparissp. 170 3.21 6 15 16 16 Psettichthys melanostictus 150 2.83 7 5 4 5 Osmeridae 139 2.62 8 1 2 13 Isopsetta isolepis 132 2.49 9 3 5 -- Artedius harringtoni 104 1.96 10 6 12 10 Total (top 10) 4627 87.29 DominantDominant IchthyoplanktonIchthyoplankton TopTop 1010 TaxaTaxa (all(all years,years, monthsmonths combined)combined)

Overall Percent of Species Total # Total 1996-2005 1971-1972 1977-1978 1983 Ammodytes hexapterus 1549 29.22 1 7 14 -- Parophrys vetulus 1289 24.32 2 2 1 11 Citharichthyssp. 655 12.36 3 27 8 7 Engraulis mordax 235 4.43 4 30 10 1 Sebastesspp. 204 3.85 5 9 3 3 Liparissp. 170 3.21 6 15 16 16 Psettichthys melanostictus 150 2.83 7 5 4 5 Osmeridae 139 2.62 8 1 2 13 Isopsetta isolepis 132 2.49 9 3 5 -- Artedius harringtoni 104 1.96 10 6 12 10 Total (top 10) 4627 87.29 DominantDominant IchthyoplanktonIchthyoplankton TopTop 1010 TaxaTaxa (all(all years,years, monthsmonths combined)combined)

Overall Percent of Species Total # Total 1996-2005 1971-1972 1977-1978 1983 Ammodytes hexapterus 1549 29.22 1 7 14 -- Parophrys vetulus 1289 24.32 2 2 1 11 Citharichthyssp. 655 12.36 3 27 8 7 Engraulis mordax 235 4.43 4 30 10 1 Sebastesspp. 204 3.85 5 9 3 3 Liparissp. 170 3.21 6 15 16 16 Psettichthys melanostictus 150 2.83 7 5 4 5 Osmeridae 139 2.62 8 1 2 13 Isopsetta isolepis 132 2.49 9 3 5 -- Artedius harringtoni 104 1.96 10 6 12 10 Total (top 10) 4627 87.29 Relative Percentage of Top Ten Species Along the NH Line: 1970-2005 100 DominantDominant IchthyoplanktonIchthyoplanktonRockfishes

80 Dominant Taxa by Month Ammodytes hexapterus Parophrys vetulus Citharichthyes sp. 60 Engraulis mordax Smelts Sebastes spp. Liparis spp. Psettichthys melanostictus English 40 Osmeridae Sole Isopsetta isolepis Artedius harringtoni

20 Northern

0 12/70 5/71 10/71 3/72 8/72 10/77 2/78 6/78 3/83 6/83 9/83 100

80 % Within Top Ten Species Within %

60

40

20

0 1/97 1/98 1/99 1/00 1/01 1/02 1/03 1/04 1/05 1/06 Date Species/Environmental Relationships using General Additive Models

• Both large-scale and regional scale environmental variables were examined • Correlations (Spearman’s Rho) of environmental variables were conducted to eliminate highly correlated variables from inclusion in GAM • GAMs were run using both abundance (Gaussian) and pres./abs. (binomial) for 5 most dominant species and total fish density and diversity • stepwise model selection dropping variables to minimize GCV score • used various lag periods in the models (0-3 months)

NAME SOURCE LOCATION URL WEB SITE AUTHOR Basin Scale Indicies Pacific Decadal Oscillation (PDO) http://jisao.washington.edu/pdo/PDO.latest Nathan Mantua Multivariate ENSO Index (MEI) http://www.cdc.noaa.gov/ENSO/enso.mei_index.html Klaus Wolter Northern Oscillation Index (NOI) http://www.pfeg.noaa.gov/products/PFEL/indices/NOIx/noix/html Frank Schwing

Regional Scale Indices Curl of the Wind Stress (CWS) http://www.pfeg.noaa.gov/products/las.html PFEL E-W Ekman Transport (EET) http://www.pfeg.noaa.gov/products/las.html PFEL Index (UPW) http://www.pfeg.noaa.gov/products/PFEL/modeled/indices/upwelling PFEL GAM Results: Abundance

Significant Dev Exp Taxa Best Fit Model GCV Variables (%)

PDO***, MEI***, Osmerids PDO***, UPW 50.3 2.0652 UPW

PDO*, NOI*, CWS, Parophrys vetulus PDO*, NOI*, EET 44.4 2.38840 EET

PDO**, MEI**, PDO**, MEI**, Ammodytes hexapterus NOI**, CWS, EET, 98.4 0.83822 NOI**, EET, UPW UPW

PDO**, MEI**, Sebastes spp. PDO**, MEI**, EET 56.6 1.6157 NOI**, EET

Isopsetta isolepis NOI***, UPW NOI*** 26.7 2.4254

Lag periods: * = 1 month, ** = 2 months, *** = 3 months Conclusions • Overall mean density and diversity are highest winter and early spring • Overall density tracks changes in PDO and temperature • Sharp delineation between the winter summer spawning communities perhaps related to spring transition period • Dramatic changes in dominant species by regime: osmerids, sanddabs, sand lance dominant in cold regimes and anchovy, rockfish and English sole in warm regimes • Abundance of species seem to be affected when there are lags in large scale environmental indices (i.e. PDO, MEI, NOI) • Abundance of species seems to be affected when there is at least two large scale and one small scale environmental indices ApplicationsApplications • Shown that diversity and abundance are indicators of ocean conditions • Relate changes in abundance of early life stages to adult spawners and subsequent year class strength • Develop indices of coastal conditions related to the survival of early life stages • Provide managers early indications of strong year classes that may recruit into AcknowledgementsAcknowledgements

NOAA Northwest Center NOAA FATE Program US GLOBEC Program Oregon State University

Leah Feinberg, Tracy Shaw, Julie Kiester, Paul Bentley, Greg Krutzikowsky for sampling Stacy Remple for database development Jim Colbert for assistance with environmental data Lorenzo Ciannelli for statistical advice

Fisheries And The Environment Northern Shift in the Location of Spawning and Recruitment of Pacific Hake (Merluccius productus) in the Northern Current

Jason Phillips¹, Richard D. Brodeur², Robert L. Emmett², Steve Ralston3, Vidar Wespested4, & Toby D. Auth¹

1 Oregon State University, Hatfield Marine Science Center, Newport, OR 2 NOAA Fisheries, Hatfield Marine Science Center, Newport, OR 3 NOAA Fisheries, SWFSC Santa Cruz, Santa Cruz, CA 4 Pacific Whiting Conservation Cooperative, Seattle, WA