Rrna and Trna Bridges to Neuronal Homeostasis in Health and Disease

Total Page:16

File Type:pdf, Size:1020Kb

Rrna and Trna Bridges to Neuronal Homeostasis in Health and Disease Review rRNA and tRNA Bridges to Neuronal Homeostasis in Health and Disease Francesca Tuorto 1 and Rosanna Parlato 2,3 1 - Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany 2 - Institute of Applied Physiology, University of Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany 3 - Institute of Anatomy and Cell Biology, Medical Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany Correspondence to Francesca Tuorto and Rosanna Parlato: German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany. University of Ulm, Institute of Applied Physiology, Albert Einstein Allee, 11, 89081 Ulm, Germany. [email protected], [email protected] https://doi.org/10.1016/j.jmb.2019.03.004 Edited by Ernst Stefan Seemann Abstract Dysregulation of protein translation is emerging as a unifying mechanism in the pathogenesis of many neuronal disorders. Ribosomal RNA (rRNA) and transfer RNA (tRNA) are structural molecules that have complementary and coordinated functions in protein synthesis. Defects in both rRNAs and tRNAs have been described in mammalian brain development, neurological syndromes, and neurodegeneration. In this review, we present the molecular mechanisms that link aberrant rRNA and tRNA transcription, processing and modifications to translation deficits, and neuropathogenesis. We also discuss the interdependence of rRNA and tRNA biosynthesis and how their metabolism brings together proteotoxic stress and impaired neuronal homeostasis. © 2019 Elsevier Ltd. All rights reserved. Introduction at specific positions [4]. There are two main types of tsRNAs: tRNA-derived fragments (tRFs; 14–30 Types of RNA in a eukaryotic cell classically nucleotides) and tiRNAs (tRNA-derived stress- included ribosomal RNA (rRNA), transfer RNA induced RNAs, or tRNA halves, 28–36 nucleotides), (tRNA), and messenger RNA (mRNA). Over the last both regulating the translation machinery and cellular decade, advances in RNA-sequencing (RNA-seq) and homeostasis by multiple mechanisms, including transcriptome-wide analysis enabled the identification mRNA stability, inhibition of translation initiation and of an increasing variety of non-coding RNA, such as elongation, and ribosome biogenesis [5–8]. long non-coding RNA, microRNA, small nuclear RNA Recent reviews have outlined the up-to-date (snRNA), small nucleolar RNA (snoRNA), piwiRNA, functions of various RNA types in aging and age- and circular RNA (circRNA) increasing the complexity related diseases [1,4,9]. Here, we emphasize the of RNA-mediated regulation of physiological cellular emerging roles of dysfunctional rRNA and tRNA in processes and disease mechanisms [1]. Although neurological disorders in particular, but not exclu- rRNA and tRNA are usually excluded from these sively, those linked with cognitive decline and transcriptomic studies, recent findings promoted the neurodegeneration. After a brief summary of the need to revisit the function of these RNAs and their molecular and structural basis of rRNA and tRNA integration into mechanisms regulating protein syn- synthesis, we describe recent evidence of rRNA- thesis and beyond. In addition, a novel class of small and tRNA-mediated disease mechanisms. Finally, RNAs was revealed using the RNA-seq data [2,3]. we discuss how this knowledge can help the For instance, the fragmentation of tRNAs gives rise identification of new therapeutic approaches and to tRNA-derived small RNAs (tsRNAs) by the cleavage the development of disease markers. 0022-2836/© 2019 Elsevier Ltd. All rights reserved. Journal of Molecular Biology (2019) 431, 1763–1779 1764 Review: rRNA and tRNA Bridges to Neuronal Homeostasis Snapshots of rRNA Synthesis and sites within the ribosomes: they increase the stability of the ribosome, the precision of protein synthesis, Ribosome Biogenesis and ribosomal specialization [14]. Importantly, not all rRNA synthesis takes place in the nucleolus, a ribosomes are structurally and functionally identical nuclear compartment not surrounded by membrane [13], and specialized ribosomes turn up to be a novel in which ribosomal subunits are also assembled strategy to regulate gene expression [15].The (Fig. 1). Each rDNA repeat unit consists of a different affinity of ribosome components for specific conserved rRNA coding sequence transcribed by mRNAs is an emerging mechanism by which trans- the RNA polymerase I (RNA Pol I) and non- lation controls gene expression [16]. It has been conserved intergenic spacers. The mature 18S, reported that subsets of mRNAs, involved in the 5.8S, and 28S rRNAs derive from an rRNA precursor response to oxidative stress, depend on the loss of transcript (47S pre-rRNA) separated by externally specific rRNA modifications [17]. For example, the and internally transcribed spacers. The mature 80S reduced expression of the RNA methyltransferase ribosome is composed of two subunits: the small NSUN5, which catalyzes the post-transcriptional 40S ribosomal subunit that contains the 18S rRNA modification 5- methylcytidine (m5C) in the 28S and 33 ribosomal proteins (RPs) and the large 60S rRNA, results in both reduced rRNA methylation and ribosomal subunit that comprises the 28S, 5.8S, and altered translational fidelity, leading to increased 5S rRNAs and 47 RPs [10]. stress resistance by the translation of proteins Notably, the nucleolus consists of three regions important for the stress response, for example, corresponding to three different steps in the synthe- involved in DNA damage repair [17]. sis of rRNA and characterized by the expression of Interestingly, these rRNA modifications are regu- typical markers with a specific role in rRNA lated by nutrient availability and oxidative and heat synthesis. In particular, these regions are as follows: shock stress, tightening ribosome biogenesis and the fibrillar center (FC), where rDNA transcription function to environmental conditions, similarly to the takes place; the dense fibrillar component (DFC), reprogramming of tRNA modifications observed where pre-rRNA is processed; and the granular upon stress, that will be discussed later [18]. component (GC), also containing processing factors Moreover, the inhibition of rDNA transcription and ribosomal proteins. At the electron microscopic resulting in the loss of nucleolar integrity and release level, FCs are fibrillar regions enriched with RNA Pol of nucleolar proteins in the nucleoplasm defines a I–specific transcription factors including upstream condition known as “nucleolar stress” [19,20]. Lately, binding transcription factor 1 (UBTF1). DFCs are the functional implications of this condition have highly electron-dense fibrillar regions that surround been expanded by new evidence of the highly FCs. DFCs are labeled with antibodies specifically dynamic nature of nucleolar assembly and associated recognizing pre-rRNA processing factors including changes in protein composition [21]. An imbalance fibrillarin. GCs, the granular regions outside of FCs in ribosome biogenesis, for example, by the accumu- and DFCs, are enriched with assembly factors and lation of specific ribosomal proteins, may lead to an ribosomal proteins. During processing, the pre-40S increased stability of the transcription factors p53, a and the pre-60S ribosomal subunits are assembled major player in the response to different types of and exported to the cytoplasm where the mature cellular stresses [22]. Interestingly, not only nucleolar ribosomes are finally produced [11]. proteins are important for rRNA synthesis, they may Ribosomal biogenesis is a process that requires the also regulate cell proliferation, differentiation, and tight coordination of the transcriptional activity of all cell death [23]. The association between the nucleolus three RNA polymerases [12] that is in turn regulated and malignant cell transformation anticipated the by environmental changes. Post-translational modifi- hypothesis that this organelle might play an active cations of protein components of the transcriptional role in disease pathogenesis rather than being an end- machinery and histones as well as epigenetic effect of neoplastic transformation [19,24–27].Inthe modifications at the rDNA loci affect initiation of last decade, a similar hypothesis peeked out in the transcription [10]. Moreover, the structure and function context of neurodegenerative disorders [23,28–31]. of rRNAs are strongly influenced by a wide variety of Several mechanisms can be envisaged by which post-transcriptional modifications. These modifica- defective rRNA synthesis may have a deleterious tions regulate rRNA folding and within the ribosome impact on neuronal well-being, although surveillance are located in regions interacting with tRNA and mechanisms have been developed to detect and mRNA [9].2′-O-ribose-methylation (2′Ome) and eliminate misprocessed rRNA. Intriguingly, a silencing pseudouridylation (Ψ) are the most frequent rRNA mechanism that can inhibit pre-rRNA expression, if modifications in eukaryotes. Interestingly, these rRNA is not correctly processed, has been recently modifications are context-specific and depend on proposed [32]. extracellular changes, developmental and disease As summarized in Fig. 1, rRNA synthesis could be state [13]. rRNA post-transcriptional modifications dysregulated at different steps: changes in the number have various functions being located at functional of rDNA genes, defective rDNA transcription, and Review: rRNA and tRNA Bridges to
Recommended publications
  • ARTICLES Functional Mitochondrial Heterogeneity in Heteroplasmic
    0031-3998/00/4802-0143 PEDIATRIC RESEARCH Vol. 48, No. 2, 2000 Copyright © 2000 International Pediatric Research Foundation, Inc. Printed in U.S.A. ARTICLES Functional Mitochondrial Heterogeneity in Heteroplasmic Cells Carrying the Mitochondrial DNA Mutation Associated with the MELAS Syndrome (Mitochondrial Encephalopathy, Lactic Acidosis, and Strokelike Episodes) ANNETTE BAKKER, CYRILLE BARTHE´ LE´ MY, PAULE FRACHON, DANIELLE CHATEAU, DAMIEN STERNBERG, JEAN PIERRE MAZAT, AND ANNE LOMBE` S INSERM UR523, Institut de Myologie, 75651 Paris, France [A.B., C.B., P.F., D.C., A.L.]; Biochimie B, Hoˆpital de La Salpeˆtrie`re, 75651 Paris, France [D.S.]; and Universite´ de Bordeaux II, INSERM E99–29, 33076 Bordeaux cedex, France [J.P.M.] ABSTRACT Most mitochondrial DNA (mtDNA) alterations associated wild-type mtDNA, transfer RNA, or protein. Mitochondria in with human disorders are heteroplasmic, i.e. mutant mtDNA these heteroplasmic cells cannot, therefore, be considered a molecules coexist with normal ones within the cell. We ad- single functional unit. (Pediatr Res 48: 143–150, 2000) dressed the possibility of intermitochondrial exchanges through histologic analyses of cybrid clones with increasing proportion of the MELAS (A3243G) mtDNA transfer RNA point mutation. Abbreviations MtDNA-dependent cytochrome c oxidase activity and protein MELAS, mitochondrial myopathy, encephalopathy, lactic composition as well as mitochondrial membrane potential ap- acidosis, and strokelike episodes peared heterogeneous in individual cells from clonal heteroplas-
    [Show full text]
  • Stouthamer1973
    Antonie van Leeuwenhoek 39 (1973) 545-565 545 A theoretical study on the amount of ATP required for synthesis of microbial cell material A. H. STOUTHAMER Biological Laboratory, Free University, de Boelelaan 1087, Amsterdam, the Netherlands STOUTHAMER, A.H. 1973. A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39: 545-565. The amount of ATP required for the formation of microbial cells growing under various conditions was calculated. It was assumed that the chemical com­ position of the cell was the same under all these conditions. The analysis of the chemical composition of microbial cells of Morowitz ( 1968) was taken as a base. It was assumed that 4 moles of ATP are required for the incorporation of one mole of amino acid into protein. The amount of ATP required on account of the instability and frequent regeneration of messenger RNA was calculated from data in the literature pertaining to the relative rates of synthesis of the various classes of RNA molecules in the cell. An estimate is given of the amount of ATP required for transport processes. For this purpose it was assumed that 0.5 mole of ATP is necessary for the uptake of 1 g-ion of potassium or ammo­ nium, and 1 mole of ATP for the uptake of 1 mole of phosphate, amino acid, acetate, malate etc. The results of the calculations show that from preformed monomers (glucose, amino acids and nucleic acid bases) 31.9 g cells can be formed per g-mole of ATP when acetyl-CoA is formed from glucose.
    [Show full text]
  • Progressive Increase in Mtdna 3243A>G Heteroplasmy Causes
    Progressive increase in mtDNA 3243A>G PNAS PLUS heteroplasmy causes abrupt transcriptional reprogramming Martin Picarda, Jiangwen Zhangb, Saege Hancockc, Olga Derbenevaa, Ryan Golhard, Pawel Golike, Sean O’Hearnf, Shawn Levyg, Prasanth Potluria, Maria Lvovaa, Antonio Davilaa, Chun Shi Lina, Juan Carlos Perinh, Eric F. Rappaporth, Hakon Hakonarsonc, Ian A. Trouncei, Vincent Procaccioj, and Douglas C. Wallacea,1 aCenter for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104; bSchool of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China; cTrovagene, San Diego, CA 92130; dCenter for Applied Genomics, Division of Genetics, Department of Pediatrics, and hNucleic Acid/Protein Research Core Facility, Children’s Hospital of Philadelphia, Philadelphia, PA 19104; eInstitute of Genetics and Biotechnology, Warsaw University, 00-927, Warsaw, Poland; fMorton Mower Central Research Laboratory, Sinai Hospital of Baltimore, Baltimore, MD 21215; gGenomics Sevices Laboratory, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806; iCentre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia; and jDepartment of Biochemistry and Genetics, National Center for Neurodegenerative and Mitochondrial Diseases, Centre Hospitalier Universitaire d’Angers, 49933 Angers, France Contributed by Douglas C. Wallace, August 1, 2014 (sent for review May
    [Show full text]
  • Characterization of Two Cdnas Encoding Mitochondrial Lipoamide Dehydrogenase from Arabidopsis Isabelle Lutziger Iowa State University
    Botany Publication and Papers Botany 10-2001 Characterization of Two cDNAs Encoding Mitochondrial Lipoamide Dehydrogenase from Arabidopsis Isabelle Lutziger Iowa State University David J. Oliver Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/bot_pubs Part of the Botany Commons Recommended Citation Lutziger, Isabelle and Oliver, David J., "Characterization of Two cDNAs Encoding Mitochondrial Lipoamide Dehydrogenase from Arabidopsis" (2001). Botany Publication and Papers. 1. http://lib.dr.iastate.edu/bot_pubs/1 This Article is brought to you for free and open access by the Botany at Iowa State University Digital Repository. It has been accepted for inclusion in Botany Publication and Papers by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Characterization of Two cDNAs Encoding Mitochondrial Lipoamide Dehydrogenase from Arabidopsis Abstract In contrast to peas (Pisum sativum), where mitochondrial lipoamide dehydrogenase is encoded by a single gene and shared between the α-ketoacid dehydrogenase complexes and the Gly decarboxylase complex, Arabidopsis has two genes encoding for two mitochondrial lipoamide dehydrogenases. Northern-blot analysis revealed different levels of RNA expression for the two genes in different organs; mtLPD1 had higher RNA levels in green leaves compared with the much lower level in roots. The mRNA formtLPD2 shows the inverse pattern. The other organs examined showed nearly equal RNA expressions for both genes. Analysis of etiolated seedlings transferred to light showed a strong induction of RNA expression for mtLPD1 but only a moderate induction of mtLPD2. Based on the organ and light-dependent expression patterns, we hypothesize thatmtLPD1encodes the protein most often associated with the Gly decarboxylase complex, and mtLPD2 encodes the protein incorporated into α-ketoacid dehydrogenase complexes.
    [Show full text]
  • Shared Sulfur Mobilization Routes for Trna Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes
    biomolecules Review Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes Silke Leimkühler *, Martin Bühning and Lena Beilschmidt Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany; [email protected] (M.B.); [email protected] (L.B.) * Correspondence: [email protected]; Tel.: +49-331-977-5603 Academic Editor: Valérie de Crécy-Lagard Received: 8 December 2016; Accepted: 9 January 2017; Published: 14 January 2017 Abstract: Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm5s2U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron–sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes. Keywords: tRNA; molybdenum cofactor; persulfide; thiocarboxylate; thionucleosides; sulfurtransferase; L-cysteine desulfurase 1.
    [Show full text]
  • Molecular Basis of Dihydrouridine Formation on Trna
    Molecular basis of dihydrouridine formation on tRNA Futao Yua1, Yoshikazu Tanakab,c1, Keitaro Yamashitaa, Takeo Suzukid, Akiyoshi Nakamurac, Nagisa Hiranoc, Tsutomu Suzukid, Min Yaoa,c, and Isao Tanakaa,c,2 aGraduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; bCreative Research Institution “Sousei,” Hokkaido University, Sapporo 001-0021, Japan; cFaculty of Advanced Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; and dDepartment of Chemistry and Biotechnology, School of Engineering, University of Tokyo, Tokyo 113-8656, Japan Edited by Dieter Söll, Yale University, New Haven, CT, and approved October 3, 2011 (received for review July 28, 2011) Dihydrouridine (D) is a highly conserved modified base found Similarly, the site specificity and nonredundant catalytic func- in tRNAs from all domains of life. Dihydrouridine synthase (Dus) tions were also confirmed in three Dus from E. coli (YjbN, YhdG, catalyzes the D formation of tRNA through reduction of uracil base and YohI) (8). The crystal structure of Dus from Thermotoga with flavin mononucleotide (FMN) as a cofactor. Here, we report maritima has been reported (9), and mutation analysis of Dus the crystal structures of Thermus thermophilus Dus (TthDus), which from E. coli revealed important residues for dihydrouridine is responsible for D formation at positions 20 and 20a, in complex formation (10). One of the most remarkable biochemical features with tRNA and with a short fragment of tRNA (D-loop). Dus inter- of Dus is that other modifications of tRNA are required for the acts extensively with the D-arm and recognizes the elbow region enzymatic activity (11). However, the details of the reaction, composed of the kissing loop interaction between T- and D-loops in including the tRNA recognition mechanism and its catalysis of tRNA, pulling U20 into the catalytic center for reduction.
    [Show full text]
  • Mitochondrial Dysfunction in Parkinson's Disease: Focus on Mitochondrial
    biomedicines Review Mitochondrial Dysfunction in Parkinson’s Disease: Focus on Mitochondrial DNA Olga Buneeva, Valerii Fedchenko, Arthur Kopylov and Alexei Medvedev * Institute of Biomedical Chemistry, 10 Pogodinskaya Street, 119121 Moscow, Russia; [email protected] (O.B.); [email protected] (V.F.); [email protected] (A.K.) * Correspondence: [email protected]; Tel.: +7-495-245-0509 Received: 17 November 2020; Accepted: 8 December 2020; Published: 10 December 2020 Abstract: Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although their direct impact on mitochondrial function/dysfunction needs further investigation, results of various studies performed using cells isolated from PD patients or their mitochondria (cybrids) suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated the importance of mtDNA deletions, which could also originate from abnormalities induced by mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However, proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were downregulated in various PD models.
    [Show full text]
  • Urethan Carcinogenesis and Nucleic Acid Metabolism: in Vitro Interactions with Enzymes1
    [CANCER. RESEARCH 28, 1041-104«,June1968] Urethan Carcinogenesis and Nucleic Acid Metabolism: In Vitro Interactions with Enzymes1 Alvin M. Kaye2 Department of Experimental Biology, Isaac Woljson Building, The Weizmann Institute o¡Science, Rehovoth, Israel SUMMARY extensive biologic antagonism experiments, Rogers (35) con cluded in relation to urethan carcinogenesis that the "point of In the light of suggestions in the literature linking the car action of the carcinogen is on the pathway of nucleic acid syn cinogenic action of urethan (ethyl carbamate) with the inhibi thesis below orotic acid and perhaps at the level of ureido- tion of an enzymatic step in nucleic acid metabolism (par succinic acid." Elion et al. (IO, 11), from biologic antagonism ticularly pyrimidine synthesis), a series of enzymes has been experiments on urethan's carcinostatic activity against adeno- assayed in vitro at concentrations of urethan which are supra- carcinoma 755, suggested that urethan affects the formation of lethal in mice. These enzymes were: ornithine transcarbam- carbamyl aspartic acid from carbamyl phosphate and aspartic ylase; the enzymes leading to the synthesis of orotic acid, viz., acid, and the methylation and the animation of the uracil carbamyl phosphate synthetase, aspartate transcarbamylase, moiety. The previous paper in this series (24) reported in vivo dihydroorotase, and dihydroorotate dehydrogenase ; DNA and tests on possible reversal of urethan carcinogenesis by nucleic RNA methylase; DNA, RNA, and polyriboadenylate poly- acid pyrimidine precursors and possible potentiation of ure merase; alkaline and acid deoxyribonuclease ; alkaline and acid than's effect by aminopterin. In this paper, studies in vitro on phosphatase and snake venom phosphodiesterase. The ability enzyme systems which might be involved in the mechanism of of urethan to interfere with the induction of jS-galactosidase urethan carcinogenesis are described.
    [Show full text]
  • Direct Linkage of Mitochondrial Genome Variation to Risk Factors for Type 2 Diabetes in Conplastic Strains
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains Michal Pravenec,1 Masaya Hyakukoku,2,3 Josef Houstek,1 Vaclav Zidek,1 Vladimir Landa,1 Petr Mlejnek,1 Ivan Miksik,1 Kristyna Dudová-Mothejzikova,1 Petr Pecina,1 Marek Vrbacký,1 Zdenek Drahota,1 Alena Vojtiskova,1 Tomas Mracek,1 Ludmila Kazdova,4 Olena Oliyarnyk,4 Jiaming Wang,3 Christopher Ho,3 Nathan Qi,5 Ken Sugimoto,6 and Theodore Kurtz3,7 1Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic; 2Second Department of Medicine, Sapporo Medical University, Sapporo 060-8543, Japan; 3Department of Laboratory Medicine, University of California, San Francisco, California 94107, USA; 4Institute for Clinical and Experimental Medicine, Prague, Czech Republic; 5Department of Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA; 6Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan Recently, the relationship of mitochondrial DNA (mtDNA) variants to metabolic risk factors for diabetes and other common diseases has begun to attract increasing attention. However, progress in this area has been limited because (1) the phenotypic effects of variation in the mitochondrial genome are difficult to isolate owing to confounding variation in the nuclear genome, imprinting phenomena, and environmental factors; and (2) few animal models have been available for directly investigating the effects of mtDNA variants on complex metabolic phenotypes in vivo. Substitution of different mitochondrial genomes on the same nuclear genetic background in conplastic strains provides a way to unambiguously isolate effects of the mitochondrial genome on complex traits.
    [Show full text]
  • The Mitochondrial Genomes of Sarcoptiform Mites: Are Any Transfer RNA Genes Really Lost? Xiao-Feng Xue1*, Wei Deng1, Shao-Xuan Qu2, Xiao-Yue Hong1 and Renfu Shao3*
    Xue et al. BMC Genomics (2018) 19:466 https://doi.org/10.1186/s12864-018-4868-6 RESEARCHARTICLE Open Access The mitochondrial genomes of sarcoptiform mites: are any transfer RNA genes really lost? Xiao-Feng Xue1*, Wei Deng1, Shao-Xuan Qu2, Xiao-Yue Hong1 and Renfu Shao3* Abstract Background: Mitochondrial (mt) genomes of animals typically contain 37 genes for 13 proteins, two ribosomal RNA (rRNA) genes and 22 transfer RNA (tRNA) genes. In sarcoptiform mites, the entire set of mt tRNA genes is present in Aleuroglyphus ovatus, Caloglyphus berlesei, Dermatophagoides farinae, D. pteronyssinus, Histiostoma blomquisti and Psoroptes cuniculi. Loss of 16 mt tRNA genes, however, was reported in Steganacarus magnus;lossof2–3tRNAgenes was reported in Tyrophagus longior, T. putrescentiae and Sarcoptes scabiei. Nevertheless, convincing evidence for mt gene loss is lacking in these mites. Results: We sequenced the mitochondrial genomes of two sarcoptiform mites, Histiostoma feroniarum (13,896 bp) and Rhizoglyphus robini (14,244 bp). Using tRNAScan and ARWEN programs, we identified 16 and 17 tRNA genes in the mt genomes of H. feroniarum and R. robini, respectively. The other six mt tRNA genes in H. feroniarum and five mt tRNA genes in R. robini can only be identified manually by sequence comparison when alternative anticodons are considered. We applied this manual approach to other mites that were reported previously to have lost mt tRNA genes. We were able to identify all of the 16 mt tRNA genes that were reported as lost in St. magnus, two of the three mt tRNA genes that were reported as lost in T.
    [Show full text]
  • Transfer RNA Editing in Land Snail Mitochondria
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 10432-10435, October 1995 Genetics Transfer RNA editing in land snail mitochondria (genome organization/acceptor stems/discriminator base/polyadenylylation/RNA circularization) SHIN-ICHI YOKOBORI AND SVANTE PAABO* Institute of Zoology, University of Munich, Luisenstrasse 14, P.O. Box 202126, D-80021 Munich, Germany Communicated by Walter Gilbert, Harvard University, Cambridge, MA, July 21, 1995 (received for review June 20, 1995) ABSTRACT Some mitochondrial tRNA genes of land were eluted with a buffer containing 20 mM Tris HCl (pH 7.5), snails show mismatches in the acceptor stems predicted from 10 mM MgCl2, and 800 mM NaCl. Total DNA was prepared their gene sequences. The majority of these mismatches fall in (13) from E. herklotsi hepatopancreas from the same individ- regions where the tRNA genes overlap with adjacent down- ual used to prepare RNA. stream genes. We have synthesized cDNA from four circular- tRNA Circularization. The ligation condition used was ized tRNAs and determined the sequences of the 5' and 3' modified from Nishikawa (14). Forty micrograms of total parts of their acceptor stems. Three of the four tRNAs differ tRNA was ligated in 100 ,ul of a solution containing 50 mM from their corresponding genes at a total of 13 positions, Hepes (pH 8.3), 10 mM MgCl2, 3.5 mM dithiothreitol (DTT), which all fall in the 3' part of the acceptor stems as well as the 10 mg of bovine serum albumin (BSA) per ml, 3.3 mM ATP, discriminator bases. The editing events detected involve and 2000 units of T4 RNA ligase per ml (New England changes from cytidine, thymidine, and guanosine to adenosine Biolabs), at 37°C for 2 hr.
    [Show full text]
  • The Complete Mitochondrial Genome Sequences of the Philomycus Bilineatus (Stylommatophora: Philomycidae) and Phylogenetic Analysis
    Article The Complete Mitochondrial Genome Sequences of the Philomycus bilineatus (Stylommatophora: Philomycidae) and Phylogenetic Analysis Tiezhu Yang †,1,2,3, Guolyu Xu †,1,2,3, Bingning Gu 1,2,3, Yanmei Shi 1,2,3, Hellen Lucas Mzuka 1,2,3 and Heding Shen †,1,2,3,* 1 National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University; [email protected] (T.Y.); [email protected] (G.X.); [email protected] (B.G.); [email protected] (Y.S.); [email protected] (H.L.M.) 2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education 3 Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306, China * Correspondence: [email protected]; Tel: +86-21-61900446; Fax: +86-21-61900405 † These authors contributed equally to this work. Received: 22 January 2019; Accepted: 27 February 2019; Published: 5 March 2019 Abstract: The mitochondrial genome (mitogenome) can provide information for phylogenetic analyses and evolutionary biology. We first sequenced, annotated, and characterized the mitogenome of Philomycus bilineatus in this study. The complete mitogenome was 14,347 bp in length, containing 13 protein-coding genes (PCGs), 23 transfer RNA genes, two ribosomal RNA genes, and two non-coding regions (A + T-rich region). There were 15 overlap locations and 18 intergenic spacer regions found throughout the mitogenome of P. bilineatus. The A + T content in the mitogenome was 72.11%. All PCGs used a standard ATN as a start codon, with the exception of cytochrome c oxidase 1 (cox1) and ATP synthase F0 subunit 8 (atp8) with TTG and GTG.
    [Show full text]